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Preface

The title given these notes, and the course numbered Statistics 601 at Iowa

State University, is Advanced Statistical Methods. One might reasonably won-

der, as did I in preparing these notes, what characteristics are needed for a

statistical method to be considered advanced as opposed to elementary, in-

troductory, or basic. Is a method advanced if it demands a certain level of

mathematical sophistication to employ? Is a method advanced simply because

it does not fall into the body of topics usually contained in courses taught at

the undergraduate or beginning graduate level? Is a method advanced only

if it requires extensive knowledge of computing to bring into practice? The

Department of Statistics at Iowa State University now requires that all stu-

dents intending to persue a PhD degree in statistics (including co-majors) take

this course on advanced methods in preparation for the written preliminary

examination. Thus, even more troubling than the question of what makes a

statistical method advanced, is the question of what every PhD student should

know beyond the topics contained in courses required of all MS students.

I have chosen to avoid addressing these questions directly because answers

to them, even if such answers exist, fail to capture the intent of an upper-level

course in statistical methods. I believe it is more profitable to ask what every

PhD student should be able to do, rather than to ask what every PhD student

should know. What every PhD student should be able to do is something

our faculty refer to with the slippery phrase “demonstrate methodological ma-

turity”. I say this phrase is slippery because it falls into the category of

something we can’t define but can usually agree on when it is exhibited. That

is, we can’t tell you what it is but we know it when we see it, which is a

most disturbing and unsatisfactory situation for graduate students who want
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to know what is needed to be successful in their program of study. While not

exhaustive of what everyone might consider methodological maturity, it seems

that two characteristics are often involved in demonstrations of such maturity.

First is the understanding that methods and theory are simply convenient ti-

tles used in our profession to refer to various topics, with theory comprising

many topics that can profitably be considered without motivating examples

or the existence of even hypothetical problems, and methods comprising many

topics that generally do require at least a hypothetical situation in which they

could be applied. The application of statistics often requires the use of both

topics we would typically categorize as theory and those we would typically

categorize as methods. Secondly, a demonstration of methodological maturity

is often characterized by the avoidence of a modular organization of possible

analyses. It is natural to organize our thinking along the lines of courses we

have taken and, when faced with a problem requiring statistical treatment, to

assign that problem to one of the modules formed by our formal educational

experiences. I spent any number of years in which I would determine that a

given problem was a “Stat 557 problem”, or a “Stat 515 problem”, or a “Stat

512 problem”, although my numbering system was based on my own education

rather than courses at Iowa State. This is not necessarily a bad thing, and

may even be beneficial to our overall learning progress. And, many problems

can be adequately dealt with using such an approach. But at some point a

PhD statistician is expected to move beyond such a categorization. It is not

the organization of topics into discrete courses that must be overcome (some

type of organization is necessary to enable learning) but the use of this orga-

nization in considering how a scientific problem is to be approached from a

statistical viewpoint. That is, methodological maturity is demonstrated when

a statistician uses the knowledge and techniques at his or her disposal to con-
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struct an appropriate analysis for a given problem rather than determining if

the problem is sufficiently round to fit in the round hole or sufficiently square

to fit in the square hole.

This course is intended to help you develop methodological maturity. It is

organized along the lines of what I call approaches to statistical analysis. These

notes are divided into three major parts, Approaches Based on Randomization,

Model Based Approaches, and The Bayesian Approach. At some point I hope

to add a fourth portion to the notes tentatively titled Approaches to Inference.

Even within one of these major parts I have avoided a modular presentation.

Thus, for example, general methods for constructing models are presented with

little consideration of what estimation procedures might be used. Estimation

procedures are presented without necessarily being attached to a particular

type of model.

Following from the above considerations, the advanced in Advanced Sta-

tistical Methods refers to the way statistical procedures are used to build an

analysis. You can expect to see some procedures and topics which are familiar

to you, and you will also see many topics that are new. But this still leaves

the issue of which particular topics should be included, and which passed over.

These decisions were made largely on the basis of issues raised in the Intro-

duction. The introductory portion of these notes begins with what will strike

many as a somewhat obtuse philosophical discussion. Some might even de-

scribe the first section to follow as “fluffy” or a matter of irrelevant semantics

alone. I believe, however, that consideration of what we mean by statistical

methods and, even more generally, statistical analysis is important in under-

standing the structure of this course and, in particular, the course notes. Thus,

I present this material not as a thorough discussion of philosophical considera-

tions about what makes statistics a legitimate scientific discipline but, rather,
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as an idication of what drove the necessary decisions about what to include

and what to leave out of these notes. So read the Introduction, not from the

viewpoint of how we make philosophical sense out of what we call the field of

statistics, but from the viewpoint of how such considerations unfold into a way

to organize our thinking about the topic we call statistical methods.

Mark S. Kaiser

August 2004
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Chapter 1

INTRODUCTION

If you have not already done so, please read the preface to these notes now.

The material in this introduction is presented to explain why many of the top-

ics included in these notes are included, and why many other quite fine topics

in their own right are not included. The broad context in which these consider-

ations are made is that of scientific investigation, a bias that runs throughout

these notes. While many of the procedures discussed in this course may be

useful for the analysis of, for example, acceptance sampling data in a manufac-

turing process or data gathered from a stringent protocol for the licensing of a

drug, our primary focus will be the analysis of problems from research in the

applied sciences. Most scientific investigations are not repeatedly conducted

in the same way making, for example, the concept of error rates in hypothesis

testing of less importance than they would be in repeated decisions to accept

or reject batches of manufactured goods. What is desired is an analysis of

uncertainty and, by extension, a quantification of scientific evidence.

1
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1.1 Statistical Analyses, Statistical Methods,

and Statistical Techniques

The statistics profession seems to be in a continual process of attempting

to define itself. This may be due, in part, from a long-perceived need to

distinguish statistics from mathematics and to establish recognition not only in

the academic community but also in society as a whole. In addition, however,

the rapid increase in computational capability has provided new tools for both

statisticians and workers in many other fields who pursue ways of examining

data and making inferential statements on the basis of those analyses. This

helps fuel what some statisticians see as an “identity crisis” for the profession

(see, for example, the ASA Presidential Address published in the March 2004

issue of JASA). So what, if anything, defines statistics as a discipline? Given

the diversity of activities that statisticians are involved in this question may be

too broad to be given a satisfactory answer. But we may be able to make some

progress by asking more specific questions about what constitutes statistical

analyses, statistical methods, or statistical techniques.

1.1.1 Discussion Items on Statistical Analyses

What does it mean to say that a particular examination of a problem con-

stitutes a statistical analysis? Some aspects of the procedures with which a

problem can be investigated that might be mentioned as possible characteris-

tics that qualify such procedures as statistical analyses include the following:

1. involves the use of observed data

2. involves learning from data
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3. involves mathematical analysis

4. involves the examination of hypotheses

5. involves inferential statements

6. involves uncertainty

7. involves computation

The above list is not intended to include all the possibilities that one might

think of, but these types of characteristics are often mentioned in attempts

to “define” what constitutes a statistical analysis. In fact, phrases such as

these are sometimes combined to produce an answer to the question “what

is statistics?” such as several contained on the web page of the American

Statistical Association,

I like to think of statistics as the science of learning from data . . .

Jon Kettenring, 1997 ASA President

The mathematics of the collection, organization, and interpretation

of numerical data, especially the analysis of population character-

istics by inference from sampling.

American Heritage Dictionary

or

The steps of statistical analysis involve collecting information, eval-

uating it, and drawing conclusions.

Author of the ASA web page “What is Statistics?”
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A difficulty with such attempts to give definition to statistical analyses is

that they (almost necessarily) lack precision. Is solution of a set of partial dif-

ferential equations, using observed data to set initial and/or boundary value

conditions, necessarily a statistical analysis? Certainly this procedure involves

data and mathematical analysis. Is solution of a stochastic differential equa-

tion necessarily a statistical analysis? It does involves uncertainty and, again,

mathematical analysis. Are the use of machine learning or running a neural

network necessarily statistical analyses? These activities involve computation

and learning from data. Is examination of time recorded in flights around

world in different directions to confirm or contradict Einstein’s theory of spe-

cial relativity necessarily a statistical analysis? Here we have both a hypothesis

and data. I believe most of us would answer all of the above questions in the

negative. While these types of activities and procedures might be included

in something we would consider a statistical analysis they do not, in and of

themselves, qualify as statistical analyses.

The quote from Dr. Kettenring given previously is an attempt to provide

a simple indication of what statistical analysis is about in plain language that

is readily interpretable, and I do not fault such efforts that appear in places

such as the ASA web page. But they are not sufficient to provide guidance for

what topics should be covered in an advanced course on statistical methods.

The “learning from data” phrase has become popular, but really provides

little distinction between procedures we would consider statistical in nature

as opposed to other approaches. A few years ago I made a number of trips

over a relatively short period of time. As I am slow to turn in travel expenses

for reimbursement, I ended up with both high credit card balances and low

cash availability. For several months I sent in the minimum monthly payment

listed on several credit card statements. I noticed that, although I had made



1.1. ANALYSES, METHODS, TECHNIQUES 5

regular payments in the minimum required amounts, the total credit card

balances went up, not down! I learned from this experience, on the basis of

data consisting of my account balances, that minimum monthly payments are

not sufficient to reduce credit card debt. But I doubt that many of us would

consider this a statistical analysis.

Just as it is perhaps too general to ask what statistics is, perhaps at-

tempting to characterize statistical analyses remains too vague to address in

a satisfactory manner. We might narrow the discussion by considering what

we mean by a statistical method and then building up a statistical analysis as

consisting of the application of one or more such methods.

1.1.2 Discussion Items on Statistical Methods

We turn our attention, then,to the question of what it means to say that some

procedure is a statistical method. Consideration of this question might lead

us to assert that one or more of the following characteristics apply to such

methods:

1. involves a coherent (complete, logically consistent) process for the exam-

ination of data in all or a portion of a statistical analysis (even though

we haven’t entirely determined what we mean by analysis)

2. involves the expression or manipulation of data in a way that summarizes

the information the data contain about a question or quantity of interest

3. involves mathematical expressions for estimation and/or testing of quan-

tities in populations or theoretical probability distributions

Possible characterizations such as these are more well-focused than those

given in the previous subsection for statistical analyses, but are also more tech-
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nical in their implications. These more precise suggestions for characteristics

of a statistical method do embody many of the possibilities given previously

relative to the issue of a statistical analysis. The role of data comes through

clearly, and learning from data is sharpened to the summarization of infor-

mation contained in data about a particular question (hypothesis) or quantity

(object of inference) of interest. Uncertainty appears at least in the form of

probability distributions, and the role of mathematics in producing the appro-

priate summarization through estimation or testing is strongly implied. Several

aspects of the phrases above have also restricted the range of procedures that

might fall into one or more of these categories to a greater degree than what

was considered for statistical analyses. The concept of population or distrib-

ution alone is sufficient to exclude possibilities such as the credit card story

of Section 1.1; note here that the existence of such concepts does not imply

that only indefinite probabilities are involved in inference. The insertion of

a necessary logical basis for an overall procedure places a greater demand on

what might be considered a statistical method than is implied by a mathe-

matical solution to a well formulated problem, such as the solution of sets of

differential equations.

It seems that general agreement concerning the status of various procedures

as statistical methods is easier to attain than is true for statistical analyses.

For example, I believe most statisticians would not have difficulty agreeing that

maximum likelihood estimation, two-sample t-tests, and bootstrap estimation

of standard errors qualify as statistical methods. But it is less clear that other

common procedures employed by statisticians reach the level of a method.

Whether the production of a scatterplot is a statistical method could certainly

be questioned under criteria such as those listed above, and similarly for many

other common data displays such as stem-and-leaf plots, boxplots or even
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sophisticated rotating scatterplots in high dimension. Do procedures for the

interpolation of data through the use of splines or kriging qualify as statistical

methods? What if such procedures are combined with other assumptions or

procedures to produce measures of uncertainty for predictions? Perhaps we

should lower the demands another notch in our effort to define characteristics

and consider something that might be called statistical techniques. We could

then consider building up our concepts of statistical methods and eventually

analyses as organized collections of such techniques.

1.1.3 Discussion Items on Statistical Techniques

We have now reached the point in our discussion at which we wish to con-

sider what criteria might be used to categorize some procedure as a statistical

technique. Possibilities might include that a technique:

1. forms a part of a statistical method

2. is anything that proves useful in a statistical analysis

3. is used primarily by statisticians but not other disciplines

At this point many of us, myself included, would conclude that we have

simply progressed through the semantics of analysis, method, and technique to

make the question of what qualifies under the headings less controversial and

to allow nearly any procedure one wishes to consider to qualify as at least a

statistical technique. But this recognition brings with it an important message.

We typically use the words technique, method, and analysis with a sense of a

progression that entails increasing demands on organized structure, complete-

ness, and end product. A technique does not need to result in an inference

or conclusion, and need not contain an overall logical structure. A method
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must be more complete in attaining an narrow objective such as estimation or

prediction of quantities and, in the view of many statisticians, also providing

an associated measure of uncertainty. An analysis must combine one or more

methods and techniques in an organized and logical fashion to culminate in

conclusions, typically inferential in nature, about a question of interest.

I will close this brief subsection by pointing out that the development of

the phrases statistical technique, method, and analysis is analogous to the way

we use the words illustration, example, and application in referring to the pre-

sentation of manipulations of data or numbers. An illustration is constructed

to display some aspect of the manner in which a mathematical manipulation

of numbers functions. Illustrations may be built around real data but are also

often constructed in a purposeful manner (e.g., with carefully chosen numer-

ical values) for pedagogical purposes. Examples generally consist of at least

portions of an actual data set to demonstrate the way some procedure func-

tions in a real situation. Examples do, however, often simplify the setting

through either culling of the data to be used (e.g., ignoring extreme values)

or by putting aside justification of certain assumptions (e.g., taking “tuning”

parameters as known). An application, in contrast, focuses on a particular sci-

entific problem and must address all important issues involved in addressing

that problem statistically (e.g., determining how one sets tuning parameter

values in the context of the problem). A complete application must also cul-

minate in an indication of what can be concluded about the problem based

on the statistical analysis (yes, analysis) conducted. The connection with our

present topic is that the same type of progression with increasing requirements

in terms of completeness and logical organization is present in the progression

of illustration, example, and application as has been developed for technique,

method, and analysis in these notes.
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1.1.4 Statistical Methods and Analyses Revisited

The primary thesis of this portion of the Introduction results from revisiting

the concepts of methods and analyses in the light of the preceding discus-

sion, and is illustrated by considering the statistical procedure of simple linear

regression analysis. By far the most commonly employed manner of estimat-

ing the parameters of a simple linear regression model is ordinary least squares

(ols). I would consider ols a statistical technique but not, in and of itself, a sta-

tistical method. This is because ols simply constitutes a solution to a problem

of geometry, based on a mathematical projection theorem. What is statisti-

cal about ols estimators is that they possess certain properties (i.e., minimum

variance among all unbiased linear estimators) as given by the Gauss-Markov

theorem. It is when, in the usual progression in linear regression, we at-

tach normal distributions to the independent and identically distributed error

terms in the regression model that the procedure truly qualifies as a statistical

method. In addition, at this point we are able to use the sampling distributions

of estimators to develop inferential quantities (e.g., intervals for estimates or

predictions, confidence bands for the regression line, etc.). When such quanti-

ties are used to reach conclusions about scientific aspects of the problem that

led to the use of linear regression we can attach the label of analysis to the

entire process. I would argue that the critical step in this development is the

introduction of probability through the assignment of specific distributions to

the error terms. Certainly, to realize the Gauss-Markov results we need to

assume that these error terms are iid random variables with expectation zero

and constant variance so, in a sense, probability has come into play at this

point as well. But, we are unable to make use of this probability (except, per-

haps, asymptotically) until we have a more clear description of the associated
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distribution.

The more general conclusion suggested by this example is that it is the

infusion of probability into a problem, and the subsequent derivation of results

based on the probability structure developed, that forms the critical step from

technique to statistical method. The addition of inference procedures based in

a formal logical system then provides sufficient flesh for status as a statistical

analysis. But, fundamentally, probability is the “glue” that unites various

procedures and techniques that we use into what we call a statistical method

and statistical methods into what we call a statistical analysis.

Probability is not a thing, or subject to easy definition. Probability is a

concept or, rather, any of a number of concepts. As pointed out by Pollock

(1990) in the preface to his book on nomic probability, “. . . concepts are char-

acterized by their role in reasoning”. All concepts of probability obey the

same fundamental mathematical rules of behavior, which is why we can get

so far in our statistical education without belaboring the distinctions among

different concepts. But, the concept of probability that is utilized in a statis-

tical analysis determines to a large extent the manner in which it is brought

into play in the formulation of a problem, and also the interpretation of in-

ferential statements that result from an analysis. Indeed, different probability

concepts lead to different approaches to developing a statistical analysis for a

given problem, and this course is organized broadly around several of the most

common probability concepts employed by statisticians and the approaches to

analysis attached to them.
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1.2 Concepts of Probability

An argument has been made in Chapter 1.1 that probability is what we “hang

our hats on” as statisticians. Probability is what allows a quantification of

uncertainty in scientific investigation. But what is probability? There are any

number of notions of probability, indicating that probability is not a thing

but a concept. Concepts of probability include at least the following, taken

from books on the topic by Edwards (1972), Kyburg (1974), Oakes (1986) and

Pollock (1990):

1. Laplacian Probability

2. Relative Frequency Probability

3. Hypothetical Limiting Relative Frequency Probability

4. Nomic Probability

5. Logical Probability

6. Fiducial Probability

7. Propensity

8. Subjective Probability

9. Epistemic Probability

While comparing and contrasting these various notions of probability is a

fascinating topic and has formed the basis for more than one or two book-

length treatments, our concern with concepts of probability is the impact they

might have on how we design a statistical analysis of a problem. As mentioned

at the end of Chapter 1.1, statisticians do not often spend a great deal of time
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worrying about the nuances of various probability concepts, because all legiti-

mate concepts follow the same rules of mathematical behavior developed as the

probability calculus. But we perhaps should be more concerned with concepts

of probability than we generally appear to be. The concept of probability used

in a statistical analysis influences first of all the way probability is brought

into a statistical formulation of a problem (i.e., the approach to analysis). In

addition, the concept of probability being employed in an analysis influences

the meaning we should to inferential statements that result from the analysis.

In short, concepts of probability are important to statisticians because they

influence where probability “comes from” and where probability “goes to” in

a statistical analysis.

Here, we will briefly cover four major concepts of probability: Laplacian

Probability, Relative Frequency Probability, Hypothetical Limiting Relative

Frequency, and Epistemic Probability. For each of these probability concepts

we will list, in outline form, the basic notions involved, the fundamental char-

acteristic, calculation, and a few brief comments.

1.2.1 Laplacian Probability

Sometimes also called Classical Probability, the Laplacian probability concept

is well suited for problems involving fair coins, balanced dice or well-shuffled

decks of cards, and so it could also be considered as Gambling Probability. This

is the concept of probability we often see first in a presentation of set-theoretic

probability operations and rules (e.g., Stat 101, Stat 104).

Basic Notions

1. Operation: observation, measurement, or selection
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2. Sample Space: set of possible outcomes of an operation

3. Events: subsets of elements in the sample space

Fundamental Characteristic

Elements of the sample space (basic outcomes) are equally likely

Calculation

1. Let S denote the sample space, E ⊂ S denote an event, and |A| denote

the size of any set A.

2. Pr(E) ≡ |E|
|S| .

Comments

1. It is easy to verify that the axioms of probability are all met by Laplacian

probability (which is why we start with it in courses like 101 and 104).

2. The necessary fundamental characteristic of equally likely outcomes is

typically the result of physical properties of the operation (e.g., flipping

a coin, drawing a card).

3. Although essentially no one considers the Laplacian concept an accept-

able general notion of probability, I believe it can be applicable in quite

a number of situations and that statisticians use this probability concept

more than we sometimes realize. In fact, Laplacian probability is used

directly in some randomization based procedures.
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1.2.2 Relative Frequency

When we talk about relative frequency probability we usually mean the topic

of the next subsection, namely hypothetical limiting relative frequency. But

direct relative frequency probability has some application in finite population

problems.

Basic Notions

1. There exist a finite number of physically existing objects in a class B.

2. An operation consists of observing whether a selected object also belongs

to another class A.

Fundamental Characteristic

Probability is a direct consequence of physical realities, that is, things that

have actually happened.

Calculation

Pr(A|B) = |A|
|B|

Comments

1. This is a purely material concept of probability that is clearly inadequate

for many problems that we would like to apply probability to. For ex-

ample, a fair coin is to be tossed 3 times and then destroyed. What is

the probability that an arbitrary toss is a H? Here, our three tosses of

this coin are the class B and tosses that result in H are then our class A.

We might like to say 1/2 but, given there will be exactly 3 tosses, a H
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on and arbitrary toss will have relative frequency of either 0, 1/3, 2/3,or

1 so that only these choices agree with physical reality.

2. Despite its clear inadequacy as a general notion of probability, I have

included relative frequency here because it can apply in problems that

involve finite populations (we will illustrate this later in the course).

1.2.3 Hypothetical Limiting Relative Frequency

The concept of probability we usually defer to in traditional analyses based on

the theories of Fisher, Neyman, and Pearson (Egon, not Karl). This is what

we usually mean when we refer to relative frequency or frequentist probability.

Basic Notions

1. Operations (as in Laplacian and Relative Frequency probability) but that

can at least hypothetically be repeated an infinite number of times.

2. Sample Space (as in Laplacian probability)

3. Events (as in Laplacian probability)

Fundamental Characteristic

Operations that can be repeated hypothetically an infinite number of

times.

Calculation

1. Let n denote the number of operations conducted, and let En denote the

number of operations, out of the n operations conducted, that result in

an outcome contained in an event E.



16 CHAPTER 1. INTRODUCTION

2. Pr(E) ≡ lim
n→∞

(

En
n

)

.

Comments

1. It is not as easy to verify that the axioms of probability are all met by

Hypothetical Limiting Relative Frequency Probability, but this concept

agrees with Laplacian Probability when both are applicable (e.g., flipping

a coin).

2. Outcomes need not be equally likely, but one-time or individual-specific

events are problematic (e.g., evolutionary events)

1.2.4 Epistemic Probability

Any concept of probability that cannot be expressed in terms of physical events

can be considered epistemic probability. In literature on theories of probability,

epistemic probability is often equated with subjective or personal probability.

These are somewhat “loaded” terms and there has been extensive debate about

whether objective probabilities can truly exist or, conversely, whether subjec-

tive probability is legitimate as a vehicle for empirical investigation. We will

take the more pragmatic view of many statisticians that non-physical probabil-

ity concepts can be useful, and refer to such concepts as epistemic probability.

Basic Notions

1. Probability ≡ knowledge or belief.

2. Belief is updated or modified in the light of observed information.

3. Mathematical formalism is necessary for belief to be modified in a co-

herent manner.
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Fundamental Characteristic

Probability ≡ knowledge or belief

Calculation

1. Let Pr(E) denote my belief about an event E. Let Pr(y|E) denote the

probability of observations y under event E and Pr(y|Ec) the probability

of observations y under the complement of E.

2.

Pr(E|y) =
Pr(y|E)Pr(E)

Pr(y|E)Pr(E) + Pr(y|Ec)Pr(Ec)

Comments

1. Does not necessarily contradict the notion of an absolute truth.

2. Does not necessarily minimize the importance of empirical evidence in

scientific evaluation.

3. Does presume that scientific investigation rarely (if ever) takes place in

a vacuum of knowledge or belief.

1.2.5 Transition to Approaches to Statistical Analysis

Recall from the beginning of this section that concepts of probability affect

the way that probability is brought into a problem and the manner in which it

gives meaning to inference that results from the analysis of a problem. Another

way to say this is that concepts of probability are important in determining

where probability comes from in an analysis and where probability goes to as

the result of an analysis. One organization of this is in terms of approaches to

statistical analysis, which are divided here along the following lines:
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1. Analysis Through Randomization

Approaches based on randomization make use primarily of Laplacian and

Relative Frequency probability concepts as the basis for analysis.

2. Analysis Using Models

Model based approaches are often presented in terms of Hypothetical

Limiting Relative Frequency and this is largely adequate. There can

be questions of whether such relative frequency is always adequate for

these approaches, particularly for interpretation of inferential statements.

Considerations related to this issue have, in fact, motivated many of

the probability concepts listed at the beginning of this section but not

discussed further (e.g., fiducial probability).

3. Bayesian Analysis

The Bayesian approach may well make use of relative frequency prob-

ability, particularly in construction of the data model. But, the distin-

guishing characteristic of a Bayesian analysis is that it also makes use of

Epistemic probability in the form of prior and posterior distributions.
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RANDOMIZATION
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Chapter 2

Populations, Attributes, and

Responses

Part 1 of these notes includes discussion of two approaches to statistical analy-

sis that I call the sampling approach and the experimental approach. The sam-

pling and experimental approaches to statistical analysis differ in ways that will

be made explicit in the sequel but, in their most basic form, they have in com-

mon the underlying concept of a population. We will present these approaches

largely under the assumption of a finite, physically existing population, but will

indicate attempts that have been made to extend the the basic ideas involved

to broader classes of problems. In this chapter, then, we consider first how

we might define the concept of a population. Chapter 2.1 presents the strict

concept of a finite, physically existing population, while alternative notions

that relax the strictness of this definition are considered in Chapter 2.2. In

large part, the distinctions involved between the ideas presented in these two

sections impact delicate philosophical issues involved in determining a precise

meaning for inferential statements, rather than the operational aspects of sam-

21
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pling or experimental approaches. Much of the relevant discussion concerning

such issues will be deferred until the (currently non-existing, but planned) part

of the notes on Approaches to Inference. Nevertheless, I believe it is beneficial

to understand that defining a population is not necessarily a trivial exercise

even at this point in our presentation. At a gross level, some understanding

of the importance of population definition can be obtained simply by recalling

traditional presentations of what is meant by the concepts of error rates or cov-

erage levels in introductory statistics courses. To communicate these concepts

we generally refer to repeated sampling or repeated observation of portions of

a population. Precisely what entities are to be sampled or observed, and what

collection of such entities constitutes the total population are questions that

are usually brushed over or taken as obvious (and examples are carefully cho-

sen in which the answer to these questions are fairly obvious). If an inferential

statement derives its meaning from repeated operations conducted on compo-

nents of some population, it behooves us to expend some effort in determining

precisely how we define a population and its associated characteristics.

Connected with the definition of a population are the concepts of attributes

and responses. These refer to quantifiable and observable phenomena attached

to the basic units of a population (once we have determined what might be

meant by the phrase population unit). For the most part, the concept of at-

tributes is involved with the sampling approach while the concept of responses

is involved with the experimental approach. The notions of attribute and

response will be discussed in Chapter 2.3.
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2.1 Finite, Physically Existing Populations

The concept of a finite, physically existing population is a relatively “pure” or

“strict” notion of what we would consider to constitute a population. It is also

the easiest to comprehend, although too often we fail to consider the potential

ramifications of departures from this concept of a population when we allow

more relaxed definitions such as those introduced later in the Chapter.

By a finite, physically existing population we mean a finite collection of dis-

crete entities we will call population units. Such units may be people, animals,

or objects such as steel beams, buildings, or ships. The phrase physically ex-

isting implies that such units are manifested in the real world in which we live,

not of hypothetical existence, and also are not subject to arbitrary definition

by a scientific investigator or statistician.

Arbitrary means not governed by any principle, or totally capricious in

nature. There is often no issue that requires extensive consideration in the

case of populations that consist of living organisms, such as people or cows.

Cows exist, and the definition of what constitutes a cow is not subject to a great

deal of debate (comical considerations aside). But other common situations

may demand more detailed examination. Consider, for example, the division

of an agricultural field into plots. Suppose we have a 1 hectare square field;

one hectare is 100 are and 1 are is 100 square meters. We want to divide this

field into 25 plots. It might be natural to begin at one corner of the field and

lay out square plots 20 meters on a side. Each plot would then consist of 4 are

in a square shape. But, we could just as easily form 25 plots by taking 4 meter

strips running the entire length of the field (100 m). In this configuration,

each plot would also consist of 4 are, but in a much different configuration.

Alternatively, we could discard a boarder strip of some given width around the
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entire field and divide the remaining area into 25 plots in various ways. The

point is that the plots are subject to arbitrary definition by an investigator,

and cannot be considered units of a physically existing population as we have

defined this concept. Contrast this with a situation in which we are given a

map of 100 fields, which may differ in size and shape. While these fields may

well have resulted from an arbitrary decision by someone at some point in time

(a surveyor, a politician, a farmer, etc.) for our purposes they simply exist as

given on the map, and are not subject to arbitrary definition by us. We might

well consider such fields as constituting a physically existing population.

Assuming a finite population that consists of well-defined physical objects

that are not subject to arbitrary definition, these fundamental population units

are sometimes aggregated into larger units, and a population defined as con-

sisting of the larger units. It is not entirely clear whether this procedure

introduces any serious difficulty for the strict concept of a finite, physically ex-

isting population. Certainly, if the fundamental units are discrete, physically

existing objects then so too are any aggregates of those units. But do the ag-

gregate units exist without arbitrary definition? The answer may well depend

on how the aggregation occurs, and in how flexible one is willing to be in what

is considered arbitrary. If there are “natural” groupings, such as people into

nuclear families (based on genetic relatedness) or functional families (based on

living arrangements) one might argue that the aggregation is not arbitrary.

What if the aggregation is based on random selection of fundamental units for

aggregate units? Random selection is diametrically opposed to arbitrary se-

lection in that it follows an exact and stringent principle (recall that arbitrary

means not based on any principle). On the other hand, determination of the

size of aggregate units may well be arbitrary in nature; you put 5 chickens in

a group, I’ll put 6. I would argue that truly random aggregation results in
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a conditional population definition, the conditioning being on the size of the

aggregate units.

2.2 More Flexible Notions of Population

As should be clear from the previous section, definition of what is meant by

a population is not as clear cut as we sometimes would like to believe. A

fundamental consequence of a finite, physically existing population as defined

in Chapter 2.1 is that all units of a population may be individually identified

and assigned discrete labels (e.g., 1, 2, . . . , N). This automatically results

in the classical sampling frame of survey sampling methodology or a clearly

defined reference class for the experimental approach. But these approaches to

statistical analysis would certainly be of limited use if the situations in which

they could be applied was totally constrained by the need for a strictly defined

finite, physically existing population. There are a number of violations of

the population concept of Chapter 2.1 that are both common in applications

and appear to pose less than insurmountable obstacles for these statistical

approaches. Several of these difficulties are presented below and, for each, the

extent to which one is willing to accept departures from a tight definition of

population will depend on philosophical considerations and the degree to which

a convincing argument can be constructed for the adequacy of the analysis

undertaken.

1. Non-Static Populations

Many, if not most, interesting situations in which we might consider

making use of either the sampling or experimental approaches do not lend

themselves to the definition of a static population. Consider a survey of
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public opinion about construction of a new mega-mall on the outskirts

of a small city. One desires a (random) sample of city residents, and it

is that group of people about which conclusions are to be drawn (favor

or oppose construction of the new mall). There do not appear to be

major issues relative to defining a finite, physically existing population

of people in this case. The context of the problem is likely sufficient to

deal with issues such as transient versus permanent city residents or to

restrict the relevant population based on age (although what to do with

teenagers might be an interesting question). But, even in small cities,

people move in, move away, die, and are born on a daily basis. Thus,

the actual population about which we wish to draw a conclusion will

necessarily be different from the actual population from which we can

draw a sample. Nevertheless, few of us would consider the use of sampling

methodology inappropriate in this situation. This is because we believe

(expect, anticipate) that the population available for sampling will be

sufficiently similar in all relevant respects (primarily attitude about a

proposed mall) to the population about which a conclusion is desired.

The occurrence of a non-static population is arguably a reality in nearly

all problems involving living organisms. In an experiment to determine

the efficacy of a veterinary vaccine to prevent viral infections in pigs,

conclusions are made about a certain type of pig (breed, age, health

status) in general, not about the collection of pigs of that type that

actually existed at the beginning of the study. In a study of the asso-

ciation of having taken advanced placement courses in high school with

the chances of success (leaving this undefined at the moment) in college,

the population to be sampled is college-bound high school students at
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a particular point in time and region in space. But the population of

interest is college-bound high school students in general.

One aspect of non-static population status can have important conse-

quences for statistical analysis. A catastrophic change in the composi-

tion of a population during the time period of concern can vitiate the

intent of a study. It is clearly not wise for a political candidate to survey

residents of a given congressional district about a proposed tax increase if

the state is in the process of re-districting, particularly if the new bound-

aries are likely in include or exclude a major population center (e.g., large

city) from the district. With these types of population changes forming

fairly obvious caveats, we are typically willing to apply the methods of

sampling or experimentation to even non-static populations.

2. Populations of Unknown Size

It may be the case that a population of discrete physical objects can

be identified, and that population must be logically finite in size, but

the number of units comprised by the population is unknown. This may

be due to the fact that individual units in the population cannot be

uniquely identified for the entire population, but only for portions of

the population chosen for observation. For example, consider a study

of nitrate concentration in wells used for human water supply in a rural

portion of a state. It is most likely that a list of all such wells is not

available. If a particular areal unit (quadrat or subsection) is visited, it

may be possible to enumerate all of the wells that occur in that small

area. These situations are common, and survey sampling methodology

has been developed to deal with many such situations.

Many, if not most, controlled experiments are not conducted with units
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from a population of known size. Consider an experiment to assess the

effect of a growth hormone given to chickens on the protein content of

eggs produced by those chickens. Here, the fundamental population units

of concern are chickens (perhaps of a particular type). They are discrete,

physically existing entities not subject to arbitrary definition by a sta-

tistician. In this case, and for many experimental settings, the unknown

size of a population and the non-static nature of the population of in-

terest do not seem to be distinct issues. To object that we do not know

the total number of chickens of the type of concern is largely irrelevant,

since it will change over the course of the study anyway. It is mentioned

here because the experimental approach in “pure” form demands ran-

dom selection of population units to be included in a study. That this

is almost never possible changes the inferential framework available, as

will be discussed at greater length in later chapters.

Another type of situation that results in unknown population size occurs

from populations defined in terms of units that “join” the population

over time. Consider a study to determine the proportion of automobiles

that exceed the speed limit by more than 5 miles per hour during the

weekend on a given portion of interstate highway. Here, discrete, phys-

ically existing population units are readily available, but the size of the

population is not only unknown but actually undefined prior to the time

period of interest. In this example we would also have a non-static pop-

ulation, since it is unlikely that only one particular weekend would be of

interest.

Of these types of departures from our basic concept of a physically ex-

isting population, the first and second seem to pose less difficulty for a
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statistical approach based on randomization than the last, in which units

join the population over time. This is because such situations generally

result in population units that are available for sampling only at the

time point in which they are identified as belonging to the population.

To accomplish some type of randomization in sampling we must make

use of surrogate units assumed to be unrelated to the object of inves-

tigation. In the example of automobile speeds we might, for instance,

define sampling units as intervals of time, distinct from the populations

units of true interest. A complete list of all time intervals in a weekend is

both of known size and is easily obtainable. If time of day is unrelated to

the object of investigation (proportion of speeding autos) then this poses

little difficulty. On the other hand, if time is related to the phenomenon

of interest, then this complicates the situation and our ability to apply

sampling methodology.

3. Hypothetical and Constructed Populations

This departure from our strict concept of a finite, physically existing pop-

ulation impacts primarily what is presented later in these notes as the

experimental approach. Many controlled experiments are conducted on

population units that are “constructed” by the investigator. Petri dishes

containing a given amount of growth media and inoculated with a certain

quantity of some micro-organism are constructed in the laboratory. Cell

cultures to which are added various antibodies and antigens are similarly

produced by the scientist conducting the investigation. Plantings of a

certain horticultural variety are made by adding plant material and soil

or other growth media, and may be subjected to various light regimens

to determine the effect on floral productivity. In these cases, the defin-
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ition of what constitutes a population unit may be less than arbitrary,

yet those units do not exist outside the universe defined by the study in

question. If the population is considered to be finite with a size deter-

mined by the number of units constructed, then the entire population

has been used in the experiment and there is no need to make inferential

statements about it. But, almost certainly, that collection of units is not

the object of inference. If we are to make inference based on what would

be expected in repetitions of the study protocol we are referring to rep-

etitions conducted with hypothetical population units, since the exact

study protocol is rarely repeated more than a few times, and generally

not more than once.

The impact on the experimental approach to statistical analysis of pop-

ulations defined on the basis of constructed units and, typically, of a hy-

pothetical nature, is almost identical to that of experiments conducted

with populations of unknown size or with units from non-static popula-

tions. This impact will be discussed at greater length in Chapter 4 and,

particular, in Part IV of the course when we deal with inference.

4. Arbitrarily Defined Population Units

The issue of arbitrary definition of population units has been raised pre-

viously in the discussion of Chapter 2.1. This issue may be considered

relevant primarily for the sampling approach since under the experimen-

tal approach one could consider arbitrary population units to have been

constructed. The example of Chapter 2.1 concerning agricultural plots

in a field illustrates this nicely. If these plots are to become the objects

of some type of treatment (e.g., fertilizer level) then they may easily be

viewed in the same light as the petri dishes or horticultural plantings of
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the previous item in this list.

Concerning the sampling approach, there is lack of agreement among

statisticians about how serious the consequences of arbitrary definition

of population units are. On one hand, it is often possible to directly

apply the operational procedures of survey sampling methodology once

population units have been defined, regardless of whether that definition

was arbitrary or not. If we attach a caveat to inferential statements that

such conclusions are conditional on the definition of population units

employed, similar to what was discussed for aggregation of fundamental

units based on random grouping in Chapter 2.1, then many statisticians

see little reason the sampling approach cannot be used with confidence.

On the other hand, arbitrary definition of population units may well

interfere with the notion of units having inherent attributes of interest

as they will be defined in the next section, and this is of fundamental

importance for the sampling approach. If this is the case, then one

may well prefer to formulate the statistical problem in the context of a

model based or Bayesian approach, and this is the opinion of many other

statisticians. How far one is willing to “bend the rules”, so to speak, is

a matter of personal choice by a statistician. A statistician who has

considered the issue and made a deliberate decision is likely to be able to

defend that decision, even if it does not meet with universal approval. A

statistician who is not even aware there is an issue involved is on much

less solid footing.
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2.3 Attributes and Responses

Nearly all statistical applications involve the analysis of observed data, at least

a portion of which typically constitute a quantification of some phenomenon

of primary interest in a study. Even qualitative phenomena are typically as-

signed arbitrary numerical values, such as 0 and 1 for binary measures. In

the sampling approach, we will refer to such values as attributes of population

units, while in the experimental approach we will modify the concept of an

attribute slightly to develop the notion of a response.

In its fundamental form, the sampling approach assumes that associated

with each unit in the population is a fixed value of interest, called an attribute.

These attributes are characteristics of the population units, so that observation

of the same unit will always produce the same value of the attribute. In this

framework, the values of attributes associated with population units are not

realizations of some random mechanism (i.e., not realized values of random

variables). They are, rather, fixed, immutable characteristics of the units. My

car is a Honda civic. It will always be a Honda civic, unless it is transformed

into a different car, in which case it is no longer truly the same unit in a

population of cars. This notion of an attribute is quite stringent. My car is

red, which is one of its attributes, unless I decide to get it painted a different

color. Is it’s color then no longer one of its attributes? Clearly, we cannot

demand of an attribute that it remain characteristic of a population unit in

perpetuity. We can only require that an attribute remain characteristic of a

population unit for a certain time span appropriate within the context of any

given study.

All studies are relevant for only a certain time span. Public opinions change

based on events that cannot be anticipated at the time of a study; consider, as
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an extreme example, the general attitude about figherfighters in New York city

prior to and after the terrorist attack of September 11, 2002. The effect of an

insecticide on yield of a given crop may change as the target organism(s) evolve

resistance to the active ingredients of the insecticide. The average price of a 3

bedroom home in a given region will change over time. That an attribute is

an unchanging characteristic of a population unit must be interpreted within

the time span of relevance for a particular study. We take an attribute to be

a characteristic of population units that has a fixed value for the course of a

study. In fact, the time frame within which attributes can change for given

population units helps define the time frame within which conclusions from a

study are relevant.

Under the experimental approach, we will refer to measured or observed

values of the primary quantity or quantities of interest as responses. Responses

are essentially the same concept as attributes of population units in sampling

and are considered characteristics of population units, rather than values as-

sociated with random variables. A difference, however, is that responses are

allowed to be influenced by external factors within the time frame of a study.

For example, while low density lipoprotein (so-called “bad”cholesterol) levels

in humans may be considered characteristics of individuals for a reasonable

period of time, the level of cholesterol in an individual can certainly be influ-

enced by exercise, diet, and certain drugs. If we were interested in the average

cholesterol level in male professors between the ages of 40 and 60 we could

take a sample in which cholesterol level is considered the attribute of interest.

If, however, we were interested in whether cholesterol level in male professors

between 40 and 60 years of age could be influenced by consumption of one

serving of oatmeal per day (for 30 days say), we would exercise control over at

least a portion of the influence of diet and consider cholesterol level a response
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of interest. Thus, the term responses refers to attributes under a given set of

pertinent conditions and external influences. It is precisely the effect of certain

of these external influences (i.e., treatments or factors) that the experimental

approach is designed to assess.

One additional aspect of how attributes and responses are defined is impor-

tant, particularly under the experimental approach. In introductory courses

we often emphasize the concept of experimental unit and distinguish it from

sampling unit. In an experimental situation, a sampling unit is the entity

on which an observation or measurement is taken. Sampling units frequently

correspond to the fundamental population units of Chapter 2.1. Experimen-

tal units may also correspond to these population units. But, if fundamental

population units are aggregated into groups to which treatments are applied,

experimental units correspond to these aggregates. For example, if plantings of

a horticultural variety are constructed as described in Chapter 2.2, and groups

of these plantings placed in controlled environmental chambers to expose them

to different light regimens, then it is a group of plantings placed in one con-

trolled environmental chamber that constitutes an experimental unit in the

study. What is important is that the concept of a response applies to exper-

imental units not sampling units, unless the two coincide. Responses, then,

may consist of aggregated measurements made on individual sampling units

just as experimental units may consist of aggregated groups of fundamental

population units. In the horticultural example, the phenomenon of interest

may be the number of blossoms produced in a given time span, which can

be counted for each planting (sampling unit) but then must be totaled for all

plantings in a given chamber to constitute the response for that experimental

unit. The reason this is such a crucial point is that, as we will see in Chapter

4, probability enters a problem under the experimental approach only through
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randomized treatment assignment. Treatments are assigned to experimental

units and thus responses must be considered characteristics of experimental

units as well. To fore-shadow a latter portion of the course, we will note

that there are alternative structures in which to formulate this problem based

on statistical modeling, in which individual plantings do have individual “re-

sponses”. If such an alternative structure is used for analysis, however, one is

no longer applying the experimental approach to statistical analysis, which is

our main point here.
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Chapter 3

The Survey Sampling Approach

References: Cochran (1977), Wolter (1985), Sarndal et al. (1992), Thompson

(1992).

Consider a situation that involves a population of the type described in Chap-

ter 2.1, for which we are interested in a given attribute of the population units;

in nearly any real application we will have interest in multiple attributes but,

for now, consider only one of these. Let the values of this attribute for any

arbitrary ordering of the units in the population be denoted as x1, x2, . . . , xN .

Example 3.1

The National Marine Fisheries Service (NMFS) is responsible for estimating

the total commercial catch of groundfish (a certain class of commercially valu-

able fish) in the West Coast fishery, which consists of waters off the west coast

of the US from California up to southern Washington. The total commercial

catch consists of fish that are caught and delivered to a processing plant (i.e.,

are sold) plus fish that are caught but dumped back into the ocean (called

37



38 CHAPTER 3. SAMPLING

“discard”). Fish may be discarded for any number of reasons, such as because

they are too small to be economically valuable, but discard adds to the over-

all mortality caused by the fishing industry and is thus important to know.

Records of kept catch are obtained by accessing records that must be provided

by processors (how much they bought, who they bought it from, when they

bought it, etc.) but getting an estimate of the discarded catch is more difficult.

To facilitate this estimation, trained observers are placed aboard some (gener-

ally about 10%) of the trips made by fishing vessels. The observers are able to

record the amount of discard (in weight) for hauls that are observed. Vessels,

on the other hand, are required to keep “logbooks” containing information on

trip dates, number of hauls made, time and geographic area of hauls, and other

information regardless of whether the trip was officially observed or not.

Nearly all of the estimation strategies considered to date by NMFS have

been based on survey sampling methodology. A fundamental question in the

use of such estimators is what definition should be given to the population and,

in particular, the basic population units. One option is to define population

units as trips made by vessels. The total number of trips made over a given

period (e.g., fishing season) is known. On the other hand, a population so

defined cannot be enumerated until after the fact (i.e., after the fishing season

is over) because there is no way to tell how many trips will be conducted before

they actually occur. Alternatively, one might define the population to consist

of vessels that purchase permits for the fishery (which they have to do before

fishing); units then are vessels. In this case, a list of the entire population is

available prior to any fishing. In the former case (population units defined as

fishing trips) we may encounter difficulties with populations of unknown size,

as discussed in Chapter 2.2, while in the latter case (population units defined

as vessels) we may encounter difficulties in defining an observable attribute
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for each unit. That is, if the attribute of interest is total catch, it may not

be possible to obtain these values for each sampled unit since it is difficult to

place an observer on board a vessel for all of the trips made by that vessel in

such a way that all hauls made on each trip are observed.

This example also illustrates what may be a difficulty in defining the quan-

tity of concern as an actual attribute of population units, regardless of whether

those are considered to be trips or vessels. Observers cannot actual measure

the total weight of discard for a given haul. Rather they estimate discard using

several approved methods that may involve sampling of a portion of the fish in

a haul or in a “discard pile”. Thus, if two observers were to observe the same

haul, it is exceedingly unlikely they would arrive at the same value for weight

of discard. Similarly, processors may sometimes use estimation procedures

rather than exact measurements for weight (particularly in large deliveries of

fish).

3.1 The Sampling Frame

Of fundamental importance in putting the sampling approach to statistical

analysis into action is the formation of what is known as a sampling frame. In

its most basic form, the sampling frame for a given problem is simply a list,

in arbitrary order, of all of the units in a population, and a unique identifier

for each unit. Forming sampling frames in more complex situations, such as

when the basic population units cannot be enumerated or identified in total,

is addressed in Statistics 521 and Statistics 621. Here, we are attempting to

communicate the fundamental ideas of the sampling approach, and we will

assume that a complete sampling frame of all basic population units is able to

be constructed.



40 CHAPTER 3. SAMPLING

In operation, an important aspect of a sampling frame is that, once formu-

lated, the identifiers of population units remain inviolate. That is, if a given

population unit is designated as unit 4, it is always unit 4, and x4 refers to the

value of its attribute, never the attribute of any other unit in the population,

regardless of whether unit 4 is selected for observation (i.e., to be included in

a sample) or not.

Example 3.1 (cont.)

NMFS identifies vessels and trips with unique numbers, and hauls within trips

are identified sequentially as 1, 2, . . . ,. The sampling frame for our popula-

tion of vessel/trip/haul might be represented, for example, as a table of the

following form:

Unit Total

Vessel Trip Haul Index Catch(lbs)

115 81 1 1 x1

115 81 2 2 x2

. . . . .

. . . . .

. . . . .

131 51 5 N xN

3.2 Population Statistics as Parameters

Within the context of a basic sampling approach, statistics that are computed

over the entire population are considered “parameters”. For example, the

population mean, total, and variance are defined as,

µ ≡ 1

N

N
∑

i=1

xi,
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τ ≡
N
∑

i=1

xi = N µ,

σ2 ≡ 1

N − 1

N
∑

i=1

(xi − µ)2. (3.1)

Similarly, the proportion of the population satisfying some condition or having

an attribute that belongs to a particular class A is,

PA ≡ 1

N

N
∑

i=1

I(xi ∈ A), (3.2)

where I(·) is the usual indicator function having the value 1 if the condition

of the argument is true and 0 otherwise.

We will be concerned with the estimation of population parameters such as

µ, τ , σ2, and PA. Note, at this point, that we have discussed nothing involving

randomness, probability, or uncertainty. If every unit in the population could

be observed, we would be able to compute these quantities exactly, and there

would be no need for statistics to enter the picture – this would be a census.

The need for statistics arises from the (usual) situation in which not every

unit in the population can be observed. We must then estimate population

parameters rather than simply compute them, and there is uncertainty involved

in our estimation because we have less than complete observation. This is

called sampling error in the survey sampling literature, and is the only source

of uncertainty to be considered. What is called nonsampling error may arise

from sources such as measurement error or nonresponse (a unit chosen for

observation is impossible to actually observe). We will mention nonresponse

in a later section, but for the most part in this development will consider only

sampling errors.
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3.3 Simple Random Sampling

The basic method for obtaining a portion of the population for observation

(i.e., a sample) is to use simple random sampling. This method is often used

in its own right to obtain a sample directly, and also forms the basic building

blocks from which we may construct more complex random sampling designs.

3.3.1 Simple Random Sampling Defined

Definition:

A simple random sample of n units, selected from a population of N units, is

any set of n units selected in such a way that all possible distinct sets of size

n are equally likely to be selected.

How many sets (samples) of size n are there? That is, if Sn denotes the

set of possible samples (the set consisting of distinct sets of size n), what is

the size of Sn?

|Sn| =







N

n





 =
N !

(N − n)!n!
.

Denote (with an arbitrary ordering) the set of possible samples as Sn ≡
{Sn,1, . . . , Sn,M}, where M = |Sn|. Then using Laplacian probability, we can

calculate the probability of any given sample Sn,k say, as, for k = 1, . . . ,M ,

Pr(Sn,k) =
1

M
=

1

|Sn|
=

(N − n)!n!

N !
.

Comments

1. What is of fundamental importance here is that, given that we will es-

timate a population parameter on the basis of a sample, we have just

introduced probability into the overall problem formulation.
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2. It is worth emphasizing that, if one looses control of the sampling process,

then there is in fact no basis for statistical treatment of the problem.

That is, with a non-random sample, it is more than an issue of answers

that are likely to be “less than perfect”, it is an issue of having lost any

logical basis for conducting an analysis based on the use of probability.

3.3.2 Obtaining a Simple Random Sample

There are several ways to actually obtain a simple random sample, although

the sequential selection procedure described below is by far the easiest to pro-

gram. We assume that a complete sampling frame (list of population units

with unique identifiers) is available, such as the table of vessels, trips, and

hauls given previously for the groundfish example. For both of the procedures

to obtain a simple random sample given in what follows, let {Ui : i = 1, . . . , N}
denote the population units (in any arbitrary, but fixed order).

Group Selection Procedure

Directly from the definition of a simple random sample at the beginning of

Chapter 3.3.1, it is clear that one procedure to select such a sample from a

population of N units would be to enumerate all of the possible samples of

size n, and select one of them at random. For example, if N = 6 and n = 2,

the possible samples could be enumerated as follows:
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Sample Composition Sample Composition

1 {U1, U2} 9 {U2, U6}
2 {U1, U3} 10 {U3, U4}
3 {U1, U4} 11 {U3, U5}
4 {U1, U5} 12 {U3, U6}
5 {U1, U6} 13 {U4, U5}
6 {U2, U3} 14 {U4, U6}
7 {U2, U4} 15 {U5, U6}
8 {U2, U5}

Something worth mentioning at this point, because we will most likely see

it repeatedly, is how one of these samples would be randomly selected in a

computer algorithm. There are M = 15 possibilities. A computer algorithm

to select one at random would be:

1. Generate one value u∗ from a uniform distribution on the interval (0, 1).

This is easily accomplished using almost any statistical software or lan-

guage (e.g., Splus, R, SAS, etc.)

2. If u∗ ≤ (1/15) select sample number 1, which would consist of population

units 1 and 2, {U1, U2}.

3. If (1/15) < u∗ ≤ (2/15) select sample number 2.

4. In general, if ((k − 1)/15) < u∗ ≤ (k/15) select sample k; k = 1, . . . , 15.

While programming such a group sampling method is not difficult for prob-

lems such as this illustration (with small N and n), it can become much more

cumbersome for most real problems, such as that of Example 3.1 in which

N = 6, 312 and we may want a sample of size n = 100 say. This motivates
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the next procedure which is equivalent to the group selection procedure, but

is easier to accomplish (i.e., program) in practice.

Sequential Selection Procedure

The sequential selection procedure is simply a computational version of exactly

what you would do if asked to draw n chips from a bowl containing a total of

N numbered chips. That is,

1. Select 1 unit at random from a population of size N .

2. Select 1 unit at random from the remaining population of size N − 1.

3. Select 1 unit at random from the remaining population of size N − 2.

...

n. Select 1 unit at random from the remaining population of size N−(n−1).

It is easy to prove that the sequential procedure is equivalent to the group

procedure. Restricting attention to our small example with N = 6 and n = 2,

suppose that the group selection procedure resulted in selection of sample

number 5, consisting of {U1, U6}, which had probability (1/15) of being chosen.

What would be the probability of this sample under the sequential procedure?

There are two mutually exclusive ways to select the sample {U1, U6} in the

sequential procedure: (1) select U1 at step one and U6 at step two (call this

the event F1), and, (2) select U6 at step one and U1 at step two (call this the

event F2). Now,

Pr(S2,5) = Pr(F1 ∪ F2) = Pr(F1) + Pr(F2)

= (1/6)(1/5) + (1/6)(1/5)

= (1/15),
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which is the same as under the group selection procedure. Since this does not

depend at all (i.e., is WLOG) on which particular sample the demonstration

is for, the sampling procedures are equivalent for this example.

3.4 Estimation For Simple Random Samples

3.4.1 The Basic Estimators

It is natural to consider estimating population parameters such as µ, τ , σ2, or

PA using the same formulae as in (3.1) and (3.2) with only units selected for the

sample, rather than the entire population. Letting S∗
n denote the sample (of

size n) selected, we can represent such estimates without re-indexing sampled

and other population units as follows:

µ̂ =
1

n

N
∑

i=1

xi I(Ui ∈ S∗
n)

τ̂ = N µ̂ =
N

n

N
∑

i=1

xi I(Ui ∈ S∗
n)

σ̂2 =
1

n− 1

N
∑

i=1

(xi − µ̂)2 I(Ui ∈ S∗
n)

P̂A =
1

n

N
∑

i=1

I(xi ∈ A) I(Ui ∈ S∗
n) (3.3)

3.4.2 Properties of the Estimators

There are two major avenues by which to approach elucidation of proper-

ties of the basic estimators of Section 3.4.1. One, which is perhaps the more

straightforward, is to introduce the concept of random variables and consider

the indicator functions contained in the expressions of equation (3.3) to be

binary random variables. One may then use the operations of mathematical
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expectation and higher moments to derive properties of the estimators (which,

of course, then being functions of random variables are themselves random

variables). But, we have not used the concepts of mathematical expectation,

moments, or distributions up to this point, and it is possible to derive proper-

ties of the estimators without those mechanisms, which is what we will attempt

here, in an effort to keep the sampling approach “pure” with respect to its ori-

gins. Thus, we will rely on the basic operator of averaging, namely that the

average of a function h(·) applied to each of a set of numbers {xi : i = 1, . . . , N}
is defined as

avg(h) ≡ 1

N

N
∑

i=1

h(xi).

Note that, under this convention, the population parameter µ of equation (3.1)

is the average of the attribute values xi in the population. Similarly, the pro-

portion PA of equation (3.2) is the average of the indicator variables I(xi ∈ A).

Averaging and Probability of Sample Inclusion

Now, notice that the population average of the indicator that units are included

in a particular sample S∗
n is

avg{I(U ∈ S∗
n)} =

1

N

N
∑

i=1

I(Ui ∈ S∗
n) =

n

N
, (3.4)

which turns out to be equal to the probability that a particular unit Ui is

included in an arbitrary sample Sn ∈ Sn = {Sn,k : k = 1, . . . ,M}. This can be

seen to be true because, still relying on the Laplacian concept of probability,

Pr(Ui ∈ Sn) =

∑M
k=1 I(Ui ∈ Sn,k)

M
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=

[

(N−1)!
((N−1)−(n−1))! (n−1)!

]

[

N !
(N−n)!n!

]

=
(N − 1)! (N − n)!n!

(N − n)! (n− 1)!N !

=
n

N
, (3.5)

where the first step in this progression is a direct reflection of the definition

of Laplacian probability, and the second step follows because the number of

samples of which a particular unit Ui is a member is equal to the number of

samples of size n − 1 that can be formed from the N − 1 population units

excluding Ui, while the total number of samples of size n is M = N !/((N −
n)!n!), as defined in Chapter 3.3.1. Thus, we have that

avg{I(U ∈ S∗
n)} = Pr(Ui ∈ Sn).

Now, the remarkable thing is that the probability that unit Ui is included

in some arbitrary sample of size n, namely Pr(Ui ∈ Sn), and the average

over population units that those units are included in a particular sample S∗
n,

namely avg{I(U ∈ S∗
n)}, are also equal to the average over possible samples

{Sn,k : k = 1, . . . ,M} of the events Ui ∈ Sn,k. That is,

avgS{I(Ui ∈ Sn)} =
1

M

M
∑

k=1

I(Ui ∈ Sn,k)

=

[

(N−1)!
(N−n)! (n−1)!

]

[

N !
(N−n)!n!

]

=
n

N
(3.6)
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So, from (3.4), (3.5), and (3.6), we have that

avg{I(U ∈ S∗
n)} = Pr(Ui ∈ Sn) = avgS{I(Ui ∈ Sn)}.

That is, the average over population units that those units are included in a

particular sample is equal to the probability that a particular unit is included

in an arbitrary sample, is equal to the average over possible samples that a

particular unit is included in those samples.

Design Unbiasedness

Estimator of Population Mean

Denote the estimator µ̂ in expression (3.3) for a particular sample k as µ̂k,

and consider the average of µ̂k over all possible samples of size n {Sn,k : k =

1, . . . ,M},

avgS(µ̂) =
1

M

M
∑

k=1

µ̂k

=
1

M

M
∑

k=1

1

n

N
∑

i=1

xiI(Ui ∈ Sn,k)

=
1

n

N
∑

i=1

xi
1

M

M
∑

k=1

I(Ui ∈ Sn,k)

=
1

n

N
∑

i=1

xi
n

N

=
1

N

N
∑

i=1

xi

= µ

Any estimator of a population quantity θ that satisfies avgS(θ̂) = θ when aver-

aged over all possible samples (under a given sampling design) is called design

unbiased. Thus, µ̂ as defined in expression (3.3) is design unbiased for µ under
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simple random sampling.

Estimator of Population Variance

Similar to the notation µ̂k, let the estimator of population variance in ex-

pression (3.3) for a given sample k be denoted σ̂2
k. We would like to show

that σ̂2 is design unbiased (under simple random sampling) for the population

variance σ2, that is,

avgS(σ̂2
k) = σ2.

To accomplish this requires several preliminary results. The first two of these

results you will verify as an assignment, namely,

1

N

N
∑

i=1

x2
i =

N − 1

N
σ2 + µ2, (3.7)

2

N

∑∑

1≤i<j≤N
xixj =

(N − 1)2

N
σ2 + (N − 1)(µ2 − σ2).

(3.8)

In addition, it will prove useful to consider the average over possible samples

of the squared estimator of the mean,

1

M

M
∑

k=1

{µ̂k}2 =
1

M

M
∑

k=1

{

1

n

N
∑

i=1

xi I(Ui ∈ Sn,k)

}2

=
1

M

M
∑

k=1

1

n2

{

N
∑

i=1

x2
i I(Ui ∈ Sn,k)

+ 2
∑∑

1≤i<j≤N
xixj I(Ui ∈ Sn,k)I(Uj ∈ Sn,k)







=
1

n2

N
∑

i=1

1

M

M
∑

k=1

x2
i I(Ui ∈ Sn,k)

+
2

n2

∑∑

1≤i<j≤N

1

M

M
∑

i=1

xixiI(Ui ∈ Sn,k)I(Uj ∈ Sn,k)
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=
1

nN

N
∑

i=1

x2
i +

2(n− 1)

nN(N − 1)

∑∑

1≤i<j≤N
xixj (3.9)

Finally, it will also be useful to re-express the estimator σ̂2
k in the following

manner,

(n− 1)σ̂2
k =

N
∑

i=1

(xi − µ̂k)
2 I(Ui ∈ Sn,k)

=
N
∑

i=1

(

x2
i − 2xiµ̂k + µ̂2

k

)

I(Ui ∈ Sn,k)

=
N
∑

i=1

x2
i I(Ui ∈ Sn,k) − 2µ̂k

N
∑

i=1

xiI(Ui ∈ Sn,k)

+ µ̂2
k

N
∑

i=1

I(Ui ∈ Sn,k)

=
N
∑

i=1

x2
i I(Ui ∈ Sn,k) − nµ̂2

k. (3.10)

We are now prepared to demonstrate that the estimator σ̂2 of expression

(3.3)is design unbiased for σ2 under simple random sampling. To do so, we

begin with the result of equation (3.10),

1

M

M
∑

k=1

σ̂2
k =

1

M

M
∑

k=1

1

n− 1

[

N
∑

i=1

x2
i I(Ui ∈ Sn,k) − nµ̂2

k

]

=
1

n− 1

[

N
∑

i=1

x2
i

1

M

M
∑

k=1

I(Ui ∈ Sn,k) −
1

M

M
∑

k=1

µ̂2
k

]

which, on substitution from (3.9) becomes

=
n

N(n− 1)

N
∑

i=1

x2
i −

n

n− 1





1

nN

N
∑

i=1

x2
i +

2(n− 1)

nN(N − 1)

∑∑

1≤i<j≤N
xixj





=
n

n− 1

(

1

N

N
∑

i=1

x2
i

)

− 1

n− 1

(

1

N

N
∑

i=1

x2
i

)

− 1

N − 1





2

N

∑∑

1≤i<j≤N
xixj
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=
1

N

N
∑

i=1

x2
i −

1

N − 1





2

N

∑∑

1≤i<j≤N
xixj





Finally, using (3.8) and (3.7) we arrive at,

1

M

M
∑

k=1

σ̂2
k =

(

N − 1

N
σ2 + µ2

)

− 1

N − 1

(

(N − 1)2

N
σ2 + (N − 1)(µ2 − σ2)

)

=
N − 1

N
σ2 + µ2 − N − 1

N
σ2 − µ2 + σ2

= σ2. (3.11)

Thus, the estimator σ̂2 of expression (3.3) is design unbiased for σ2 under sim-

ple random sampling.

Estimators of Population Totals and Proportions

That the basic estimator of a population total, τ̂ in expression (3.3) is de-

sign unbiased, under simple random sampling, for τ is immediate from design

unbiasedness of µ̂ and the fact that τ̂ = Nµ̂. Design unbiasedness of P̂A for

population proportions under simple random sampling is simple to show, and

is left as an exercise.

Variances of the Estimators

Notice that the population variance in (3.1) is (essentially) the average over

basic units of observation of the squared differences of an attribute (x) and

the average of the attribute (µ). Using this same notion of variance, variances

for the basic estimators of (3.3) are averages over basic units of observation for

those estimators (i.e., samples) of the squared differences of their values with
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their average value. That is, for an estimator θ̂ which can be computed for

individual samples {Sn,k : k = 1, . . . ,M}, the variance of θ̂ is

var(θ̂) ≡ 1

M

M
∑

k=1

{θ̂k − avgS(θ̂)}2,

where

avgS(θ̂) ≡ 1

M

M
∑

k=1

θ̂k.

Using this convention, and the same techniques of derivation employed in

demonstrating design unbiasedness of the basic estimators, we can easily derive

variances for those estimators.

Notice that, in particular, if θ̂ is design unbiased for the corresponding

population quantity θ,

var(θ̂) =
1

M

M
∑

k=1

{

θ̂2
k − 2θ̂kθ + θ2

}

=
1

M

M
∑

k=1

θ̂2
k − θ2.

(3.12)

Population Mean

Substituting (3.7) and (3.8) directly into (3.9) yields,

1

M

M
∑

k=1

µ̂2
k =

σ2

n

N − n

N
+ µ2,

so that, design unbiasedness of µ̂ and application of (3.12) gives,

var(µ̂) =
σ2

n

(

N − n

N

)

. (3.13)

Population Total and Proportions
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The simple relation between population mean and total again immediately

yields

var(τ̂ ) = N(N − n)
σ2

n
. (3.14)

Notice from (3.3) that the estimator of a population proportion is of the

same form as the estimator of a population mean with the attributes {xi : i =

1, . . . , N} replaced by the indicator that xi is in some class A. We could then,

in deriving properties of the estimator of a proportion, simply define a new

attribute x′i ≡ I(xi ∈ A) and then use all of the results for mean estimation.

This is typically what is done, with one change in notation. In the case of

a numerical attribute, the variance σ2 depends on functions of the attributes

other than the average (which is µ); in particular, the function
∑

x2
i . In the

case that we replace attributes xi with indicator attributes x′i we get,

σ2
p ≡ 1

N − 1

N
∑

i=1

(x′i − P )2

=
1

N − 1

N
∑

i=1

(x′i − 2x′i P + P 2)

=
N

N − 1
P (1 − P ), (3.15)

which depends on the attributes x′i only through their mean, P .

From results for the estimator µ̂ then, we immediately have that,

σ̂2
p =

n

n− 1
P̂ (1 − P̂ ), (3.16)

and

var(P̂ ) =
(

N − n

N − 1

)

P (1 − P )

n
. (3.17)

Estimated Variances

Estimation of the variances of the basic estimators consists of using “plug-in”

estimates of the population quantities involved in expressions for variances
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presented previously. That is, given that σ̂2 is an unbiased estimator of the

population parameter σ2 and P̂ is an unbiased estimator of the population

parameter P , substitution of σ̂2 for σ2 in expressions (3.13) and (3.14) yields

unbiased estimators for var(µ̂) and var(τ̂). Similarly, substitution of P̂ for P

in expression (3.15) yields an unbiased estimator for σ2
p. Unbiasedness of these

variance estimators follows immediately from the fact that the variances are

all constants (functions of N and n) multiplied by the respective population

parameters (σ2 in the cases of µ and τ , and P in the case of P ).

3.5 Unequal Probability Samples

Thus far, all of our probability calculations can be envisaged as applications of

Laplacian probability. Recall from section 3.3.1 that, under Laplcian probabil-

ity, any given sample of size n, namely Sn,k, has probability of being selected

Pr(Sn,k) =
1

M
=

(N − n)!n!

N !
.

Thus, averages of estimators θ̂k over possible samples as (1/M)
∑

k θ̂k could

also be represented as,

avgS(θ̂) =
M
∑

k=1

θ̂k Pr(Sn,k). (3.18)

Notice that expression (3.18) is in agreement with the usual definition of

expectation for a random variable (which here would be θ̂) since, given that

some particular sample will be chosen,

M
∑

k=1

Pr(Sn,k) =
M
∑

k=1

1

M
= 1.

We will use the usual notion of expectation for discrete random variables to

extend the idea of averaging over possible samples. Note here that any θ̂ com-

puted from possible samples in a finite population of fixed attributes xi must
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have a finite set of discrete values. Another way to see this is that, inter-

preting expression (3.18) as the definition of expectation for discrete random

variables, the quantities {θ̂k : k = 1, . . . ,M} are possible values of the random

variable, not the random variable itself. Now, also note that the key operation

in derivation of properties of estimators under simple random sampling was

interchanging summations over possible samples (sum over k from 1 to M)

and over population units (sum over i from 1 to N). This was key because,

after interchanging summations, summations over samples became constants

and then entire expressions reduced to sums over only population units; see,

for example, the demonstration of design unbiasedness for the basic estimator

of population mean in section 3.4.2.

If we have a set of possible samples of size n, Sn = {Sn,1, . . . , Sn,M} such

that not each of these samples has the same probability of being chosen, there

are a number of modifications we must make to our basic development.

1. First, we must determine what is meant that not each sample has the

same probability of being chosen, and how those probabilities for various

possible samples are to be computed.

2. Second, we replace simple averaging over possible samples with expec-

tation for discrete random variables (which is weighted averaging) to

determine properties of estimators.

3. Finally, we must determine whether any relations exist between probabil-

ities of samples and quantities attached to population units that allows

reduction of sums over possible samples to sums over population units.
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3.5.1 Appropriate Probability Concept

The first of the issues listed above, determination of an appropriate concept of

probability within which to consider sets of samples that may not all be equally

likely, is more difficult than it may at first appear. For one thing, we need to

distinguish between designs in which not all possible samples have the same

chance of being selected, and designs in which all possible samples are equally

likely but not all population units have the same chance of being selected for

the sample. The first of these possibilities (not all samples equally likely) is

probably much more rare than the second (equally likely samples constructed

from unequal chances of unit selection) but is at least hypothetically possible.

This situation also presents the greater difficulty for determining an appro-

priate probability context. While we will not go into this topic in detail, the

following comments seem pertinent:

1. It would seem difficult to envisage a situation in which one might con-

struct unequally likely samples that could not be better handled by

constructing equally likely samples from selection of units with unequal

probability.

2. It does not seem possible to attach any material concept of probability

to the selection of unequally likely samples. At fist glance it appears

that one should be able to list all samples to be considered (all possi-

ble samples) and then simply add “copies” of samples to be given higher

probability to the list, finally arriving at a set of possible outcomes which

could be considered equally likely (and hence to which Laplacian prob-

ability would still apply). The difficulty here is that only a discrete set

of varying probabilities would be possible. For example, if I start with

5 possible samples, of which I would like to increase the probability of
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selecting sample S3, I could make the probability of choosing sample S3

have values of 2/6, 3/7, 4/8, 5/9, etc., but nothing else. It would ap-

pear that samples of unequal chances of being selected can be given no

general probability framework without recourse to hypothetical limiting

frequency concepts. And, what would this do, for example, to the inter-

pretation of an estimated population proportion in a finite population?

For samples constructed in such a way so that all possible samples are

equally likely of selection, but for which the chances that individual popu-

lation units are included differ, the situation becomes less complex. In this

situation we are still able to apply the concept of Laplacian probability be-

cause the samples form a set of equally likely basic outcomes. The probability

that individual units are included in the sample may then be computed as

the probability of events under this concept of probability. Such samples are

sometimes called unequal probability samples but, because of the discussion

presented here and what appears in the next subsection, I prefer an often-used

alternative and refer to such samples as samples that result from restricted

randomization.

3.5.2 Obtaining Samples Through the Use of Restricted

Randomization

Obtaining random samples of equal probability, but with unequal probabilities

of selection for individual population units, is based on methods for obtaining

simple random samples, as eluded to at the beginning of Chapter 3.3. Two

related sampling designs that are common will be used to illustrate this point,

stratified random sampling and multistage sampling.
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Stratified Sampling

In a stratified sampling design the overall population is divided into subsets or

groups called strata, based (it is presumed) on some external (or prior) knowl-

edge that the groups differ in some systematic manner relative to the attribute

of interest. For example, it may be known (or generally accepted or believed)

that age groups in the voting population will demonstrate a systematic differ-

ence in support for a ballot initiative on decriminalization of marijuana (e.g.,

old voters more opposed, young voters more opposed, voters of middle age more

in favor). In essence, we delineate a partition of the overall population into sub-

populations. For an overall population consisting of units {Ui : i = 1, . . . , N},
let such a partition be denoted as {Uh,i : h = 1, . . . , H, i = 1, . . . , N}. In this

notation, h indexes the strata while i continues to index population units from

1 to N ; an alternative notation would be to allow i to run from 1 to Nh within

each stratum. The sampling frame is then also partitioned into frames for each

stratum according to the same system of indices.

Example 3.1 (cont.)

In the example of the West Coast groundfish fishery introduced at the begin-

ning of Chapter 3.1, it is known that vessels tend to fish in either the northern

portion of the fishery or the southern portion. A part of the reason for this is

that NMFS regulates the fishery in two “zones”, north of 40◦10′ latitude, and

south of 40◦10′ latitude, which separates the very northern coast of California,

Oregon, and Washington from the bulk of California. Also, fishermen operat-

ing in these different zones catch a somewhat different mix of species and thus

use different gear (net types, mesh sizes, etc.). If we believe these difference

likely affect the way that vessels produce total catch values, we might decide
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to stratify the populations by zone and the sampling frame becomes,

Unit Total

Vessel Trip Haul Zone Index Catch (lbs)

64 78 1 S 1 x1

64 78 2 S 2 x2

. . . . . .

. . . . . .

. . . . . .

131 51 5 N N xN

Since the ordering of units in a sampling frame is arbitrary, it is not necessary

that all of the units in the same stratum have consecutive unit indices (although

it is natural to arrange things so that this does occur). A desired overall

sample size n is then also divided into sample sizes for each stratum {nh : h =

1, . . . , H}, such that n =
∑

h nh, and a simple random sample of size nh is

selected from each stratum; h = 1, . . . , H .

Stratification basically consists of dividing one larger population into a

set of smaller populations and applying all of the methods of simple random

sampling to each of the small populations. Estimates for the total population

are then obtained by simply summing across each of the small populations

or strata (e.g., Thompson, 1992). We will not consider the details further in

lecture, although we might have an example in lab.

Multistage Sampling

Multistage sampling designs are similar to stratified designs, except that,

rather than taking a sample from each group (stratum) we first select a sam-

ple of groups at random from which to obtain observations. This is called
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multistage sampling because it can be extended to additional nested levels of

grouping, but we will deal only with two-stage designs.

It is typical in this setting to refer to the groups as primary sampling units

rather than strata. A fairly typical indexing system for multistage designs is to

now takeN as the number of primary sampling units in the population, n as the

number of sampled primary units, Mi as the number of fundamental population

units in the ith primary unit, and mi as the number of population units in

the ith primary unit that are sampled (e.g., Thompson, 1992, Chapter 13).

The population units are then indexed as {Ui,j : i = 1, . . . , N ; j = 1, . . . ,Mi}.
We will not make use of this, or any other alternative indexing system, but be

aware that you are likely to encounter such systems in the literature.

3.5.3 Inclusion Probabilities and Linear Estimators

We are now prepared to address the second and third items needed to extend

the fundamental ideas of the survey sampling approach beyond simple random

sampling as identified in the list at the beginning of Chapter 3.5. In particular,

we want to make use of mathematical expectation to represent averaging over

samples (this was item 2), and to connect such expectation over samples with

expectation over population units (this was item 3).

Linear Estimators

Given attributes of population units {xi : i = 1 . . . , N} and a population

parameter θ to be estimated, a linear estimator of θ for a given sample Sn,k

has the form

θ̂k =
N
∑

i=1

βixiI(xi ∈ Sn,k), (3.19)
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for a set of pre-specified (i.e., fixed) values {βi : i = 1 . . . , N}. Linear estima-

tors play a central role in survey sampling methods, and many estimators may

be written in linear form. For example, the basic estimator of the mean under

simple random sampling is a linear estimator with βi ≡ (1/n) for a sample of

size n. Similarly, the basic estimator of the total under simple random sam-

pling is a linear estimator with βi ≡ N/n.

More Advanced Note: One of the reasons for saying linear estimators are cen-

tral to survey sampling methods is that, not only are many of the standard

estimators linear, but variances for nonlinear estimators are often derived by

forming a Taylor series expansion of the nonlinear estimator and then deriving

the variance for the linear approximation (e.g., Wolter, 1985).

Consider, for illustration, estimation of a population total τ with a linear es-

timator

τ̂k =
N
∑

i=1

βixiI(Ui ∈ Sn,k). (3.20)

Now, suppose we have a set of possible samples of size n Sn ≡ {Sn,1, . . . , Sn,M}.
Considering τ̂ as a random variable, with possible values {τ̂1, . . . , τ̂M} in one-

to-one correspondence with the possible samples, the expected value of τ̂ is

E{τ̂} =
M
∑

k=1

τ̂k Pr(Sn,k). (3.21)

Expression (3.21) applies to any set of possible samples, even if they are not

equally likely, but recall that the interpretation of this type of expectation can

become murky if the samples are not equally likely.

Now, combining (3.20) and (3.21),

E{τ̂} =
M
∑

k=1

N
∑

i=1

βixiI(Ui ∈ Sn,k)Pr(Sn,k)
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=
N
∑

i=1

βixi
M
∑

k=1

I(Ui ∈ Sn,k)Pr(Sn,k)

=
N
∑

i=1

βixiE{I(Ui ∈ S∗
n)}

=
N
∑

i=1

βixiPr(Ui ∈ S∗
n), (3.22)

where, as before, S∗
n denotes the sample of size n to be (or which will be)

selected. Note that, if the possible samples are all equally likely, the second

line of (3.22) becomes the number of samples of which Ui is a member divided

by the number of (equally likely) possible samples, and we may go directly to

the concluding line based on Laplacian probability.

Now, (3.22) implies that τ̂ will be design unbiased for τ if

βi ≡
1

Pr(Ui ∈ S∗
n)

; i = 1, . . . , N.

Inclusion Probabilities and the Horvitz-Thompson Estimator

Building on the result of expression (3.22) define the inclusion probability for

population unit Ui as

πi ≡ Pr(Ui ∈ S∗
n); i = 1, . . . , N. (3.23)

The linear estimator eluded to just above, with βi given by the reciprocal of

the probability unit i is included in the sample is called the Horvitz-Thompson

estimator of a population total,

τ̂ =
N
∑

i=1

xiI(Ui ∈ S∗
n)

1

πi
=
∑

i∈S∗

n

xi
πi
, (3.24)

and expression (3.21) implies that this estimator will be design unbiased for

any sampling design for which the inclusion probabilities can be computed for

each unit in the population (since we do not know which particular units will
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in fact end up in the selected sample S∗
n.)

Now define what are called the second order inclusion probabilities for i, j =

1, . . . , N ; i 6= j,

πi,j ≡ Pr{(Ui ∈ S∗
n) ∩ (Uj ∈ S∗

n)}. (3.25)

In sampling without replacement (which is all we are considering in this

class) the events Ui ∈ s∗n and Uj ∈ S∗
n will not be independent, so that the πi,j

are not merely products of πi and πj (although this will be true, for example,

for units belonging to different strata in a stratified design with independent

selection for each stratum). Consider, for example, simple random sampling.

The probability that two units Ui and Uj are both included in the sample

is {n(n − 1)}/{N(N − 1)}, which we have actually seen before in expression

(3.9). Second-order inclusion probabilities are important in deriving variances

for estimators that can be placed into the Horvitz-Thompson framework, which

includes many of the typical estimators used in the survey sampling approach.

3.5.4 The Overall Generalization

The generalization of simple random sampling that has now been achieved

may be outlined as follows.

1. For a finite population of units {Ui : i = 1, . . . , N}, define the binary

random variables Zi ≡ I(Ui ∈ S∗
n).

2. Define inclusion probabilities as

πi ≡ Pr(Zi = 1) and

πi,j ≡ Pr{(Zi = 1) ∩ (Zj = 1)}.
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3. For a given population quantity θ consider linear estimators of the form

θ̂ =
N
∑

i=1

βi(πi)xiI(Ui ∈ S∗
n)

=
N
∑

i=1

βi(πi)xiZi.

Notice that we have taken the values {βi : i = 1, . . . , N} to be, in general,

functions of the inclusion probabilities {πi : i = 1, . . . , N}, but they may or

may not depend explicitly on these inclusion probabilities.

We may derive properties of the linear estimators considered in this gener-

alization as,

E{θ̂} =
N
∑

i=1

βi(πi)xiE{Zi}, (3.26)

and,

var{θ̂} =
N
∑

i=1

β2
i (πi)x

2
i var{Zi} +

∑∑

1≤i<j≤N
xixjcov{Zi, Zj}. (3.27)

Now, under this formulation of estimators, the first and second moments of

the Zi are,

E{Zi} = πi,

var{Zi} = πi − π2
i = πi(1 − πi),

cov{Zi, Zj} = E{ZiZj} − πiπj = πi,j − πiπj .

(3.28)

As an example, consider the Horvitz-Thompson estimator τ̂ of expression

(3.24), for which βi(πi) = 1/πi. Then,

var{τ̂} = var

{

N
∑

i=1

xi
πi
Zi

}

=
N
∑

i=1

x2
i

π2
i

var{Zi} + 2
∑∑

1≤i<j≤N

xixj
πiπj

cov{Zi, Zj}
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=
N
∑

i=1

x2
i

π2
i

πi(1 − πi) + 2
∑∑

1≤i<j≤N

xixj
πiπj

(πi,j − πiπj)

=
N
∑

i=1

(

1 − πi
πi

)

x2
i + 2

∑∑

1≤i<j≤N

(

πi,j − πiπj
πiπj

)

xixj .

(3.29)

Now, for estimation of variances developed from expression (3.27), such as

given in (3.29) for the standard Horvitz-Thompson estimator of population

total, we need “plug-in” estimators that are unbiased for portions of the ex-

pression, such that the result is an unbiased estimator for the overall variance.

This is not always possible. Properties of expectations tell us that this possible

when the variance is a linear combination of quantities that can be estimated

in an unbiased manner.

Continuing with the example of the Horvitz-Thompson estimator of popu-

lation total given in (3.24), notice that the variance is composed of two additive

terms, each of which consists of a sum over all population units. Notice that,

for any simple function of attributes in the population h(xi), an unbiased es-

timator of the linear combination

θ ≡
N
∑

i=1

aih(xi)

is given by

θ̂ =
∑

i∈S∗

n

ai
h(xi)

πi

=
N
∑

i=1

aih(xi)I(Ui ∈ S∗
n)

=
N
∑

i=1

aih(xi)Zi.

Unbiasedness of θ̂ follows from,

E{θ̂} =
N
∑

i=1

ai
h(xi)

πi
E{Zi}
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=
N
∑

i=1

ai
h(xi)

πi
πi

=
N
∑

i=1

aih(xi).

Thus, in the variance of expression (3.29), an unbiased estimator of the first

additive term is

N
∑

i=1

(

1 − πi
πi

)

x2
i

πi
I(Ui ∈ S∗

n) =
N
∑

i=1

(

1 − πi
π2
i

)

x2
iZi,

while an unbiased estimator of the second term is,

2
∑∑

1≤i<j≤N

(

πi,j − πiπj
πiπj

)

xixj
πi,j

I{(Ui ∈ S∗
n) ∩ I(Uj ∈ S∗

n)}

= 2
∑∑

1≤i<j≤N

(

1

πiπj
− 1

πi,j

)

xixj ZiZj.

Substituting these expressions into (3.29) gives an unbiased estimator of

that variance,

ˆvar(τ̂ ) =
N
∑

i=1

(

1 − πi
π2
i

)

x2
iZi + 2

∑∑

1≤i<j≤N

(

1

πiπj
− 1

πi,j

)

xixj ZiZj. (3.30)

A number of important estimators may be formulated as functions of Horvitz-

Thompson estimators of population totals. For example, an estimator of the

population mean is,

µ̂ =
τ̂

N
.

An estimator of the ratio of two attributes in the population is

ˆ(

τx
τy

)

=
τ̂x
τ̂y
.

Thus, the use of inclusion probabilities forms an important methodology in

the development of estimators for finite population problems.
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Example 3.2

As an illustration what is now possible, consider the following (hypothetical)

example. A federal resource agency has completed a wolf re-introduction pro-

gram in a major national park (e.g., Yellowstone National Park in the western

United States). Several members of congress from districts within which the

park lies are concerned with the economic impact this effort has had on sheep

ranchers near the park due to depredations from wolves that wander out of

the park (wolves are smart, but they can’t read boundary signs). You work

as a statistician for the resource agency involved, and are asked to design a

survey of sheep ranchers in the potentially affected areas to determine the to-

tal economic loss to the local sheep industry due to wolf depredations. After

much discussion, it is decided that individual sheep ranching operations will

constitute the basic units in the population, and that the total dollar loss due

to wolf depredations will be the attribute of interest. Assuming that there are

N ranches in the region of interest, and with xi representing dollar loss for

ranch i, the quantity to be estimated is

τ =
N
∑

i=1

xi.

Now, suppose that licensing of sheep ranching operations is administered

through county offices (I don’t know if this is true or not, but suppose it

is). It is not difficult to obtain the number of licenses issued from each of-

fice in the region of interest, but no records are kept of economic loss due to

wolf depredations. Obtaining this information requires visiting the individual

ranches and going over detailed records. This would be, of course, impossible

to do for every ranch in the region. In addition, there are 32 counties in the

region and obtaining the locations, name of the responsible owner or man-
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ager, contact information, etc. for the individual ranches in counties is a time

consuming activity. It is decided to use a multi-stage sampling design with

counties as the primary sampling units and ranches as the secondary sampling

units. The sampling plan may be described as:

1. A simple random sample of 7 of the 32 counties will be selected.

2. From each of the sampled counties, a simple random sample of 10 indi-

vidual ranches will be selected to be visited.

3. For each ranch visited, the attribute of interest will be determined.

For our purposes in this example, assume there are no refusals to cooperate

from the ranchers, and the attribute of interest can be determined without

question (no lying, false records, etc.).

Everything from here on is largely a matter of notation and keeping track of

the units and quantities involved in an organized fashion. Denote the primary

sampling units as {U (1)
h : h = 1, . . .H} from which a simple random sample of

n(1) is to be selected; the superscript (1) denotes first stage sample, and in this

example we would have H = 32 possible primary sampling units for the stage

one samples and n(1) = 7. Let S(1) denote the first stage sample selected, let

{nh : h = 1, . . . , H} denote the number of population units to be sampled from

each primary sampling unit if those units are selected in the stage one sample,

and denote the number of population units in each of the primary sampling

units as {Nh : h = 1, . . . , H}. Then N =
∑H
h=1Nh is the population size and

n =
∑H
h=1 nhI(U

(1)
h ∈ S(1)) is the total sample size. Finally, as before, let S∗

n

denote the sample of population units selected from the two-stage sampling

design. For estimation of the population total, all that is necessary is to
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determine the inclusion probabilities for individual population units. Let

π
(1)
h = Pr(U

(1)
h ∈ S(1)),

π
(1)
h,k = Pr{(U (1)

h ∈ S(1)) ∩ (U
(1)
k ∈ S(1))},

π
(2)
i|h = Pr{(Ui ∈ S∗

n)|(U
(1)
h ∈ S(1))}; Ui ∈ U

(1)
h ,

π
(2)
i,j|h = Pr{(Ui ∈ S∗

n) ∩ (Uj ∈ S∗
n)|U

(1)
h ∈ S(1)}; Ui, Uj ∈ U

(1)
h .

Here, we would have

π
(1)
h =

n(1)

H
,

π
(1)
h,k =

n(1)(n(1) − 1)

H(H − 1)
,

π
(2)
i|h =

nh
Nh

,

π
(2)
i,j|h =

nh(nh − 1)

Nh(Nh − 1)
.

From these we can calculate the inclusion probabilities for individual popula-

tion units as,

πi = π
(1)
h π

(2)
i|h ,

πi,j = π
(1)
h π

(2)
i,j|h; Ui, Uj ∈ U

(1)
h

πi,j = π
(1)
h,kπ

(2)
i|hπ

(2)
j|k ; Ui ∈ U

(1)
h , Uj ∈ U

(1)
k .

Relying on the particular forms of these probabilities for simple random sam-

pling at each stage given previously, we arrive at the following inclusion prob-

abilities for individual units in the population:
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πi =
n(1)nh
HNh

; Ui ∈ U
(1)
h ,

πi,j =
n(1)nh(nh − 1)

HNh(Nh − 1)
; Ui, Uj ∈ U

(1)
h

πi,j =
n(1)(n(1) − 1)nhnk
H(H − 1)NhNk

; Ui ∈ U
(1)
h , Uj ∈ U

(1)
k .

With these inclusion probabilities in hand, the population total, its variance,

and estimated variance are available from equations (3.24), (3.29) and (3.30),

respectively.

Now, one might question the use of going through all of this if what we have

arrived at is a standard design and associated estimators, which are available

in what is arguably simpler form in standard texts (e.g., Thompson (1992),

Chapter 13). Still within the context of this example, consider the following

scenario:

Congressman Higgenbottom (one of the congressmen from the districts in

which the park is located) contacts your agency with the names of two par-

ticular ranchers in his district who would very much like to be included in

the survey (they may, for example, be major campaign contributors for the

congressman). The good Congressman expresses the opinion that he would be

“mightily disappointed” if these two fine citizens, who are willing to go out of

their way to help the government in its efforts, could not contribute informa-

tion to the “fancy survey” planned by the agency. Given that Congressman

Higgenbottom is a member of the appropriations committee that passes bud-

gets for your agency, your supervisor translates the message to you as follows.

“Rancher A1 and rancher A2 will be included as sampled units in the survey.
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Supposing that the sample list has not yet been drawn, how do you maintain

the scientific integrity of the survey while at the same time managing to retain

your job?

3.6 Extensions to Ill-Defined Populations

Our entire development of the survey sampling approach has assumed that

there is available a population of discrete physical units which are not sub-

ject to question, that is, are not ambiguous in definition, and which may be

individually identified (see Chapter 2). In addition, we have assumed that

each unit has one or more attributes which are characteristic of those units.

But, sampling methods are commonly employed in situations for which one or

more of these assumptions are not readily verified. There are three concerns

in such applications, two of which are fundamentally more troublesome than

the other. Specifically, the survey sampling approach is often applied in the

following situations.

1. Not all units in the population can be uniquely identified, and perhaps

only those units selected for observation can in fact be uniquely identified.

2. The population of interest does not consist of naturally occurring discrete

units. Rather, units must be defined in some arbitrary manner.

3. The attribute associated with each population unit is really an estimate

rather than an unambiguous characteristic of the unit.

The first of these difficulties is actually more easily (not easily, but more easily

than the others) overcome. Statistics 521 and Statistics 621 are courses that

cover this topic. I believe that the second and third difficulties present more
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fundamental (inter-related) problems for the survey sampling approach. The

second potential difficulty, arbitrary definition of population units, is not insur-

mountable in and of itself, as noted in Chapter 2.2. That is, given any specific

delineation of population units, Laplacian probability may be applied under

that definition, and everything developed to this point applies conditionally

on the population unit definition. However, the issue of unit definition is also

connected with the concept of an attribute (fixed, immutable characteristic of

a unit), and it is the third potential difficulty that constitutes the crux of the

matter.

Consider, for example, the problem of determining (estimating) the pro-

portion of acres (or hectares) planted in soybeans in Iowa that have “serious”

infections of soybean cyst nematode, a pest that attacks the roots of soybeans

and decreases yield. First, how does one unambiguously define units that con-

sist of an acre of planted soybeans? You draw your lines, but my lines might

be a translation consisting of a shift 1000 meters south and 500 meters east.

Is it possible that such a shift in unit definition changes the value of the at-

tribute of concern for at least some units in the population? Is it obvious that

such effects should “average out” over different definitions of population units

(i.e., increases are about the same as decreases?). Even without the poten-

tial problem of unit definition, how is a “serious” infection of soybean cyst

nematodes defined? And, how is it “observed” for a given population unit?

Recall that, in all of the statistical development for the sampling approach, the

attributes {xi : i = 1, . . . , N} have been taken as fixed values for population

units {Ui : i = 1, . . . , N}.
These concerns do not invalidate the survey sampling approach to many

problems, but they do indicate that not every problem can be forced into the

confines necessary for the approach to be applicable. It is difficult, for example,
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to see how the problem of non-characteristic attributes for population units

can be overcome without recourse to the notion of random variables associated

with the observation or measurement process.

3.7 Interval Estimation

To this point, we have said nothing about inference from sampling finite pop-

ulations. First, we indicate the standard approach. Given an estimator θ̂ of

a population quantity θ, a derived variance var(θ̂) and an estimate of that

variance ˆvar(θ̂), a typical approach is to form an (1 − α) confidence interval

for θ as either,

θ̂ ± t1−(α/2);n−1

{

ˆvar(θ̂)
}1/2

, (3.31)

where t1−(α/2);n−1 is the 1−(α/2) quantile of a t-distribution with n−1 degrees

of freedom, or as,

θ̂ ± z1−(α/2)

{

ˆvar(θ̂)
}1/2

, (3.32)

where z1−(α/2) is the 1 − (α/2) quantile of a standard normal distribution.

Now, (3.31) comes directly from the elementary result for sample means

of normally distributed random variables. Its applicability seems to rest on

what might be called the ubiquitous statistical appeal to normality, stated quite

simply by Cochran (1977) as

“It is usually assumed that the estimates ȳ and Ŷ are normally

distributed about the corresponding population values.”

Chapter 2.15 in Cochran (1977) gives some discussion of the normality as-

sumption, and it is clear support for the assumption rests almost entirely on

asymptotic arguments for means of random variables (i.e., central limit theo-

rem results). In particular, a finite population central limit theorem for the
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basic estimator of the mean (µ̂) under simple random sampling requires that

N → ∞ and n → ∞ such that n/N → r for some r < 1. Thus, while some

support exists for the use of (3.32), (3.31) has no theoretical basis. It is impor-

tant to note here, that the random variables for which means are calculated

are estimators such as µ̂, not the population attributes {xi : i = 1, . . . , N},
which are considered fixed.

In a more complex setting involving averages of estimators from “random

groups” selected from the population, Wolter (1985) comments that

“Notwithstanding these failures of the stated assumptions [normal-

ity assumptions] Theorem 2.2 [standardization of normal random

variables to t-distributions] has historically formed the basis for

inference in complex surveys, largely because of the various as-

ymptotic results”

(Wolter, 1985, p. 23).
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Chapter 4

The Experimental Approach

References: Kempthorne and Folks (1971), Edgington (1980), Milliken and

Johnson (1992), Good (1994).

The second approach we will cover that relies on randomization to bring prob-

ability to bear on a problem is what will be called the Experimental Approach.

Recall the concept of a physically existent population discussed in Chapter 2.

Assume that such a population exists in a given problem, and that a simple

random sample of units from the population has been obtained; this assump-

tion is rarely met in the experimental approach, but the approach is most

easily described under this assumption. Our objective is to determine the ef-

fect of a given treatment or set of treatments on a response of interest (i.e.,

an attribute) among units of the population. For most of the discussion of

this chapter we will assume not only that we have obtained a random sample

of units in a population, but also that those units correspond to both exper-

imental units and sampling units. But see Chapter 2.3 for a discussion of

the distinction and the importance of connecting responses with experimental

77
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units. In its most basic form, the experimental approach shares with sampling

and survey methods two characteristics:

1. The existence of a well-define population of discrete objects (e.g., hu-

mans, pigs, plants, cows, horses, etc.). We will extend this notion in a

later section to what were called constructed populations in Chapter 2.2,

but for now we will retain the concept of an existent population.

2. Responses, similar to what were called attributes of population units

in Chapter 3, are considered characteristics of population units, not as-

sociated with random variables. See Chapter 2.3 for a more extensive

discussion of attributes and responses.

Recall that responses are allowed to be influenced by external factors within the

time frame of a study, as illustrated with the discussion of influences of exercise

and diet on cholesterol level in Chapter 2.2. Thus, the term responses refers to

attributes under a given set of pertinent conditions and external influences. It

is precisely the effect of certain of these external influences (i.e., treatments)

that the experimental approach is designed to assess.

4.1 Scientific Abstraction and Experiments

The word abstract can have a number of different meanings. We often use ab-

stract in its meaning of abstruse, or difficult to understand. But a fundamental

meaning of abstract is to separate, to express a quality apart from an object,

or to consider a part as divorced from the whole. This is, in many ways, the

essence of scientific experimentation. Consider an experiment in which green

leaves are brought into the laboratory and it is discovered that, in the pres-

ence of radiant energy, certain cells (chloroplasts) can produce carbohydrates



4.2. THE NESTED SYLLOGISM OF EXPERIMENTATION 79

from water and carbon monoxide. Has this experiment explained how plants

grow? Of course not, but it has examined a particular aspect of that problem,

divorced from the whole. In the experimental approach, the whole consists of

all of the external conditions to which a population unit is subject. The part is

to examine fluctuations in a small number of those conditions while holding all

others constant. The key element is control of all relevant factors. That is, the

external conditions, or factors, to which population units are subject must be

determined by the investigator, or under the control of the investigator. This

brings us to an important point, that experimentation involves invasive actions

on the part of the investigator (i.e., the assignment of treatment groups).

Now, it is physically impossible to exercise perfect control over all factors

that may influence a response of interest among population units. This would

require absolute control over, for example, both genetic and all environmental

conditions in a study on biological organisms. Differences that exist among

population units that are not subject to control by an investigator must be

considered inherent differences among units. Inherent differences produce dif-

ferences in responses and, hence, a certain level of uncertainty in response

values among population units (enter statistics). This is more than a trivial

matter, as the assessment of the effect of a treatment depends on quantifica-

tion of the amount of variability among units subject to the same conditions

(intra-treatment or inherent variability) to the amount of variability among

units subject to different conditions (inter-treatment variability).

4.2 The Nested Syllogism of Experimentation

The experimental approach also has close ties to fundamental logical argu-

ments known as syllogisms. A syllogism is a valid logical argument concerning
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propositions and conclusions such as the following, which is known as a dis-

junctive syllogism (disjunctive because of the first proposition):

Either A or B.

Not A.

Therefore B.

Consider the following propositions within the context of the disjunctive syl-

logism immediately above.

Proposition A: All parrots are green.

Proposition B: Some parrots are not green.

If a red parrot is observed, then we have verified “Not A” in the syllogism,

and the conclusion B that some parrots are not green has been proved.

Now consider the following syllogism, which is an argument known as modus

tollens in logic:

If A then C.

Not C.

Therefore, not A.

As a side note, you should recognize the similarity of these logical syllogisms

to some methods of mathematical proof. Finally, a nesting of these two valid

syllogisms yields the following nested syllogism of experimentation:
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Either A or B.

If A then C.

Not C.

Therefore not A.

Therefore B.

Lines 1, 4, and 5 constitute a valid disjunctive syllogism. Lines 2, 3 , and

4 constitute modus tollens. In the traditional experimental approach, we con-

nect the propositions with a disjunction between “chance” and “design” as

follows:

A: chance alone is in effect

B: design (a systematic force) is in effect

C: observable implication of chance alone

What happens statistically is that C is replaced with observable results

“expected” if chance alone is in operation. The statement “Not C” in the

nested syllogism is then replaced with “exceedingly low probability of C”, and

the statement “Therefore not A” is replaced with “either an exceptionally rare

event has occurred, or not A”. This should all look quite familiar to you, in

the following form:

H0: µ = µ0 or H1 : µ 6= µ0 (Either A or B).

If H0 then t∗ has a t-distribution with n− 1 degrees of freedom (If A then C).

Pr(tn−1 ≥ t∗) < α (C has low probability).

Reject H0 (Therefore not A).

Accept H1 (Therefore B).
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4.3 Randomized Treatment Assignment

The demonstration immediately above pulls us too quickly into the use of the-

oretical probability distributions as an approximation to randomization proba-

bility, but is instructive for understanding the progression of the experimental

argument. We need to retreat, however, to the manner in which probability

is introduced in the experimental approach, without resort to t-distributions

and the like.

Consider a set of n population units that are to be divided into groups

exposed to k different sets of external factors (i.e., treatments). All other

conditions (subject to inherent differences among units) are to be controlled

at the same levels. Randomized treatment assignment is somewhat analogous

to simple random sampling in that each possible assignment of the k treatments

to the n units should be equally likely. The number of ways that n units can

be assigned to k treatments of sizes n1, . . . , nk is

n!

n1!n2! . . . nk!
.

Example 4.1

Consider a small experiment in which 5 population units are to be assigned to

2 treatments of sizes 3 and 2. Denote the population units as U1, U2, U3, U4,

and U5, and the treatments as T1 and T2. The possible treatment assignments

are:
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Assignment Treatment Units

1 1 U1, U2, U3

2 U4, U5

2 1 U1, U2, U4

2 U3, U5

3 1 U1, U2, U5

2 U3, U4

4 1 U1, U3, U4

2 U2, U5

5 1 U1, U3, U5

2 U2, U4

6 1 U1, U4, U5

2 U2, U3

7 1 U2, U3, U4

2 U1, U5

8 1 U2, U3, U5

2 U1, U4

9 1 U2, U4, U5

2 U1, U3

10 1 U3, U4, U5

2 U1, U2

In a manner similar to the group versus sequential selection procedures

in sampling, we may either enumerate all possible arrangements (as in the

previous table) and choose one at random, or choose n1 units sequentially for

assignment to treatment 1, then choose n2 of the remaining units sequentially

for assignment to treatment 2, and so forth, until the remaining nk units
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are assigned to treatment k. In practice, only one of the possible treatment

assignments will be used. We will refer to that particular arrangement as the

“actual assignment”, and all others as “possible assignments”.

In the above presentation, we have assumed that experimental units are the

same as sampling units and that these correspond to the fundamental units

of a defined population. It is worth reiterating the message of Chapter 2.3

that these need not be the same, in which case the “units” of concern are

experimental units (why?).

4.4 Quantifying Differences Among Treatments

Given a particular treatment assignment, we need to quantify the difference

among units subject to the various treatments. We are familiar with typical

test statistics such as the t−statistic and the F−statistic. These quantities

may certainly be used to quantify the differences among treatment groups,

but they are by no means necessary; recall that we are not relying on random

variables or theoretical probability distributions at this point.

Any potential test statistics that are perfectly correlated in rank are called

equivalent test statistics. For example, consider a situation with two treatment

groups, denoted T1 and T2. Let the observed responses from units assigned

to T1 be denoted as {x1,j : j = 1, . . . , n1} and those from units assigned to

treatment T2 be denoted {x2,j : j = 1, . . . , n2}. Let

x̄i =
1

ni

ni
∑

j=1

xi,j; i = 1, 2

s2
i =

1

ni − 1

ni
∑

j=1

(xi,j − x̄i)
2 ; i = 1, 2,

s2
p =

s2
1(n1 − 1) + s2

2(n2 − 1)

n1 + n2 − 2
.
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It can be shown that the typical t−statistic

t∗ ≡ x̄1 − x̄2
{

(s2
p/n1) + (s2

p/n2)
}1/2

,

is perfectly monotonically correlated in absolute value with the simpler statistic

D∗ = |x̄1 − x̄2|. (4.1)

Note that this does not depend on the denominator of t∗ being invariant to

data permutations (it is, in fact, not). In a similar way, it can be shown that

the traditional F−statistic in a one-way analysis of variance is equivalent to

the simpler statistic

T ∗ =
k
∑

i=1

(

∑ni

j=1 xi,j
)2

ni
. (4.2)

Notice that the two examples we have given center on the magnitude of

response values in treatment groups, which is typical of the experimental

approach. The appeal to equivalence with traditional t−statistics and F -

statistics is something of a false justification for the use of D∗ and T ∗. That

is, t−statistics and F−statistics are justified based on the concepts of ran-

dom variables, normal distributions, and statistical independence. None of

those concepts are necessary to support the logical basis of the experimen-

tal approach. Thus, an appeal to equivalence with these statistics to support

use of simpler forms such as D∗ and T ∗ given above is without logical force.

What is necessary, however, is that a test statistic is chosen that meets two

requirements:

1. The test statistic must reflect the systematic effect that might be antici-

pated under whatever physical meaning is attached to treatment groups.



86 CHAPTER 4. THE EXPERIMENTAL APPROACH

At least hypothetically, it may be possible for a given treatment to de-

crease small responses and increase large responses, leading to an increase

in variability among units given that treatment. That such a situation

is not amenable to examination through the experimental approach is

indicated by the next requirement.

2. The treatment effect that might be anticipated must be realized in all,

or least the majority, of units which are exposed to it, and this must be

reflected in the statistic chosen.

A reasonable supposition is that the type of effect that distinguishes A from

B in the nested syllogism of experimentation of Section 4.2 should apply more

or less uniformly to each unit in the population. This makes it difficult to

envisage anticipated treatment effects other than a change in magnitude of

response.

4.5 Permutation Tests

The fundamental procedure connected with the experimental approach is that

of permutation tests. Recall from the discussion of Chapter 2.3 that responses

are considered characteristic of units under a given set of pertinent external

influences (i.e., factors). In addition, recall from the discussion of Chapter 4.1

that all such factors are controlled to be constant for all units in the experiment

other than those that define the treatments of interest. Recall from Chapter

4.2 that a disjunction has been defined between chance alone and a systematic

effect of the (small number of) factors that define treatment groups. Finally,

recall from Chapter 4.3 that one of a number of equally likely assignments of

units to treatment groups has been chosen as the actual treatment assignment
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used in the experiment. Putting these together yields the following:

1. If chance alone is in operation, then the treatment groups have no effect

on responses, and all responses observed are subject only to inherent vari-

ability among units chosen for the experiment. The response attached to

a given unit would thus be the same no matter which treatment group

it happened to be assigned to.

2. If, further, random treatment assignment was conducted, each of the

possible treatment assignments was equally likely. Thus, the statistic

calculated to reflect between treatment differences for the actual treat-

ment assignment used is simply one value chosen with equal probability

from a set of values that could have arisen from the various possible

treatment assignments.

3. Given 1 and 2, the rank of the actual test statistic among those calculated

from arbitrary re-assignment of units to treatment groups can be used

to calculate the probability of obtaining a statistic as extreme as that

actually observed, under the hypothesis of chance alone.

This progression motivates a permutation test procedure, which is conducted

as follows:

1. For a given experimental design, consisting of n units assigned to k treat-

ment groups of sizes n1, . . . , nk, list the set of all possible treatment as-

signments (as in Example 4.1).

2. For a given test statistic D, let D∗ represent the value calculated for

the actual treatment assignment, and compute the value of D for all

other possible assignments under the assumption that chance alone is in

operation.
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3. Rank all values of D computed in step 2, and define the p−value of the

test as (assuming that a treatment effect is associated with large values

of D) as,

Pr(D ≥ D∗) =
No. D ≥ D∗

(n!/(n1!n2! . . . nk!))
.

Comments

1. The p−value in item 3 above has exactly the same definition as that you

are familiar with from previous courses (the probability of obtaining a

test statistic at least as extreme as that observed under the hypothesis

to be discredited).

2. This probability is calculated as that of an event under the Laplacian

concept of probability (number of outcomes for which the condition of an

event is satisfied divided by the total number of equally likely outcomes).

3. While the p−value has the definition you are familiar with, it may not

have the same interpretation you are accustomed to, as we are about to

see.

Example 4.1 (cont.)

Consider again the experiment of Example 4.1 with 5 units assigned to 2

treatments of sizes 3 and 2. There were 10 possible treatment assignments in

this experiment. Suppose the responses attached to these units were as follows:

Unit: U1 U2 U3 U4 U5

Value: 4.446 4.882 3.094 11.887 5.034

Suppose that the actual treatment assignment was assignment 1 in the table of

Chapter 4.3, namely units U1, U2 and U3 to treatment 1 and units U4 and U5
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to treatment 2. Values of the test statistic D corresponding to the assignments

of that table are:

Assignment D

1 4.319

2 3.008

3 2.703

4 1.152

5 4.194

6 3.134

7 1.881

8 3.830

9 3.498

10 2.007

The value of the actual assignment was D∗ = 4.319, giving a p−value of

p =
1

10
= 0.10

Should this p−value of 0.10 be considered a “significant” value? That is,

does p = 0.10 provide evidence against the proposition of chance alone? On

one level, we are generally trained that a p−value of 0.10 is not particularly

small (although it is on the boundary of what many scientists would accept).

If we do not consider 0.10 “small”, we would reach a conclusion that chance

alone cannot be discounted. But, p = 0.10 is the smallest p−value that could

be obtained from this experiment, no matter how extreme the effect of the

treatment. Thus, we should either be willing to accept it as an indication of

significance or admit that the experiment was designed in such a way that no

treatment effect could be detected (i.e., was a worthless exercise).
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Now, you may already be thinking that the use of a t-test could remove

the need to take the size of an experiment into account in the assessment

of p−values. This is true and, although in this situation the use of a t-test

would need to be considered an application of a modeling approach, here’s

what would happen:

Ti x̄i s2
i ni

T1 4.141 0.8694 3

T2 8.460 23.4873 2

These values lead to:

s2
p t∗ df p

12.0334 −1.2453 3 0.8493

Clearly, a p−value of 0.8493 would not lead to rejection of the null hypoth-

esis (here, equality of treatment means). What happened here, and why such

a difference in the results of the permutation test and the t-test?

Relative to the outcome of the t-test, attention is immediately drawn to

the difference in sample variances for the two treatment groups (0.8694 versus

23.4873), and we might reasonably feel that the assumptions of the standard

t-test (i.e., equal variance) have been violated, thus nullifying the result of

this test for these data. Although one may always question the assumption of

normality, it would not be possible to assess this assumption with the amount

of data included in the experiment. In addition, we may understand that a

3 degree of freedom t-test is not very powerful for any but the most extreme

displacements (i.e., differences in distribution means).

On the other hand, it is also true that, in the actual assignment, all (i.e.,

both) values for treatment T2 are greater than all values for treatment T1.

The permutation test is formulated on the basis of “chance alone” – the use
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of group averages in the test statistic was simply to capture the characteristic

of interest, not as estimates of any population quantity. Thus, “population

means” do not enter into the formulation, and the distance between group

means is irrelevant, only the ordering of those means.

Comments

1. Combining the above observations gives insight into the fact that the

use of theoretical probability distributions (e.g., normal distributions for

responses, leading to typical test statistics distributed as t or F) is not

merely as an approximation to the p−value that would result from a

permutation test, at least in small experiments; we will discuss such ap-

proximation for large experiments in Chapter 4.9. Until only recently

I used to believe that theoretical distributions were motivated by such

approximation, and to remove the dependence of p−values on experi-

ment size, and that these motivations did not depend on the size of the

experiment; at my age, “recently” includes any time interval up to about

4 years in the past.

2. In actual fact, the units U1, U2 and U3 (treatment group T1 in the actual

assignment) were randomly generated from a N(5, 2) distribution, using

notation N(µ, σ2), while units U3 and U4 were randomly selected from

a N(7.8, 2) distribution. Since we know that the assumptions of the t-

test are satisfied, this emphasizes again that a parametric test such as

the t-test may not be a good approximation to the actual permutation

procedure in small experiments. Thus, in a true experimental approach,

it may well be impossible to divorce assessment of p−values from size of

experiment.

3. It is certainly true that normal distributions might be used in a model-
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ing approach for this example, leading here to a t-test which would be

perfectly valid. Thus, the important point is not that either the permu-

tation p−value or the t-test p−value are incorrect. They are, in fact,

both correct in that no assumptions under which they have been formu-

lated have been violated in either case. The important point is that the

experimental approach and the use of normal distributions as a model

are, in fact, different approaches.

4. Finally, one might question whether the values reported for this example

were somewhat contrived, and this would, in a way, be correct. The

values were in fact generated from N(5, 2) and N(7.8, 2) distributions,

although such simulation was continued until a realization appropriate

for the example was obtained. A pertinent point is that this was easy to

do. In fact, only 4 data sets were generated from these two distributions

before obtaining the one used. This might give pause to any eager to

designate certain data values as “outliers” (such as the value of 11.887

in this example) in small sets of data.

4.6 Toward Inductive Inference

At the beginning of this chapter, it was assumed that a simple random sample

of n units had been selected (from a population of N units) for use in a given

experiment. The comment was made that this is rarely true in experimental

procedures, but that the experimental approach is most easily understood un-

der this assumption. In fact, obtaining a simple random sample of population

units to use in an experiment plays only one role, to allow construction of an

inductive argument, which is something of a elusive gold standard in statistical
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inference. Put simply, the question of induction is how the results of a par-

ticular experiment or study (using only n units) might be logically extended

to the entire population (consisting of N units). Under an assumption that a

simple random sample of size n from a population of size N has been obtained

for use in an experiment, an informal inductive argument can be constructed

as follows:

1. Under simple random sampling, component estimates of a test statistic

(such as means or variances for individual treatment groups) are unbi-

ased estimates of the corresponding population quantities under those

treatments. Unbiased here is in the sense of population averages as for

survey sampling methodology (see Chapter 3).

2. Test statistics constructed as linear functions of the component estimates

are thus unbiased estimates of those test statistics in the population,

this latter being an average over all possible samples of size n from a

population of size N .

3. Significance values (p−values) computed under permutation of treatment

assignments are thus unbiased estimates of a “population-level p−value”,

to test the hypothesis of chance alone.

Comments

1. This informal argument is difficult to make mathematically precise, pri-

marily because definition of the “population p−value” is elusive. Such

a quantity must depend on not only attributes that are characteristic of

population units (as in survey sampling) but on quantities that are char-

acteristic of population units under all relevant external factors. Since
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the set of relevant factors includes treatments that are not actually ap-

plied, this population p−value is a quantity that is hypothetical in na-

ture.

2. Despite the difficulty raised in comment 1, the notion that permutation

tests constitute a procedure that allows extension of inference beyond the

n units actually used in an experiment seems to have some rational force.

Since the n units selected for the experiment are chosen in a manner such

that all such groups are equally likely, conclusions from the n units used

should extend in a natural manner to the entire population of units.

3. It would be possible to devote a great deal of time to the issue of this

subsection, but it is doubtful that doing so would be of much value.

The primary reason for this is that it is extremely rare that experiments

are conducted with n units randomly sampled from a larger population.

In fact, the strongest proponents of procedures based on randomization

probability dismiss this possibility from the outset (e.g., Edgington, 1980;

Good, 1994).

4.7 Randomization Tests

The term randomization test is generally used to refer to a permutation test

procedure applied to an experiment for which the participating units have

not been selected by a random sample from an existing population. In this

context, the term randomization stems from the fact that the appropriate

permutation of data among groups is dictated by the (randomized) manner

in which treatments are assigned. Indeed, if a random sample of population

units was available there would be no need for further random assignment
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of treatments. We would simply assign the first n1 units sampled from the

population to treatment T1, the next n2 units sampled to treatment T2 and so

forth.

4.7.1 Experiments Lacking Random Samples

In designed experiments, a random sample from a population is rarely, if ever,

available. Scientists use units that are available, perhaps taking a random

sample of available units if that is a large group, but more often it is a struggle

simply to obtain enough units in the first place.

Example 4.2

Consider an experiment which is designed to assess the effect of two differ-

ent diet regimens on weight gain in pigs. External factors in such a situation

may include breed, initial age at the start of experimentation, previous hous-

ing conditions, previous diet, sex, and birth condition (weak or normal say).

The experiment must control as best possible for all of these factors, and the

simplest structure is to select pigs for which all of these factors have been

essentially the same up until the time of the experiment (this issue is called

uniformity of units). From where does a scientist obtain pigs that satisfy a

reasonable condition of uniformity in all of these characteristics?

Certainly, it is not possible to obtain a list (i.e., sampling frame) of all such

pigs in existence. Even more, the intent of the experiment is clearly meant to

apply to future pigs, as well as current pigs, a “population” from which it is

most definitely impossible to draw a random sample.

In fact, the need to select units which are uniform in external factors that
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may influence the response of interest generally outweighs the desire to ob-

tain a random sample from some population, leading to a typical situation

in experiments in which units to be included are carefully selected (not at all

randomly selected from some existent population).

4.7.2 Experiments With Constructed Units

It is also common, at least in laboratory studies, to have units that are con-

structed or manufactured to certain specifications. For example, petri dishes

constructed to contain a given medium for growth of a particular cell type

would fit this situation, as would microarray plates prepared with particular

gene segments (sequences of nucleotides) in a series of “wells”.

Example 4.3

A simple experiment was conducted to investigate whether one of the primary

plant nutrients (phosphorus and nitrogen) limits algal growth in a reservoir in

Thailand (Sinagarind Reservoir). This reservoir, located northwest of Bangkok

provides water supply, irrigation and hydropower to the surrounding area. Ex-

cessive algal growth in this region with a 12 month growing season can clog

pumps, turbines, and filters, causing severe problems with these functions.

The experimental design was as follows:

1. A total of 12 translucent plastic containers (pre-treated so that the plastic

material would not affect the outcome of interest) were filled with surface

water from the reservoir.

2. Three of the containers received addition of 7.5µg/L phosphorus (as

K2HPO4), three containers received 112.5µg/L of nitrogen (asNH4NO3),
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three containers received both phosphorus and nitrogen, and three con-

tainers received no nutrient addition. Which treatment was applied to

which container was determined by a random treatment assignment (this

was really true, I was there).

3. All containers were suspended at a depth of 1/2 the photic zone for 2

days.

4. Containers were collected, samples were filtered and algal content deter-

mined as the concentration of chlorophyll using standard procedures in

limnology (e.g., Jones et al., 1990).

4.8 Random Selection of Permutations

The use of randomly selected permutations of treatment assignments, from the

set of all possible permutations, applies to any permutation or randomization

test procedure. The fundamental idea is that one may obtain an unbiased esti-

mate of the “true” p−value by randomly sampling only a portion of the possible

treatment assignments. The “true” p−value here refers to the p−value that

would be obtained from computing the test statistics for all possible treat-

ment assignments. Random sampling of possible treatment assignments is

often called the use of random data permutations, while the use of all possible

treatment assignments is often called systematic data permutation.

One motivation for the use of random data permutation is certainly the

fact that the number of possible treatment assignments increases rapidly with

the size of an experiment and computing a test statistic for all of these can

be time consuming and difficult. For example, the table below presents the

number of possible treatment assignments for some experiments of differing
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types with k treatments and sample sizes of n1 . . . , nk, up to k = 4.

k n1 n2 n3 n4 No. Assignments

2 2 2 6

2 3 2 10

2 3 3 20

2 5 5 252

2 10 10 184,756

3 3 3 3 1,680

3 5 5 5 756,756

4 3 3 3 3 369,600

4 5 5 5 5 11,732,745,024

Note that, first of all, none of the above experimental designs contains more

than 20 units (i.e., they are all small experiments). Also, note that the effect

on number of treatment arrangements of an increase in group sizes becomes

much more extreme as the number of groups increases. For two groups (k =

2), an increase from 3 to 5 units per group increases the number of possible

assignments by 252/20 = 12.6. For k = 3 an increase from 3 to 5 units per

group results in a 450.45 times increase, while for 4 groups this value becomes

31, 744.44. The implications for computation should be obvious, although with

modern computing speeds, the only one of the experiments in this table that

might give one pause is the last experiment with k = 4 treatments and 5 units

per treatment.

Equally important to the sheer number of possible assignments in practice,

however, is the difficulty of programming data permutations. For two groups

(treatments) of equal size, writing a computer function to identify all possible
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assignments is not difficult. But the task increases noticeably for groups of un-

equal size, and becomes even more onerous as the number of groups increases.

On the other hand, as we will see in lab, computing random data permuta-

tions is not difficult, even for multiple groups of unequal sizes. Thus, the use of

random data permutations remains probably the fundamental computational

method by which to conduct randomization (or permutation) tests in all but

the simplest of situations.

Example 4.3 (cont.)

Consider the nutrient enrichment experiment introduced in Example 4.3. The

data obtained from this experiment were as follows:

Treatment Rep Chl(µg/L)

Control (C) 1 2.375

2 2.350

3 2.500

Nitrogen (N) 1 3.325

2 3.175

3 3.525

Phosphorus (P) 1 2.450

2 2.575

3 2.400

N Plus P (NP) 1 4.950

2 4.900

3 4.875

We will use data from this entire experiment in lab, but for now suppose we

consider only the C, N, and P treatments. There were a total of 9 units (bags
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of water) assigned to these treatments with sample sizes of nc = nn = np = 3.

Under an assumption that treatment has no effect on the response of interest

(i.e., chance alone) there are a total of

9!

3! 3! 3!
= 1, 680

possible treatment assignments, which of which has equal probability. Using a

random selection of S = 100 of those possible assignments with the test statis-

tic T of expression (4.2) resulted in p = 0.03 which should, by any standard,

be judged as evidence against the hypothesis of chance alone.

Ecological theory holds that there should be only one “limiting factor”

in operation for algal growth, and here we are considering nitrogen (N) and

phosphorus (P) as possibilities. We can use the available data as a test of

this scientific theory. If we examine only the C and P treatments we have 2

groups of size 3 each and thus 20 possible treatment assignments. If we list

out these assignments we will discover that there are “symmetric” or “mirror

image” pairs of assignments. For example, the assignment of U1, U5, and U6

to treatment C and U2, U3 and U4 to treatment P gives the same test statistic

as the assignment of U2, U3 and U4 to treatment C and U1, U5 and U6 to

treatment P. Thus, there are only 10 assignments that need to be examined in

a systematic permutation procedure (i.e., considering all possible assignments).

The test statistic D of expression (4.1) yields the actual value D∗ = 0.067 and

values for the 10 unique possible assignments of the data are:
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Assignment D Assignment D

1 0.067∗ 6 0.080

2 0.100 7 0.033

3 0.017 8 0.050

4 0.133 9 0.067

5 0.000 10 0.017

Here, the ∗ superscript denotes the actual treatment assignment used. The

calculated p−value for this treatment comparison is then

p =
1

10
I(D ≥ 0.067) =

5

10
= 0.50

Keeping in mind that the smallest p−value possible from this experiment would

be 2/20 = 1/10 = 0.10, we must conclude that the data provide no evidence

against a hypothesis of chance alone concerning the responses to the C and P

treatments.

A similar procedure applied to the C and N treatments yields:

Assignment D Assignment D

1 0.930∗ 6 0.380

2 0.380 7 0.150

3 0.480 8 0.170

4 0.250 9 0.400

5 0.280 10 0.300

and an associated p−value of 0.10, the smallest possible value. Overall, then,

we would conclude that there is no evidence for a systematic difference between

C and P treatments but there is evidence for a systematic difference between C
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and N treatments. Thus, based on the evidence provided by this experiment,

we would conclude that N is the limiting factor in Sinagarind Reservoir, and

that our results are consistent with (i.e., are confirmatory for) ecological theory.

The overall test in this experiment was of the ANOVA type with k =

3 treatment groups. With S = 100, the possible values of the calculated

p−value are contained in a set of values that have an increment of 0.01. That

is, possible values for the calculated p are in the set {0.01, 0.02, . . . , 1.00}.
Values for p with all permutations would have increments of only 1/1, 680 =

0.000595. The p−value reported from a set of S = 100 randomly selected data

permutations was p = 0.03 which, as we have already noted, is an unbiased

estimate of the p−value that would be obtained from a systematic use of all

1, 680 possible permutations (i.e., treatment assignments). This suggests the

possibility of conducting a Mote Carlo procedure to more precisely estimate

the true p−value, by conducting our procedure with S = 100 repeatedly. We

will call one procedure a “trial”. For example, if we conduct the randomization

test with S = 100 for a total of M independent trials, the average of the M

p−values should be a more precise estimator of the true p−value than that of

only one trial. The following table presents results for several different values

of the number of random permutations S and the number of trials M .
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S M Mean Variance

100 20 0.025 0.000110

50 0.023 0.000135

100 0.022 0.000093

500 0.024 0.000137

200 20 0.018 0.000048

50 0.019 0.000065

100 0.017 0.000063

500 0.018 0.000075

500 20 0.015 0.000025

50 0.015 0.000028

100 0.015 0.000029

500 0.015 0.000026

It should be clear from the above table that increasing the number of

permutations used lends stability to mean p−value and the variance of those

values. What is curious is that the mean p−value appears to decrease as

the number of random data permutations used increases from S = 100 to

S = 500. The computer function I used in this example samples possible

permutations with replacement. At first glance, this may seem contradictory

to the intention of sampling a subset of permutations; if we were able to use all

possible permutations we would do so, each permutation appearing once and

only once in the set of possible arrangements. But this is not what we actually

want, unless we can indeed compute D for all possible arrangements. By

embedding the computation of a p−value in what is essentially a Monte Carlo

procedure, we have brought relative frequency probability into play. That is,

we have turned estimation of the true p−value into a problem of sampling
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from a multinomial distribution (in which the categories are defined by the set

of possible permutations). This is an interesting turn of events – we are using

randomization and Laplacian probability for the basis of inference, but relying

on relative frequency in computation of the p−value. A similar phenomenon

occurs in the computation of posterior distributions via simulation in some

Bayesian analyses. It is important in such situations to keep the roles of

various probability concepts clearly in mind. The analysis itself may not rely on

relative frequency probability but, when computations are conducted through

simulation or Monte Carlo methods, relative frequency becomes relevant for

the computational aspects of the analysis.

4.9 Theoretical Probability Approximations

As we have seen in consideration of Example 4.1, the experimental approach,

based on the application of Laplacian probability to possible treatment assign-

ments, is fundamentally distinct from the use of distributional assumptions of

normality, equal variance, and independence to derive t and F distributions for

comparison of group means. In fact, these procedures depend on the concept

of hypothetical limiting relative frequency discussed in Chapter 1.2. Neverthe-

less, there is a connection between typical procedures based on what is often

called “normal sampling theory” (t-tests, F-tests, and the like) and the exper-

imental approach. This connection is part historical and part asymptotic in

nature.
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4.9.1 The Historical Connection

Before the advent of high speed computers, the use of randomization proce-

dures in situations even as small as k = 3 treatments of sizes n1 = n2 = n3 = 3

was somewhat prohibitive (there are 1, 680 possible treatment assignments in

this setting). Random selection of the possible assignments using a computa-

tional algorithm was not possible either. And, then as now, this illustration

with a total of 9 units would have constituted a quite small experiment. With

the mathematical work of Fisher, Neyman, Pearson, Pitman, and others, there

was widespread use of theory based on the concepts of random variables hav-

ing normal distributions to compute p−values for tests. Such methods actually

fall into what we will call the modeling based approach, but this was (as far

as I can tell) not in the minds of these early workers. It does appear, however,

that a fair number of these eminent statisticians were willing to use theoretical

distributions (e.g., independent normal random variables and the associated

sampling distributions for t and F statistics) to approximate what were other-

wise incalculable randomization p−values. Several quotes to this effect, drawn

from the works of Edgington (1980) and Good (1994) are:

1. In the context of permutation tests, Fisher (1936, p. 59):

Actually the statistician does not carry out this very tedious

process but his conclusions have no justification beyond the

fact they could have been arrived at by this very elementary

method.

2. From Kempthorne (1955, p. 947):

Tests of significance in the randomized experiment have fre-

quently been presented by way of normal law theory, whereas
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their validity stems from randomization theory.

3. In summarizing a number of sources, Bradley (1968, p. 85):

Eminent statisticians have stated that the randomization test

is the truly correct one and that the corresponding paramet-

ric test is valid only to the extent that it results in the same

statistical decision.

4.9.2 The Asymptotic Connection

Good (1994) provides perhaps the most extensive summarization to date of as-

ymptotic connections between randomization (permutation) tests and typical

parametric tests. These connections center on the concept of power of a test

under the usual parametric assumptions. The general conclusion, in terms of

t-tests and F-tests is that, asymptotically, randomization and parametric tests

“make equally efficient use of the data” (Good, 1994, p. 177).

The idea of assessing permutation or randomization test procedures rela-

tive to their asymptotic properties under the assumptions of typical parametric

models seems to clash with the underlying motivations of at least randomiza-

tion test procedures in the first place. That is, randomization tests are based

on the principles of Laplacian probability applied to a small, finite set of units

manipulated in an experimental procedure. It would seem difficult to apply

asymptotic concepts to this setting. It would appear that the intent of Good

(1994), and references therein, is to demonstrate that little or nothing is lost

by using a randomization procedure even when large sample theory connected

with parametric tests is available and, while this may be indeed be an argument

in favor of randomization tests, it does not seem to justify the randomization
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theory in the first instance.

4.9.3 Where Does This Leave Us?

It is legitimate to question at this point, where we stand with regard to the

experimental approach and, in particular, the use of randomization test proce-

dures, be they applied through either systematic or random data permutation.

The following issues represent my own opinion and may not be (are probably

not, in fact) accepted by a majority of statisticians. At the same time, I would

claim that the majority of statisticians have not given these issues the serious

thought they deserve.

1. As clearly asserted by Edgington (1980) and eluded to by Good (1994),

randomization test procedures do not share the same conceptual basis as

parametric tests such as t-tests and F-tests. I trace the difference back to

the fundamental reliance of the experimental approach (and its manifes-

tation in permutation and randomization tests) on Laplacian probability.

2. It does appear to be the case that parametric test procedures and ran-

domization procedures tend to agree for large experiments (leaving the

definition of large vague). The primary differences seem to occur in ex-

periments of limited size. Such experiments do occur quite frequently.

3. Any justification for approximating randomization p−values with those

from tests based on theoretical probability concepts seems to have van-

ished with advances in computational ability. Particularly with random

data permutation, programming randomization tests is not a major dif-

ficulty, and computational time has ceased to be an issue at all. The

logical distinction seems to be a victim of history in that the developers
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of what is called here the experimental approach embraced parametric

test procedures so that they could accomplish computations.

4. It is true that randomization procedures appear most applicable in sit-

uations for which the treatment effect is believed to be an effect on the

magnitude of response that applies to all units in a more or less uniform

manner. This is acknowledged by Good (1994, page 2) in pointing out

that one of the few assumptions of a randomization test is that “. . .

the alternatives are simple shifts in value”.

Putting all of this together, I would suggest that the experimental approach,

while often eluded to as a justification for random sampling (if possible) and

randomized treatment assignment (as a basic tenet of experimentation), has

not been faithfully adhered to by statisticians. The experimental approach is

limited in application, but represents a forceful methodology. When appealed

to as justification for an analysis, it should be more than just “window dress-

ing”. It should be carried out in a manner consistent with the manner that it

introduces probability into a problem (i.e., through randomization founded on

the concept of Laplacian probability).
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Chapter 5

Statistical Abstraction, Random

Variables, and Distributions

We turn now to an approach that arguably constitutes (along with the Bayesian

approach, which can be cast as an extension of modeling) the majority of all

statistical analyses conducted today. This approach differs in a radical way

from those of sampling and what we have called the experimental approach.

The modeling approach rests on the mathematical concepts of random vari-

ables and theoretical probability distributions. While a population of phys-

ically existing (or constructed) units is allowed, it is not required for these

concepts to be valid. The focus of analysis becomes the values of parameters

in a model, not the value of some attribute or response in a population or

collection of experimental units. A fundamental characteristic of statistical

modeling is that the model represents a statistical conceptualization of the

scientific mechanism or phenomenon of interest, which could “produce” the

observed data as possible values of the random variables involved.

Recall the discussion of scientific abstraction in Chapter 4.1, where ab-

111
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straction was taken to mean consideration of a part divorced from the whole.

We now wish to translate this same idea into a statistical formulation called a

model. Any number of statisticians have indicated that the advent of general-

ized linear models (Nelder and Wedderburn, 1972) as an important landmark

in statistical modeling. Lindsey (1996, p. 21) indicates this paper of Nelder

and Wedderburn as seminal for the modeling approach. Why is this? After all,

models of one type or another have been around for far longer than the mid-

1900s, and there is little explicit discussion of the general topic of modeling in

the Nelder and Wedderburn paper.

The answer lies in the impetus of this paper for consideration of observ-

able phenomena as something more than simply signal plus noise. Clearly,

the signal plus noise concept for modeling has produced many useful results.

Additionally, from the viewpoint of extreme reductionism, signal plus noise

is “true” in that all events in the world are the result of some complex set

of deterministic processes; this is true of even human behavior if we under-

stood all of the chemical and physiological processes in the brain and spinal

cord. Under this reductionist view, and a perfect understanding of the subject

under study, the only role for uncertainty (to statisticians as represented in

probability structures) is through measurement error. There has long been

a tendency for statistics to mimic this thinking in models that consist of an

expected value component and an error distribution component. Many tra-

ditional linear models, such as the simple linear regression models, take this

form.

Yi = β0 + β1xi + σǫi; ǫi ∼ iidN(0, 1).

This model is a direct reflection of signal (as the expectation β0 + β1xi) plus

noise (as the additive error ǫi). The standard interpretation we can find in
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many (probably most) texts on applied regression models is that the error

terms represent measurement error and other uncontrolled influences. The

fundamental assumption, then, is that other uncontrolled influences can be

adequately combined with measurement error into a single error term for the

model.

The major impact of generalized linear models was to promote considera-

tion of random and systematic model components rather than signal plus noise,

although Nelder and Wedderburn (1972) did not present their work in this con-

text. As we will see in the sequel, the random model component consists of

a description of the basic distributional form of response random variables,

not necessarily an error distribution, while the systematic model component

consists of a description of the expected values of the random component. I

would argue that this is more than a matter of semantics. The encouragement

is to consider the random model component first, rather than a form for the

expectation function first. In so doing, the stochastic model (i.e., distribu-

tional portion of the model) becomes much more than a description of the

manner in which observations are dispersed around their expectations. Hav-

ing made this step, we are then poised to consider models with, for example,

multiple stochastic elements or even models based on nonstationary stochastic

processes.

One additional point should be made at this introductory stage in our dis-

cussion of statistical models. We will not consider in detail either exploratory

phases of an analysis (although some use of exploratory techniques may appear

in lab) or purely data descriptive techniques such as nonparametric “models”

(e.g., spline or kernel smoothers). Our focus will be nearly entirely on para-

metric models. As we will indicate in greater detail later in this section, this

focus is tied to the role of a parametric model as a statistical conceptualiza-
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tion of a scientific mechanism or phenomenon of interest. As such, we desire

more than to detect possible patterns in data (exploratory approaches) or to

describe the way in which data fluctuate over time or in relation to other data

(e.g., nonparametric smoothers).

5.1 The Concept of Random Variables

The basic building blocks of a statistical model are random variables, but

what are random variables? First, random variables are not necessarily (in

fact, usually are not) something that can be physically realized, they are a

mathematical concept. Although we often refer to data as “observed values of

random variables” this is not, strictly speaking, a valid notion. What we actual

mean is that data represent possible values that might be assumed by random

variables. This is a subtle, but important, difference. Consider a collection

of n boards all milled to the same nominal thickness; the thicknesses will, of

course, vary due to any number of factors. Suppose that we have attached

random variables Y1, . . . , Yn to those thicknesses, and have specified that, for

i = 1, . . . , n, Yi ∼ iidN(µ, σ2). Now, the thickness of board 1 (under constant

environmental conditions) is what it is; in the terminology of Part 1 of these

notes, an attribute of the board. To presume that it “could be” any value

−∞ < y1 < ∞ with probabilities given by a normal distribution is, frankly,

ludicrous. To say that the thickness of board 1 is a random variable before

observation because we don’t know what it is, and the particular value of the

random variable after observation because we then do know what it is, does

not entirely solve this dilemma. The thickness of board 1 is not a random

variable. We may, however, use a random variable that is connected with the

thickness of board 1 to allow a mathematical conceptualization of the values
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and uncertainties in thickness of the collection of boards. To put it a slightly

different way, random variables and theoretical probability distributions are

not simply an extension of finite populations to infinite collections of physical

units (if that were even a possibility). Random variables are mathematical

beasts, and they do not exist outside of the world of mathematics and statistics.

As we will reiterate in Section 5.3, our goal is to use the concepts of random

variables and associated probability distributions to formulate a meaningful

conceptualization of a real situation called a model and, through statistical

analysis of such a model, increase our knowledge of the real situation.

Formally, random variables are mathematical functions that map a set Ω

onto the real line ℜ. You have likely by this time seen the use of the triple

(Ω, F , P )

to represent a probability space, and understand that a random variable Y is

a real-valued function Y : Ω → ℜ such that Y −1 : B → F , where B is the

σ−algebra of Borel sets on the real line and F is a σ−algebra of the set Ω

(typically the σ−algebra generated by Y , the smallest σ−algebra for which

Y is F−measurable). Here, Ω is often unfortunately called a sample space

containing the possible outcomes of a random experiment. Note that this use

of the term experiment is not necessarily connected with our description of

experiments in Part 1 of this course. It is preferable to consider Ω an arbi-

trary set of any objects or elements of your choosing. These elements will be

denoted as ω, and we will assume that ω ∈ Ω. We will consider such elements

to be values of a scientific constructs. In the case of observable constructs the

phrase sample space for Ω may seem fairly obvious, as Ω then consists of the

set of possible outcomes of an observation or measurement operation. Even for

observable constructs, however, the concept of Ω as a set of possible outcomes
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is not entirely unambiguous.

Example 5.1

Consider a study of the composition of a forest bird community that involves

setting what are called mist nets (nets of fine mesh strung between two poles,

much like a very fragile volleyball net) in a forest. Birds are unable to detect

such nets and those that fly into the net are ensnared. Nets are typically set,

abandoned for a specified period of time (e.g., 2 hours), and then re-visited.

Birds are gently removed from the net, various characteristics recorded, and

released; this is, by the way, no small test of respect for bird life when it comes

to removing woodpeckers from a mist net without harming them. What sets

of outcomes Ω might arise from such an observational operation?

1. Species.

Here, Ω would consist of a list of all bird species that occur in the study

area such as

Ω ≡ {wood thrush, black and white warbler, yellowthroat, etc.}.

2. Sex.

Here, Ω ≡ {Male, Female}.

3. Weight.

In this case, we might take

Ω ≡ {ω : 0 < ω <∞}.

Notice that, for the third observational characteristic of weight, we have

already departed from physical reality. That is, the set of possible outcomes of
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the actual measurement operation is determined by the inherent precision of

the measurement instrument (e.g., 0.5 grams for a scale marked in grams). In

addition, it is physically impossible that a hummingbird, for example, could

weigh 3 metric tons (which is still considerably less than ∞). But the con-

struct of weight does not depend on the particular measurement tool used to

observe it, nor does it depend on a set of physically real “outcomes” of an ob-

servation process. For unobservable scientific constructs the situation becomes

even more obscure.

Example 5.2

A social scientist is interested in studying the effect of violent cartoons on

“aggressive behavior” in children ages 5 to 7. The construct of “aggressive

behavior” is ill-defined in terms of observable quantities. Rather, aggression is

assessed relative to a set of indicators assumed to be indicative of aggression.

In this situation, would it be possible to define a random variable that is a

direct reflection of the notion of aggression?

The point of the two examples above is that, while it is sometimes possible

to define Ω as a sample space in the traditional textbook sense (e.g., item

2 of example 5.1), and then proceed to a random variable that maps this

set to the real line, it is perhaps not the sample space that is fundamental,

but the concept of a random variable itself. In fact, in applications, Ω is

often determined relative to the random variable Y rather than the other way

around. It is important that a legitimate set Ω exist, of course, and it is

common that we take (Ω,F) = (ℜ,B).



118 CHAPTER 5. STATISTICAL ABSTRACTION

5.2 Probability Distributions

In the probability space (Ω,F , P ), the set function P , defined on F , constitutes

a mapping from F to [0, 1], and obeys the axioms of probability. Briefly, we

can derive from Y : Ω → ℜ and P : F → [0, 1] the probability law PY as,

PY (B) ≡ P (Y −1(B)) = P (Y ∈ B); B ∈ B,

the distribution function F as,

F (y) ≡ P (ω : Y (ω) ≤ y) = PY (Y ≤ y),

and, with the addition of the Radon-Nikodym theorem, the density function

f as,

f ≡ dP

dP0

a.s. on F ,

where P is dominated by P0. For our purposes, P0 will be either Lebesgue (for

continuous Y ) or counting (for discrete Y ) measure.

What is the value of all of this for a consideration of statistical meth-

ods? The answer is that, in the formulation of models, we often construct

functions of random variables, specify either marginal, conditional, or joint

distributions, and either aggregate or disaggregate basic random variables. It

is essential that, whatever we end up with, a joint distribution appropriate

for the definition of a likelihood function exists. This is true regardless of

the approach taken to estimation and inference, be it exact theory, maximum

likelihood, likelihood approximations (e.g., quasi- and pseudo-likelihoods), or

Bayesian. While we may often “work in reverse” in that we may proceed to

identify probability laws and measures PY and P based on formulated densi-

ties f and distribution functions F , we must arrive at a situation in which all

of the above holds. This is, in some ways, similar to the previously mentioned
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tendency to describe Ω based on the concept of a random variable, rather than

vice versa.

Throughout the remainder of this part of the course we will use a number

of theoretical probability distributions, many of which you will already be

familiar with, at least in passing. In the next full section we will summarize

useful results for several families of distributions, most notably the exponential

family. Distributions within a family share various statistical properties (which

properties depends on which family). This makes it possible to use families

of distributions in basic model frameworks, arriving at classes of models that

inherit certain behaviors from the families on which they are founded.

5.3 Statistical Abstraction

We come now to one of the main events in the modeling approach, which is the

idea of statistical abstraction. If scientific abstraction consists of considering

a part of a problem divorced from the whole, statistical abstraction consists

of capturing the key elements of a problem in a small set of parameters of a

probabilistic model. What do we mean by the key elements?

The majority of scientific investigation is based on the concept that there

exists a mechanism that underlies the production of observable quantities. A

mechanism is the set of physical, chemical, and biological forces that govern the

manner in which some process functions. Certainly, discovery of a mechanism

is a key component of medical research; if the mechanism by which a disease

affects the body is known, the chances of developing an effective treatment or

vaccine are vastly increased. In about 1999, the US Environmental Protection

Agency (EPA) released regulations for “fine particulate matter”, defined as

particles of mean aerodynamic diameter less than 2.5 microns (a smoke par-
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ticle, for comparison is about 8 to 10 microns in diameter). The impetus for

these regulations was largely a number of large-scale studies that indicated a

relation between the ambient concentration of fine particulates in cities and

health outcomes such as the number of hospital admissions for asthma in those

cities. These new regulations prompted a number of legal battles and a study

commissioned to the National Research Council (NRC). In its report, a major

difficulty the NRC saw with the evidence used by EPA to issue new regulations

was that the mechanism by which fine particulates might produce respiratory

problems in humans had not been identified. I believe that enforcement of the

new regulations was suspended until additional studies could be conducted.

In many (most?) areas of science, mechanisms are not fully understood; if

they were, we would be moving closer to the type of perfect understanding of

the “signal” discussed at the beginning of this chapter. This is perhaps less

true of physics than many areas of biology, but even there understanding of a

basic mechanism under highly controlled conditions in a laboratory does not

necessarily indicate the exact physical behavior of the world in an uncontrolled

setting. Nevertheless, in nearly all scientific disciplines a finding of relation

among various quantities or constructs, or differences among groups in those

quantities or constructs, will likely not meet with acceptance among workers in

the discipline unless a plausible mechanism can be suggested (this is, of course,

not the same as having all of the details worked out). The one exception to

this is the occurrence of a phenomenon that is highly repeatable, but not in

the least understood. In such situations intense study is generally conducted

to determine why the phenomenon persists, that is, to suggest mechanisms.

Some of you may be old enough to remember a movie called The Awakening,

which was based on a true story. In it, a young psychiatrist (played by Robin

Williams) treated a group of nonfunctional mental patients with some type of
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a drug “cocktail” and an entire group of patients began functioning normally

for a time. They eventually relapsed. To me, the most poignant moment in the

movie was at the end, where they presented little descriptions of the real life

fates of the various characters (right before the credits). The psychiatrist, it

was noted, spent the remainder of a frustrated career attempting to duplicate

the effect of his treatment, to no avail. In short, something had occurred for

which the good doctor could suggest no plausible mechanism, and which could

not be repeated. While the event was wonderful, it provided no useful results

for the treatment of patients with the given affliction.

It does occur that a study will be conducted in which everything that might

possibly be related to the objective of the study is measured or observed.

Nearly every statistical consultant of any tenure has been presented with a

mountain of data gathered on a cornucopia of variables and asked to determine

“what is important”. Despite such horror stories, and despite the emergence of

what is called “data mining” (and other exploratory approaches for extremely

large collections of data) the norm in scientific investigation is still that data

are collected in a more focused manner.

The upshot of the above discussion for the purpose of statistical modeling

is that scientific mechanisms or repeatable phenomena represent the key ele-

ments of a problem to be captured in a small set of model parameters, which

is the question we have been attempting to address. By this we do not mean

a direct translation of a mechanism into mathematical terms (this would be

a deterministic process model, which are generally based on sets of partial

differential equations) but rather that we be able to “locate” the mechanism

in a small set of model parameters, and determine the relation of other model

parameters to those that represent the mechanism.
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Example 5.3

Suppose we have interest in the effect of altitude on the boiling point of some

substance; there is no need to get fancy, water works fine for this example. The

plausible (actually at this point in time more than merely plausible) mecha-

nism is the effect of atmospheric pressure on the amount of energy needed

to produce vaporization. To investigate this phenomenon we may use various

study designs, and these may, in turn, lead to different models. To simplify the

situation somewhat, suppose we have located a relatively small geographic re-

gion (e.g., near Seattle in the western US, or perhaps in Nepal) where altitude

covers a wide range in a short distance. To begin our modeling exercise, we

define random variables associated with the boiling temperature of water (in

degrees Kelvin, say) {Yi : i = 1, . . . , n} and covariates as altitude (in meters

above sea level, say) {xi : i = 1, . . . , n}.
One possibility is to place observers at n various altitudes along our cho-

sen gradient with portions of a common stock of water (such as deionized

water), identical (to within manufacturers specifications) thermometers and

other equipment, and have them measure the temperature at which this water

boils at the same time (starting heating to within one minute, say). We might

then begin a modeling exercise through examination of a linear model,

Yi = β0 + β1xi + σǫi; ǫi ∼ iidN(0, 1).

In this model, the phenomenon of interest is embodied in the systematic model

component β0 + β1xi.

What is the relation of the other model parameter σ to those that repre-

sent the phenomenon of interest? This dispersion (or variance, or precision)

parameter quantifies the degree to which observed values of the boiling point
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of water differ from what is “explained” by the modeled version of the effect

of altitude. In the study described, this would incorporate measurement error

and microclimate effects. But what, exactly, have we modeled through the

systematic component? The effect of altitude on the boiling point of deionized

water on a given day. If ordinary least squares is used to produce parameter

estimates for β0 and β1, and the usual bias-corrected moment estimator of σ2

is used, we might quantify our uncertainty about the modeled effect of altitude

on boiling point of deionized water on the given day through a joint confidence

region for β0 and β1. Consider, as a part of this uncertainty, only the variance

of the marginal distribution of β̂1,

var{β̂1} =
σ2

∑n
i=1(xi − x̄)2

.

Here we have the typical case that our uncertainty about the phenomenon of

interest is directly related to the variance of the observable random variables.

Another possible study design would be to place observers at n various

altitudes with (possibly randomly assigned) water from n different sources,

on n different days (again, perhaps randomly selected from days within some

specified time frame). We could fit the exact same linear regression model to

the resultant data from this study. The effect of altitude on boiling point of

water would be modeled through exactly the same portion of the model as be-

fore, namely β0 +β1xi. But what would be the relation of σ to this systematic

model component? Now, σ would reflect not only measurement errors and mi-

croclimate effects, but also varying water compositions and factors associated

with the days of observation (e.g., humidity, pressure due to atmospheric cells

of air that vary over time, etc.).

One likely effect of this design would be to increase the (true) value of

the variance of observable random variables, namely σ2. This would, in turn,
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increase our uncertainty about the phenomenon under study. But, we have

used exactly the same model form as under the first study design, and we end

up with exactly the same portion of that model reflecting the phenomenon of

interest. How can we then have greater uncertainty (a priori, in fact) about

that phenomenon? Is, in fact, the same model term β0 + β1xi modeling the

same phenomenon in these two situations?

Questions

1. Why might we want to randomly assign water types to observers, and

altitudes to days of observation?

2. Why might we not want to have each altitude observed on the same day?

3. Might might we not want to use this same simple linear regression model

if we provide each observer with several water types to be used at their

observation altitude on the same day?

4. Under what assumptions does the systematic model component β0+β1xi

represent the same scientific phenomenon under these two study designs?

Is this reasonable given that the first study design used deionized water?

Example 5.3 (cont.)

Now, consider a study design which is an extension of the type suggested

in question 2 above. That is, suppose we provide multiple water types to

observers on each day of observation. The water types might be randomly

chosen from a list of locations across the world. It might not be necessary to

actually visit these locations if the compositions of water at those locations
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were known (water can be completely deionized and then “reconstituted” to

contain various ionic compositions). This could easily lead to a larger study

if, for example, we choose K water types to be evaluated at our original n

altitudes, so that we may have the index i going from 1 to nK, or i going from

1 to nk for each value of k from 1 to K (to allow for possible differences in the

number of altitudes that water types are successfully observed). Consider now

fitting a model of the following form, for i = 1, . . . , nk and k = 1, . . . , K,

Yi,k = βk,0 + βk,1xi,k + σǫi,k,

ǫi,k ∼ iidN(0, 1)

(βk,0, βk,1) ∼ iidN (b, Σb) ,

for some b ≡ (b0, b1) and 2× 2 covariance matrix Σb with m, h entry σ(m,h) for

m, h ∈ {0, 1}.
For this model, it is clear that

E(Yi,k) = b0 + b1xi,k,

and

var(Yi,k) = σ(0,0) + σ(1,1)x
2
i,k + 2σ(0,1)xi,k + σ2.

Where now has our phenomenon of interest gone (i.e., where is it in this

model)? The effect of altitude on the boiling point of water is now captured

in the distribution of (βk,0, βk,1); we will later call such a distribution a mixing

distribution. Notice that a major change has suddenly occurred in our repre-

sentation of the effect of altitude on the boiling point of water. That effect is no

longer a constant term but is, rather, an entire (bivariate) distribution. Does

this imply we no longer believe that there is a “true” effect of altitude? No, it

means that we no longer believe the the effect of altitude is manifested in the
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same way under all conditions. But, would it not be possible to determine the

effect of these other factors (ionic composition of the water, atmospheric con-

ditions) and incorporate them into a model? In principle, certainly it would.

In principle, we could carry such an exercise to the extreme in which the only

uncertainty involved would be a (in this case presumably very small) measure-

ment error. That we have been able to make modeling the simple process of

boiling water as complex as we have should convince you that this determinis-

tic approach, while appealing in some cases, is not generally applicable to the

range of complex scientific problems under consideration in the world.

What now are the relations of the other model parameters σ2 and Σb to

this mathematical formulation of the phenomenon of interest? The variance

σ2 is back to its interpretation as in the first study design using only deionized

water (measurement error plus micro-scale effects). The elements of Σb are now

indicative of the variability in how the effect of altitude is realized or manifested

in various situations. The exact meaning attached to this concept depends

fundamentally on the manner in which the situations to be observed were

chosen. It would, clearly, be an entirely different matter to assign (βk,0, βk,1)

a probability distribution across purposefully chosen situations than across

situations chosen at random from some “pool” of those possible.

Returning from this example to the overall topic of this subsection, it should

be clear that what we are calling statistical abstraction is the process by which

a problem from the real world is brought into a conceptual world of random

variables, theoretical probability distributions, and hence is subject to the

methods of mathematical statistical analysis. A criticism that is sometimes

leveled at the modeling approach is that a model “doesn’t care where the data

come from”, or “how the data were obtained”. In one way this is true – given

the assumptions inherent in a model formulation, analysis will proceed in the
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same manner regardless of how the data used in its analysis were obtained.

What is missing from this criticism, however, is that no model can properly

operate beyond the context given it by the process of statistical abstraction

which (in a proper application) must have been given careful consideration. We

perhaps do not spend enough time discussing this aspect of statistical analysis

in the educational process, but it is my hope that, having been introduced to

the topic, you will see it woven into the material presented in the remainder

of this part of the course.

5.4 Summary of Key Points

It might be useful, at this point, to summarize many of the key ideas presented

in this section (the word model below implies a statistical model).

1. Modeling represents a fundamentally different approach to bringing prob-

ability concepts to bear on a problem than that of approaches based on

randomization.

2. Models represent a probabilistic conceptualization of a scientific mecha-

nism or phenomenon of interest, and the situation(s) under which that

mechanism or phenomenon leads to observable quantities.

3. The basic building blocks of a model are random variables. For applica-

tion in an empirical scientific investigation, models must include at some

point random variables associated with observable quantities.

4. The process of statistical abstraction, by which a mechanism or phe-

nomenon of interest is captured in a model formulation, involves the

objectives of study, the data collection design, and the choice of model.
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Finally, we will end this introduction to the modeling effort with a prelimi-

nary comment about the modeling process. While certainly connected with the

material of this chapter, theoretical probability distributions have not been the

focus of discussion. This is a direct reflection of point 3 immediately above.

Distributions are meaningless without random variables that (are assumed to)

follow them. In an application, the first step is not to select distributions, to

write down forms for systematic model components, or to begin considering

likelihoods. The first and, in many ways most important, step in developing

a statistical model is to define random variables appropriate for the problem

at hand. The fundamental properties of such random variables (i.e., set of

possible values, dependence or independence structure) will largely determine

at least a set of possible theoretical distributions that may be used to describe

their probabilistic behaviors.



Chapter 6

Families of Distributions Useful

in Modeling

We now begin consideration of the tools that are needed for successful statis-

tical modeling. These will include distributions, model structures, estimation

methods, inference methods, and model assessment methods. Certainly, to ad-

equately model the probabilistic behaviors of random variables, we must have

access to a variety of theoretical probability distributions. We will organize

the presentation of such distributions around the concept of families which, as

mentioned previously, often provide us a means of formulating classes of mod-

els that share important characteristics. It is important to note, however, that

we are involved in an introduction of useful distributions, not an exhaustive

effort at developing a catalog (see, e.g., the series of works edited by Johnson

and Kotz for such an effort).

Much of this section will be presented in the context of a single random

variable. When groups of random variables are necessary they will be indexed

by the subscript i. It is important to note, however, that models always deal

129
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with groups or collections of random variables. Notation that will be used

throughout this section is as follows:

• Upper case letters such as X, Y , Z, W will be used to denote random

variables. The corresponding lower case letters will denote values that

could be assumed by these variables.

• The symbol Ω will be used to denote the set of possible values of a random

variable, subscripted with the variable symbol if needed for clarity, such

as ΩY .

• Parameters will be denoted with Greek letters such as θ, φ, and λ. The

parameter space, defined as the set of possible values of a parameter,

will be denoted as the corresponding upper case Greek letters, except as

noted.

• All parameters may be either scalars or vectors, the difference should be

clear from the context. When a generic symbol for a parameter is needed

it will be denoted as θ.

• Conditioning notation, y|x, will be used in two contexts. One is in which

the conditioning value(s) represent fixed quantities such as parameters

or covariates not considered random. The other will be in the usual

conditioning notation for two or more random variables. It is important

that you understand the context being used in a conditional statement

(so ask if it is not clear).
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6.1 Exponential Families

You have been introduced to exponential families of distributions in previous

courses (e.g., Statistics 542). These families constitute an essential class of

distributions for modeling purposes. There are various, equivalent, ways to

write what is called the exponential family form. For a random variable Y and

corresponding probability density function (pdf) or probability mass function

(pmf) some of these representations are, all for y ∈ Ω:

f(y|η) = exp







s
∑

j=1

qj(η)Tj(y)







c(η)h(y),

f(y|θ) = a(θ) t(y) exp
{

θT t(y)
}

,

f(y|η) = exp







s
∑

j=1

qj(η)Tj(y) −B(η)







c(y)

f(y|θ) = exp







s
∑

j=1

θjTj(y) − B(θ) + c(y)







. (6.1)

Note that, while θ = (θ1, . . . , θs) (or η) may be a vector, B(·) is a real-valued

function. Clearly, the definition of functions such as B(·), c(·), a(·), and h(·)
are not exactly the same in these various expressions, but you should be able

to easily work out the equivalence.

Example 6.1

If Y is a random variable such that Y ∼ N(µ, σ2), the fourth version of

the exponential family given in (1) can be used to write the density of Y with,

T1(y) = y θ1 =
µ

σ2
,

T2(y) = y2 θ2 =
−1

2σ2
,
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and,

B(θ) =
µ2

2σ2
+

1

2
log{2πσ2}

=
−θ2

1

4θ2
+

1

2
log

{−π
θ2

}

We will use the fourth (last) expression in (6.1) as our basic form for expo-

nential family representation. Other common densities or mass functions that

can be written this way include

• The Poisson pmf with Ω ≡ {0, 1, . . .}

• The binomial pmf with Ω ≡ {0, 1, . . . , n}

• The negative binomial pmf with Ω ≡ {0, 1, . . .}

• The gamma pdf with Ω ≡ (0,∞)

• The beta pdf with Ω ≡ (0, 1)

• The log-normal pdf with Ω ≡ (0, ∞)

• The inverse Gaussian pdf with Ω ≡ (0, ∞)

6.1.1 Properties of Exponential Families

Recall we are using the fourth (last) form for the expression of the exponential

family given in (6.1). Note, first, that the term exp{c(y)} in this expression

could be absorbed into the relevant measure. This is typically not done so that

integrals can be written with respect to dominating Lebesgue (for continuous

Y ) or counting (for discrete Y ) measures.

Exponential families possess a number of useful properties for modeling,

some of which we review here in a brief manner.
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1. The parameter space Θ (the set of points such that f(y|θ) > 0 for θ ∈ Θ)

is a convex set. To avoid difficulties, we will consider only members of

the exponential family such that neither the Tj(y) nor the θj satisfy a

linear constraint (in which case the representation is said to be “minimal”

or sometimes “full”). If Θ contains an open s−dimensional rectangle,

then the exponential family is said to be of “full rank”, or “regular”.

These items affect us in model specification because we want exponential

families to be written so that they are minimal and regular. For example,

a multinomial with H categories will only be minimal if we write the pmf

for H − 1 random variables.

2. For a minimal, regular exponential family, the statistic T ≡ (T1, . . . , Ts)

is minimal sufficient for θ. This property is often useful because, as we

will see, the joint distribution of iid random variables belonging to an

exponential family are also of the exponential family form.

3. For an integrable function h(·), dominating measure ν, and any θ in the

interior of Θ, the integral

∫

h(y) exp







s
∑

j=1

θjTj(y) + c(y)







dν(y)

is continuous, has derivatives of all orders with respect to the θjs, and

these derivatives can be obtained by interchanging differentiation and

integration (e.g., Theorem 4.1 in Lehmann, 1983). This property does

several things for us. First, it can be used to derive additional properties

of exponential families (such as the next property given for the form of

the moment generating function). In addition, it allows us to evaluate

expressions needed for estimation and variance evaluation through nu-

merical integration of derivatives, which can be important to actually
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conduct an analysis with real data.

4. The property in item 3 can be used directly (e.g., Lehmann, 1983, p.29)

to show that

E{Tj(Y )} =
∂

∂θj
B(θ),

cov{Tj(Y ), Tk(Y )} =
∂2

∂θj∂θk
B(θ)

These lead directly to E(Y ) and var(Y ) for what are called natural

exponential families and exponential dispersion families (coming soon).

They also will provide an alternative parameterization of exponential

families in general (coming even sooner).

5. The moment generating function of an exponential family is defined to

be that for the moments of the Tjs, as,

MT (u) =
exp{B(θ + u)}

exp{B(θ)} .

6.1.2 Parameterizations

In the final expression of (6.1) the parameters denote θj ; j = 1, . . . , s are

called canonical or sometimes natural parameters for the exponential family.

While the canonical parameterization usually leads to the easiest derivation of

properties (such as given above) it is not always the best parameterization for

purposes of estimation, inference, or model interpretation. While parameter

transformations can be used in a quite flexible manner (they are simple sub-

stitutions in density and mass functions), it is helpful to know several other

parameterizations that are fairly standard, and are often useful. We will de-

scribe two parameterizations here that have both been called “mean value”

parameterizations, although they are not the same.
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Mean Value Parameterization 1

While we certainly wish to dispel the notion that location is the only distrib-

utional characteristic of concern in a model, it is true that the expected value

is usually of interest (and is often needed to quantify other characteristics in

a concise manner). It is nearly always the case that none of the canonical pa-

rameters θj in (6.1) correspond to the expected value of the random variable

Y . Thus, a mean value parameterization can be accomplished by a transfor-

mation (θ1, . . . , θs) → (µ, φ1, . . . , φs−1), where µ ≡ E(Y ) and φ1, . . . , φs−1 are

arbitrarily defined; we will still need s parameters because we are assuming

the canonical representation is minimal (see Section 6.1.1).

Example 6.2

Consider a beta random variable Y with pdf

f(y|α, β) =
Γ(α + β)

Γ(α) Γ(β)
yα−1(1 − y)β−1, (6.2)

where Ω = (0, 1) and α, β > 0. As we know for this density, E(Y ) = α/(α+β).

First, let’s write this density in canonical exponential family form as,

f(y|α, β) = exp [(α− 1) log(y) + (β − 1) log(1 − y)

+ log{Γ(α+ β)}− log{Γ(α)}− log{Γ(β)}] , (6.3)

or,

f(y|θ) = exp [θ1 log(y) + θ2 log(1 − y)

+ log{Γ(θ1 + 1)} − log{Γ(θ2 + 1)}

− log{Γ(θ1 + θ2 + 2)}] .

(6.4)
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The equality of (6.2) and (6.3) is immediate, and (6.4) is obtained from (6.3)

by taking

θ1 = α− 1 T1(y) = log(y)

θ2 = β − 1 T2(y) = log(1 − y)

and

B(θ) =

log{Γ(θ1 + 1)} − log{Γ(θ2 + 1)} − log{Γ(θ1 + θ2 + 2)}.

In terms of the canonical exponential representation, E(Y ) = (θ1+1)/(θ1+

θ2 + 2). We can then achieve a mean value parameterization by taking,

µ =
θ1 + 1

θ1 + θ2 + 2
; φ =

1

θ1 + θ2 + 2

We can then write the density in mean value parameterization by substituting

into (6.4) the quantities

θ1 =
µ− φ

φ
; θ2 =

1 − µ− φ

φ
.

Notice, in this example, that while we have not manipulated Y in any way, so

that Ω remains unchanged throughout, we have gone from α,> 0 and β > 0

in (6.2) and (6.3) to θ1 > −1 and θ2 > −1 in (6.4) to 0 < µ < 1 and φ > 0 in

the mean value parameterization.

Mean Value Parameterization 2

In the canonical parameterization for exponential families there is a clear asso-

ciation between parameters θj and sufficient statistics Tj. It is perhaps natural

then to attempt to parameterize families using the expected values of the Tj ,
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which are given by first derivatives of the function B(θ). Thus, we transform

(θ1, . . . , θs) → (µ1(θ), . . . , µs(θ)) where

µj(θ) = E{Tj(Y )} =
∂

∂θj
B(θ).

This parameterization has the potential advantage that each parameter of the

density is then the expected value of a random variable associated with an

observable quantity, namely Tj(Y ).

Example 6.3

From example 6.1 we have that, for a normal density, T1(Y ) = Y , T2(Y ) = Y 2,

and,

∂

∂θ1
B(θ) =

−θ1
2θ2

,

∂

∂θ2
B(θ) =

θ2
1 − 2θ2
4θ2

2

.

Given that θ1 = µ/σ2 and θ2 = −1/(2σ2), we then have that,

µ1(θ) =
∂

∂θ1
B(θ) = µ,

µ2(θ) =
∂

∂θ2
B(θ) = µ2 + σ2,

and these are easily seen to be the expected values of T1(Y ) = Y and T2(Y ) =

Y 2. Notice for this example that mean in mean value parameterization 1 and

the first parameter under mean value parameterization 2 are the same, namely

the expected value of Y . This is, rather obviously, because the first sufficient

statistic is Y . Families with this structure are among the more commonly used

modeling distributions (see Section 6.1.3 on exponential dispersion families).
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Mixed Parameterizations

It is also possible to write an exponential family in terms of a parameteriza-

tion that is part mean value and part canonical, for example, with parame-

ter (µ1(θ), θ2). I have not seen such parameterizations used much, but they

apparently (Lindsey, 1996, p. 29) have the intriguing property of variation

independent parameters (see below).

Comments on Parameterizations

As should be clear from Example 6.2, parameterizations other than the canon-

ical one are generally not chosen to make the expression of the density shorter

or less complex. There are a number of other reasons one might choose one

parameterization over another, some at the modeling stage, some at the esti-

mation (and/or inferential) stage, and some at the interpretational stage.

1. Parameter transformations made for the purposes of interpretation are

frequently conducted after estimation has been completed. This is often

not too difficult, at least for estimation using maximum likelihood or

posterior simulation (as we will see later in the course). It is possible,

however, that with estimation by exact theory or least squares one might

need to conduct a transformation before estimation to allow inference to

be made on the transformed parameters.

2. Parameter transformations are not infrequently conducted to produce

increased stability in numerical estimation procedures. Parameter trans-

formations can affect the shape of a likelihood function, and what is

called parameter effects curvature in nonlinear models. Numerical opti-

mization algorithms, for example, tend to perform with greater stability

when applied to log likelihoods that are relatively quadratic near the
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maximum for a given set of data. For an extensive treatment of this

topic, see the book by Ross (1990).

3. Recall that, in model formulation, a primary goal is to connect the key

elements of a scientific problem with parameters of a probabilistic model.

It can occur that one parameterization makes this more clearly the case

than does an alternative. This assertion comes dangerously close to be-

ing something of a platitude, however. As any number of my colleagues

with extensive consulting experience will point out, most scientists do

not think in terms of statistical models. It can be difficult enough to

determine the basic objectives in model form, and seeking scientific ad-

vice on the appropriate parameterization is a step or two beyond that.

Nevertheless, this is an aspect of parameterization that should not be

dismissed out of hand.

4. A more easily comprehended goal of parameterization can be to provide

an indication of how covariate information can appropriately be incor-

porated into a model. Our natural inclination is for covariate values to

influence the marginal expectation of a random variable. Mean value

parameterizations can then aid in the manner that covariates are incor-

porated into a model structure. For example, suppose we have a beta

random variable as in Example 6.2, used to model the proportion of a

river sediment sample that consists of particles larger than what would

be considered “sand” (defined by particle size). A covariate of water flow

(call it x) is believed to influence this (i.e., the faster water moves the

more energy it has, the larger the size of the particles it can transport

downstream). It is not clear how such a covariate would be incorporated

into a distribution written with standard parameterization as expression



140 CHAPTER 6. FAMILIES OF DISTRIBUTIONS

(6.2) or with canonical parameterization as in expression (6.4). But,

using a mean value parameterization (version 1) we might take

µ =
exp(β0 + β1x)

1 + exp(β0 + β1x)
,

which would give the expected value of the random variable as a monoton-

ically increasing function of x that has the appropriate range in the in-

terval (0, 1).

5. In the investigation of different parameterizations it is essential that one

keep track of possible restrictions on the parameter space, both in terms

of allowable values and in terms of restrictions that may be imposed on

one parameter component (e.g., θ2) by the value of another (e.g., θ1).

Such restrictions (including possibly the lack of such restrictions) can

render a parameterization either more or less appropriate to describe a

given situation. From a purely statistical viewpoint, it seems pleasing

to have parameter elements that are variation independent. A generic

vector-valued parameter θ ≡ (θ1, θ2) has variation independent compo-

nents if the parameter space can be written as the Cartesian product

Θ = Θ1 ×Θ2, where Θ1 and Θ2 are sets of possible values for θ1 and θ2,

respectively. It is, at first blush, easy to attribute the usefulness of the

normal distribution to the fact that it can be so easily parameterized in

this manner (either the standard (µ, σ2) or mixed mean value and canon-

ical (µ, θ2) = (µ,−1/(2σ2)) parameterizations meet this criterion). But

other distributions share this property without the same broad applica-

bility (a gamma with canonical parameters, for example). One is led to

the conclusion that the wide applicability of a normal distribution stems

not only from the ease with which it is expressed in terms of variation

independent parameter elements, but also the fact that those elements
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quantify discrete characteristics of the distribution (location by µ and

spread by σ2). This does not hold for many other distributions that can

be given variation independent parameters. Nevertheless, the notion is

worth taking note of.

6.1.3 Exponential Dispersion Families

The name of this particular subsection is somewhat larger than its true con-

tent. We will not discuss exponential dispersion families in their full generality,

but rather a certain subclass of families that are essentially one parameter fam-

ilies extended to include an additional dispersion parameter. This particular

subclass of exponential dispersion families is, however, arguably the most com-

mon form of exponential family distributions that appear in applications at

the current time.

An important role is played in both the theory and application of expo-

nential family distributions by one-parameter families for which the sufficient

statistic is T (y) = y. These are often called “natural exponential families”

following the extensive investigation of their behavior by Morris (1982, 1983).

If a family of distributions has only one canonical parameter, it is clear that

both the expectation and variance of those distributions must be functions of

the sole parameter.

Example 6.4

Consider the exponential form of a binomial random variable Y for a fixed

number of associated binary trials n. The pmf of such a random variable is,

f(y|θ) = exp [y{log(p) − log(1 − p)} + n{log(1 − p)}

+ log{n!} − log{y!} − log{(n− y)!}]

= exp{yθ − b(θ) + c(y)},
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where θ = log{p/(1 − p)} and b(θ) = n log{1 + exp(θ)}. Here, using the facts

that T (y) = y and b(·) is a simple function, property 4 of canonical exponential

families (given in Section 6.1.1) implies that

E(Y ) = n

(

exp(θ)

1 + exp(θ)

)

= np

var(Y ) = n

(

{1 + exp(θ)} exp(θ) − exp(2θ)

{1 + exp(θ)}2

)

= np(1 − p).

Thus, both mean and variance are simple functions of the canonical para-

meter θ. Also notice that the variance can be written as var(Y ) = np−np2 =

µ − µ2/n, where µ = np. This is the type of “quadratic variance function”

referred to in the papers by Morris.

Example 6.5

Consider again a random variable Y ∼ N(µ, σ2
∗) except for which σ2

∗ is now

considered a fixed, known value. In this case we can write,

f(y|µ) = exp

[

−1

2σ2
∗
(y − µ)2 − 1

2
log(2πσ2

∗)

]

= exp

[

1

σ2
∗

(

yµ− 1

2
µ2
)

− 1

2

{

y2

σ2
∗
− log(2πσ2

∗)

}]

,

which can be written as

f(y|θ) = exp [φ{yθ − b(θ)} + c(y, φ)] ,

for θ = µ, b(θ) = (1/2)θ2, φ = 1/σ2
∗, and c(y, φ) contains the remaining terms

which involve only y and φ.
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This latest expression, namely,

f(y|θ) = exp [φ{yθ − b(θ)} + c(y, φ)] (6.5)

is the restricted version of an exponential dispersion family we will consider.

For a distribution with pdf or pmf of the form (6.5) the same techniques as

presented in Section 6.1.1 for general s−parameter exponential families may

be used to demonstrate that,

E(Y ) =
d

dθ
b(θ) = b′(θ),

var(Y ) =
1

φ

d2

dθ2
b(θ) =

1

φ
b′′(θ) =

1

φ
V (µ).

(6.6)

The rightmost portion of the expression for var(Y ) in (6.6) follows from the

fact that µ = b′(θ) so that b′′(θ) is a function of µ. The function V (·) in (6.6)

is often called the “variance function” (which is not the variance except for a

few cases in which φ ≡ 1) and is actually quite important since it quantifies

the relation between the mean and variance of the distribution.

Comments

1. What has essentially happened in (6.5) is that we have “coerced” a two

parameter exponential family to look “almost” like a natural exponential

family (see Example 6.4) but with the addition of an extra parameter

φ. The resultant form is the same as what we would get from a normal

with known variance (see Example 6.5), except that we typically do not

assume φ is known. It is sometimes relegated to the role of “nuisance

parameter” which is a scale factor for the variance (see expression (6.6))

but it can also be of considerable interest; φ is often called a “dispersion

parameter”.
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2. Clearly, it will not be possible to write an exponential family in the form

of expression (6.5) unless one of the sufficient statistics is given by the

identity function (i.e., Tj(y) = y for some j). While this is not, in itself,

sufficient for representation of a pdf or pmf as in (6.5), distributions for

which one of the sufficient statistics is y and which can subsequently be

written in this form include the binomial, Poisson, normal, gamma, and

inverse Gaussian. But it is not possible, for example, with a beta pdf.

3. Exponential dispersion families of the form (6.5) are the exponential fam-

ilies upon which generalized linear models are based (e.g., McCullagh and

Nelder, 1989) but, as already noted in the introduction to this part of the

course notes, the impetus provided by generalized linear models to con-

sider random model components in a more serious light than mere “error

distributions” has much wider applicability than just these families.

4. The machinations required to render some distributions amenable to ex-

pression as in (6.5) provide an opportunity to reiterate the importance

of Comment 5 of Section 6.1.2 about the possible effects of parameter

transformations. A prime example is that of a gamma distribution. The

standard approach for writing a gamma pdf as in (6.5) takes two para-

meters that are variation independent and maps them into parameters

θ and φ. Now, these parameters are are also variation independent,

but one should not be misled into believing that the parameter trans-

formation involved has resulted in parameters that have separate effects

on moments of the distribution. Even in exponential dispersion family

form, both θ and φ effect all moments of a gamma distribution. This

can, in fact, restrict the types of situations that can be represented by

a model that represents a number of distributions as a gamma written
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in the form (6.5) but assumes the dispersion parameter φ has the same

value for each distribution.

6.1.4 Exponential Families for Samples

Thus far, we have dealt only with exponential family distributions for a single

random variable Y . While there are a number of results that make exponential

families a potentially useful vehicle for the construction of multivariate distri-

butions in general (see e.g., Arnold and Strauss, 1991; Kaiser and Cressie,

2000) here we will consider the situation only for sets of independent random

variables.

One additional property of exponential families will be useful in this sub-

section. We could have covered it in Section 6.1.1, but it really doesn’t come

into play until now. For Y distributed according to an exponential family as

in (6.1) with θ = (θ1, . . . , θs), the sufficient statistic (T1, . . . , Ts) is distributed

according to an exponential family with density or mass function

f(t|θ) = exp





s
∑

j=1

θjtj −B(θ) + k(t)



 . (6.7)

Note that the dominating measure of the distributions of Y and T may differ,

and k(t) may or may not be easily derived from the original c(y).

Consider now the case of n independent and identically distributed random

variables Y1, . . . , Yn, with each variable having a pdf or pmf of the form

f(y|θ) = exp







s
∑

j=1

θjTj(y) − B(θ) + c(y)







.

Under the iid assumption, the joint distribution of Y ≡ (Y1, . . . , Yn)
T is,

f(y|θ) = exp







s
∑

j=1

θj
n
∑

i=1

Tj(yi) − nB(θ) +
n
∑

i=1

c(yi)







. (6.8)
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Notice that expression (6.8) is still in the form of an exponential family, with

sufficient statistics given by the sums of the Tj(·). In particular, let Y1, . . . , Yn

be distributed according to a one-parameter exponential family. Then the

joint distribution is again a one-parameter exponential family with the same

canonical parameter and sufficient statistic given as the sum
∑n
i=1 T (Yi).

Example 6.6

Suppose that Y1, . . . , Yn are distributed iid following a Poisson distribution

with E(Yi) = λ, that is,

f(yi|λ) =
1

yi!
λyi exp(−λ); yi = 0, 1, . . . , ; λ > 0,

which is a one-parameter family, and can be written for θ ≡ log(λ) as,

f(yi|θ) = exp [yi θ − b(θ) + c(yi)] ,

where b(θ) = exp(θ) and c(yi) = − log(yi!). Then the joint distribution of

Y1, . . . , Yn is,

f(y1, . . . , yn|θ) = exp

[

θ
n
∑

i=1

yi − nb(θ) +
n
∑

i=1

c(yi)

]

,

Notice here that, using the property of exponential families listed as property

4 in Section 6.1.1, which is the same here as that of expression (6.6), we

immediately have that,

E

{

n
∑

i=1

Yi

}

= n b′(θ) =
d

dθ
n exp(θ) = n exp(θ),

so that E(Ȳ ) = exp(θ) = λ which we already know. What may not be so

obvious is that the distribution of W ≡ ∑n
i=1 Yi is also now available as ,

f(w|θ) = exp [wθ − b∗(θ) + c∗(w)] ,
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which is in the basic form of a one-parameter exponential family with canonical

parameter θ, and we know that b∗(·) = nb(·). We do not know c∗(·) directly

from knowledge of c(·), but in this case property 5 of exponential families from

Section 6.1.1 indicates that

MW (u) =
exp{nb(θ + u)}

exp{nb(θ)}

=
exp{n exp(θ + u)}

exp{n exp(θ)}

=
exp{exp(log(n) + θ + u)}

exp{exp(log(n) + θ)} ,

which is the form of a Poisson moment generating function for canonical pa-

rameter log(n) + θ. Thus, the distribution of W is also Poisson.

6.2 Location-Scale Families

A larger topic of which this subsection is only a portion is that of group (e.g.,

Lehmann, 1983) or transformation (e.g., Lindsey, 1996) families of distribu-

tions. While families of distributions formed from classes of transformations

holds potential for greater use in applications than has been the case to date,

we will restrict attention here to what is certainly the most important case,

that of location-scale transformations.

Let U be a continuous random variable with a fixed distribution F (typi-

cally we will assume U has pdf or pmf f). If U is transformed into Y as

Y = U + µ,

then Y has distribution F (y − µ) since Pr(Y ≤ y) = Pr(U ≤ y − µ). The set

of distributions generated for a fixed F , as µ varies from −∞ to ∞, is called
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a location family of distributions generated by F . If the resultant distribution

is of the same form as F only with modified parameter values, then F forms a

location family. A similar definition of a distribution F forming a scale family

is if F is unchanged other than parameter values under transformations

Y = σ U ; σ > 0,

in which case the distribution of Y is F (y/σ) since Pr(Y ≤ y) = Pr(U ≤ y/σ).

The composition of location and scale transformations results in,

Y = µ+ σ U ; −∞ < µ <∞; σ > 0,

and Y has distribution F ((y − µ)/σ). If F has a density f , then the density

of Y is given by

g(y|µ, σ) =
1

σ
f
(

y − µ

σ

)

.

Location-scale families include the double exponential, uniform, and logistic,

but by far the most frequently employed member of this class of distributions

is the normal. As we will soon see, location-scale families are well suited for

modeling true error processes.

6.2.1 Properties of Location-Scale Families

Location-scale families have beautifully simple properties that stem directly

from the transformations. For example, if Y is produced as a location trans-

formation of U then

E(Y ) = E(U + µ) = E(U) + µ.

While the notion of a “parent” distribution is somewhat misleading for such

families (since we must be able to arrive at any member from any other member
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through the same family of transformations, see Lehmann, 1983, p.25) we

often begin in the development of models with a random variable U for which

E(U) = 0 so that E(Y ) = µ. Similarly, for a scale transformation, the variance

of Y is,

var(Y ) = var(σ U) = σ2var(U),

and we often begin with a random variable U such that var(U) = 1.

Although we have not emphasized it, we are assuming here that the loca-

tion and scale transformations to be made are closed under composition and

inversion. This is, in fact, important in the definition of a group family (e.g.,

Lehmann, 1996, Chapter 1.3). Caution is needed, for example, in situations

for which location transformations are defined only for positive shifts, since

then the class of transformations Y = U + µ; µ > 0 is not closed under

inversion. It is clear that location-scale transformations “work” if the location

transformation is defined for any −∞ < µ <∞ and σ > 0.

6.2.2 The Prominence and Limitations of the Normal

Distribution

Without question, the most commonly used distribution in statistical modeling

is the normal. Why is this? Is it due, as is sometimes asserted, to some

mystical “ubiquitous occurrence” of the normal distribution in nature? Is

it due, as is sometimes asserted, to the “mathematical tractability” of its

properties? Is it due, as is sometimes asserted, to the fact that so many

distributions seem to result in weak convergence to a normal law? The answer

seems to be, at the same time, all and none of these explanations. While the
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normal is frequently useful in describing the relative frequencies of observable

quantities, the first notion has been soundly discredited. While the second

point is certainly true, this does not really explain why the normal is so useful

for modeling purposes (unless we can give greater detail to which properties we

refer to). Mathematical properties are important (a model is no good unless

you can do something with it) but a useful model must be an adequate vehicle

for statistical abstraction, as discussed in Chapter 5.3. There must be more

to this than merely mathematical nicety. The third notion goes a long way

toward explaining the prominence of the normal distribution in the production

of inferential quantities, but not its use in modeling.

What properties does a normal distribution possess that renders it attrac-

tive for modeling? The following seem pertinent:

1. A normal density may be easily expressed in terms of variation inde-

pendent parameters. This is certainly an important property but, as

also noted previously, does not distinguish the normal from many other

distributions.

2. In a N(µ, σ2) parameterization, the individual parameter values quantify

basic characteristics of a distribution, namely location and spread. But

this is also true of other distributions and, in particular, many location-

scale families such as the logistic distributions (although the scale pa-

rameter here is proportional to the variance rather than equal to the

variance).

3. In samples, the normal allows a reduction through sufficiency. That is,

the dimension of the minimal sufficient statistic is less than that of the

number of random variables. This is generally true of exponential fam-

ilies but not location-scale families (e.g., the minimal sufficient statistic
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for a set of iid logistic random variables is the set of order statistics,

see Lehmann, 1983, p.43). This is something that comes close to being

unique for the normal among location-scale families. In fact, the only

two location families that are also exponential families are the normal

(with fixed variance) and the distribution of any real constant times the

log of a gamma random variable (e.g., Dynkin, 1951; Ferguson, 1963).

In summary, what the normal distribution possesses in terms of statistical

properties that, to my knowledge make it unique, is a combination of all of the

above; variation independent parameterizations in which parameters indepen-

dently represent fundamental distributional characteristics, minimal sufficient

statistics of small dimension, and membership in exponential families, expo-

nential dispersion families, and location or location-scale families.

Despite its undeniable appeal and usefulness, the normal distribution also

possesses some limitations, three general types of which may be given as:

1. Since the normal is a distribution for continuous random variables, the

most obvious limitation may occur in situations which involve discrete

random variables. Sometimes, this is a matter of little concern, since

all data are discrete regardless of the statistical conceptualization. Con-

sider, for example, a model for the number of stars in various portions of

the galaxy. Clearly, this situation should be conceptualized by discrete

random variables. On the other hand, the numbers are large, and when

one is dealing with a range of integer data in the thousands of values, the

discrete nature of the actual situation may become relatively unimpor-

tant. On the other hand, consider the number of deaths due to SARS.

Here, the situation is also one of counts, but the discrete nature of the

problem may be more important to accurately reflect in a model. The
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issue concerns the ratio of the interval between observable values to the

total range of data likely to be observed; in the star example this ratio

might be 10−5, while in the SARS example it is more likely to be 10−1

or less. It should also be noted that this is not a “potential limitation”

unique to the normal distribution, but is shared by any distribution for

continuous random variables.

2. Since the normal is characterized by its first two moments (expectation

and variance), its usefulness in situations for which the general shape of

a distribution is important is limited. That is, all normal distributions

are unimodal and symmetric. Consider the implications, for example,

of conducting a two sample t−test under the assumption of normally

distributed groups of random variables. The model that corresponds to

this situation may be written as, for k = 1, 2,

Yk,i = µk + σ ǫk,i; ǫk,i ∼ iidN(0, 1).

What are the implications of this model? First, all of the random vari-

ables involved have unimodal and symmetric distributions with tails that

die off at the same rate. Secondly, all of the random variables involved

have distributions with the same spread or variability. Thus, this simple

model has restricted the two groups of random variables to have identical

distributions with the possible exception of location (one may wish, at

this point, to revisit comment 2 of Chapter 4.4 in Part I of these notes).

3. Since the set of possible values of a normal random variable is the entire

real line, a model that relies on normal distributions may place positive

probability on sets that are physically impossible for some problems.

Some of the ramifications of applying a model based on normal distrib-
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utions in such a situation are illustrated in the following example.

Example 6.7

While the data used in this example are simulated, the setting is hypotheti-

cally real; that is, the problem is real. There are certain types of algae that

produce toxins. Ingestion of these toxins can lead to adverse health effects,

including death in rare instances (and yes, there have been deaths in the US

attributed to this cause, as well as elsewhere in the world). In North America,

the most predominant such toxin-producing algae is a genus called Microcystin.

It is of interest to limnologists (scientists who study water quality and water

chemistry), as well as public health officials, to determine factors that may be

related to the concentration of these algae in lakes and reservoirs. A study

was conducted in which the concentration of Microcystin spp. and various wa-

ter chemistry variables were measured. Exploratory analyses suggested that a

model of Microcystin concentration versus the nitrogen concentration of water-

bodies might be useful in describing the situation in the Midwestern US, and

could potentially lead to prediction of possible problem waters. Little is known

about the manner in which various water chemistry variables may be related to

Microcystin abundance (i.e., concentration) in lakes and reservoirs. Consider

the (hypothetical) data presented in Figure 6.1, a scatterplot of Microcystin

concentration versus nitrogen concentration in a collection of lakes and reser-

voirs in the Midwestern United States. In the absence of scientific knowledge

about the way that nitrogen concentration should be related to Microcystin

abundance, a linear regression model would seem to be a logical choice to de-

scribe these data. Let Yi; i = 1, . . . , n be random variables associated with

the concentration of Microcystin in waterbody i. Let xi; i = 1, . . . , n denote
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Figure 6.1: Scatterplot of simulated data for concentration of Microcystin

versus concentration of nitrogen in lakes and reservoirs.
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the corresponding nitrogen concentrations in those same waterbodies. Now

we know that Microcystin concentration cannot assume negative values, and

it is true that some nitrogen values in Figure 6.1 are quite small, so that a

normal linear regression model would specify some conditional distributions

(conditional on xi) that likely would place positive probability on the negative

portion of the real line (likely given the spread of data exhibited in Figure 6.1).

But, under the assumption that a normal distribution provides a reasonable

approximation even in these cases, and knowing also that the tails of normal

distributions “die out” fairly quickly, we might proceed to fit a normal linear

model of the form,

Yi = β0 + β1 xi + σ ǫi, (6.9)

where ǫi ∼ iidN(0, 1) for i = 1, . . . , n. Although we have not discussed es-

timation and inference yet, you know from Statistics 500 and Statistics 511

that ordinary least squares estimators for this model are minimum variance

among linear unbiased estimators (i.e., are BLUE), and have normal sampling

distributions which may be used for inference. The ols estimates of model

(6.9), estimate of σ2 by the usual bias-corrected moment estimator, associated

standard errors and 95% intervals based on the data of Figure 6.1 are:

Parameter Estimate Std. Error 95% Interval

β0 1.381 0.2999 (0.785, 1.977)

β1 2.564 0.4907 (1.589, 3.539)

σ2 1.658

So far, so good, but let’s examine residuals to determine whether the assump-

tions of normal error terms having constant variance appears to have caused

any problems. Figure 6.2 presents a plot of studentized residuals against fitted
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values. Here, fitted values are given by:

Ŷ = β̂0 + β̂1 xi,

raw residuals are defined as ri = Yi − Ŷ , and these values are studentized as,

for i = 1, . . . , n,

bi =
ri

{σ̂2 (1 − hii)}1/2
,

where hii denotes the ith diagonal element of the “hat matrix”,

H = X (XT X)−1XT ,

where X is the n×2 matrix with ith row (1, xi). The hat matrix is also some-

times called the “projection matrix”, and notice that Ŷ = H Y . The diagonal

elements of this matrix are also called the “leverages” of the observations, and

for this simple linear regression model may be computed as,

hii =
1

n
+

(xi − x̄)
∑n
i=1(xi − x̄)2

,

where x̄ is the sample mean of the {xi : i = 1, . . . , n}. The standardization

(studentization) of residuals adjusts for the fact that the raw residuals do not

have constant variance, even if model (6.9) holds. These residuals are often

plotted against covariates and/or fitted values as diagnostics for departures

from model assumptions. In simple linear regression, plots of studentized

residuals against the xis and the Ŷis are equivalent (since the Ŷ s are linear

transformations of the xis). The residual plot of Figure 6.2 does not indicate

any drastic problems with the model. One might be tempted to “read too

much” into this plot, an urge that should be resisted; in the vast majority of

applications, this residual plot would be welcomed as indicating no problems.

What about the assumption of normal distribution for the error terms?

Figure 6.3 presents a histogram of the studentized residuals.
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Figure 6.2: Studentized residuals from ols fit to the data of Figure 6.1.
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Figure 6.3: Histogram of studentized residuals from ols fit to the data of Figure

6.1.
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While other graphical displays often present more information than his-

tograms (e.g., normal probability plots) here the visual impression of the his-

togram matches what can also be seen in the scatterplot of Figure 6.1. The left

tail of the histogram is rather “bunched up” relative to the right tail and the

residual quantities appear almost “truncated” on the left. A re-examination

of the scatterplot of Figure 6.1 indicates the absence of negative response val-

ues for small covariate values, a sort of “missing piece” of what should be

described by the model (6.9); of course in this example we know such values

are physically impossible.

Is this, however, indicative of a problem for model (6.9) in describing the

data of Figure 6.1? The histogram of residuals in Figure 6.3 is, after all,

unimodal and relatively symmetric, and has roughly the correct range of values

for standardized normal quantities; we must always keep in mind that any

such plot will exhibit effects of sampling variability (recall the ease with which

the data in Example 4.1 of Part I were simulated from a normal model, see

comment 4 of Chapter 4.5). A Kolmogorov goodness of fit test for normality

conducted with the studentized residuals results in a p−value of 0.924, hardly

indicative of any problem with an assumption of normality. All in all, our

linear normal regression model (6.9) appears to have done a quite adequate

job in describing the relation between Microcystin concentration and nitrogen

concentration in the data at hand.

Our real concern with model (6.9) in this situation is (or should be) not

totally centered on whether it provides an adequate description of the observed

data. The degree to which a model provides an adequate “fit” to a set of

data is only one indicator of the adequacy of the model in conceptualizing the

underlying problem; it is important (necessary) but is not sufficient for a model

to adequate. Statistical abstraction, as discussed in Chapter 5.3, involves more



160 CHAPTER 6. FAMILIES OF DISTRIBUTIONS

than “fitting data”. Our concern with model (6.9) for this example is the use of

normal distributions, having infinite support, to conceptualize a process that is

strictly non-negative. This is an inadequacy of the normal model. The question

is whether that inadequacy is important in the current problem, or whether

it can be reasonably ignored. Consider estimation of the probabilities with

which the response is negative, Pr(Yi < 0|xi, β0, β1). For model (6.9) these

probabilities can be estimated from the predictive distribution with mean Ŷi

and estimated variance

σ̂2

{

1 +
1

n
+

(xi − x̄)2

∑

(xi − x̄)2

}

.

A plot of these estimated probabilities against the values of the xis (nitrogen

concentration) is presented in Figure 6.4. For the data observed, points at

which these probabilities become just less than the 10%, 5%, and 1% levels

are xi = 0.12, xi = 0.30 and xi = 0.64, respectively. The range of covariate

values is 0 to 1 in these data. Thus, we must move to greater than roughly a

third of the entire range of covariate values before the estimated probability

of a negative response becomes smaller than 5%. This is not a pleasing aspect

of the model.

One might argue that, despite this difficulty with a normal model, this

should not affect the prediction of exceeding a given response value. That is,

estimating probabilities of small Microcystin values is not as much of a concern

as estimating large values. To assess this requires knowledge of the “truth”

which is possible here since the data were simulated. In fact, the model used

to simulate the data of Figure 6.1 was,

Yi = {0.25 + 3.75 xi + σ ǫi} I{σǫi > −(0.25 + 3.75xi)}, (6.10)

where ǫi ∼ iidN(0, 1) for i = 1, . . . , n. The relation between nitrogen con-

centration (xi) and Microcystin concentration (Yi) is embodied by the linear



6.2. LOCATION-SCALE FAMILIES 161

Nitrogen (mg/L)

E
st

im
at

ed
 P

r(
Y

<
0)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Figure 6.4: Estimated probabilities that Microcystin concentration is less than

zero, calculated from a normal linear model and plotted against nitrogen con-

centration.
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equation 0.25+3.75xi, although this is no longer the expected value of Yi. It is

possible with this model, however, to compute the probabilities that the Yi ex-

ceed a given value such as 3.0, for example. Suppose that Yi > 3.0 is indicative

of conditions in which Microcystin pose a potential health hazard. Estimating

these probabilities under model (6.9) and under the true model (6.10) shows

that the probabilities are uniformly over-estimated under model (6.9) (i.e.,

positive bias). Figure 6.5 describes the magnitudes of over-estimation as a

function of nitrogen concentrations.

Consider a hypothetical situation in which some action would be taken

(e.g., public access to a waterbody restricted) if the probability of Microcystin

exceeding a value of 3.0 were estimated to be greater than 0.5. Measuring

nitrogen concentration in a lake or reservoir is relatively easy and inexpensive

compared to sampling for and measurement of Microcystin, so this decision

will be based on observed values of nitrogen and the associated probabilities

that Microcystin exceeds 3.0. These probabilities would be greater than 0.50

(the decision rule) under a fit of model (6.9) at xi = 0.64, while the actual

value should be xi = 0.74 (a difference of 10% of the total range in the xis).

Interestingly, the estimation errors shown in Figure 6.5 are greater for larger

values of xi than for smaller ones. This illustrates that model inadequacies in

one portion of the data (here for small xi values) can have effects that are not

restricted to these portions of the “data space”. It would clearly be a mistake

to assume that, because the model inadequacy should occur primarily at small

values of the covariate, it is only if we have interest in some aspect of the

problem connected with small covariate values that we need to worry about

the model inadequacy.
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Figure 6.5: Overestimation of probabilities that Microcystin concentration is

greater than 3 from normal linear regression model fit to the data of Figure

6.1.
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Chapter 7

Basic Methods of Model

Specification

In this chapter we will discuss a number of fundamental ways that models can

be specified. Although various of these methods of model formulation do result

in particular “types” or “classes” of models (e.g., generalized linear models)

we will attempt to maintain a focus on modeling concepts and methods rather

than models of certain “brand names”. This is, in part, to help prevent our

thinking from becoming too modular and, in part, because certain estimation

and inference methods have become closely associated with various classes of

models. We want to avoid the idea that various models are “always” estimated

with a certain method or that a certain type of estimation is “correct” for a

given model type.

165
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7.1 Modeling and the Objectives of Analysis

Before launching into the subject of methods by which models are formulated,

we want to briefly consider the role that the objectives of an analysis may play

in modeling considerations. Although not meant to be exhaustive, the follow-

ing list covers many of the objectives, and the broad implications that these

might have for model formulation, that are frequently addressed by modeling

efforts:

1. Data Description.

I almost left this one off because it is so incomplete, but many statis-

ticians would accuse me of heretical behavior if it was not included. It

is almost a no-brainer, the idea that we may use a model to describe

patterns in observed data. But this is incomplete in that if this is all

that is desired we are probably better served by using purely descriptive

approaches such as nonparametric smoothers or exploratory approaches

rather than parametric models, through which we try to achieve statis-

tical abstraction.

2. Problem Conceptualization.

This is what I would replace data description with. It has been discussed

at some length in Chapter 5.3 under the title of Statistical Abstraction.

One point that has not been made previously is that it is often useful to

focus on the very basic or very fundamental tenets of a scientific discipline

when formulating a model for the purpose of problem conceptualization.

3. Examination of Scientific Theory.

It is sometimes the case that a body of scientific knowledge has produced

a particular theory. Some such theories may be in the form of a “law”,
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such as Newton’s law of cooling which states that for the temperature of

a material T , ambient (surrounding) temperature T0, and time t,

T = f(t, β) such that
df

dt
= −β(f − T0).

We may be faced with an empirical study designed to “test” such a

theory.

In other situations, scientific theory may lead to more complex repre-

sentations, such as sets of differential equations meant to describe at-

mospheric processes (these are, for example, commonly used in models

to predict climate or, on a finer scale, weather). Such theory often leads

to what are called process models in the geophysical sciences (the term

“model” here is typically a totally deterministic model, not a proba-

bilistic model). In complex situations, no one claims such models are

complete, but we may be faced with a situation in which the objective is

to construct a statistical model based on a process model and examine

its usefulness from a set of observed data. This is not always as straight-

forward as it may sound. A large class of problems in the geophysical

sciences are known as “inverse problems” in which a response of interest,

such as permeability of a geological formation, is to be estimated based

on observations of a few direct measurements of permeability (difficult

to obtain), a greater collection of connected quantities such as seismic

readings (essentially travel times of sound or radar waves between sen-

sors at fixed locations) and a body of scientific theory that relates the

two.

4. Estimation and Inference About a Specific Quantity.

It may be that, particularly if the process of problem conceptualization
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or statistical abstraction has been well addressed, interest may focus on

a particular parameter, function of parameters, or other functional of the

distributional model (e.g., cumulative probabilities). In these situations,

the focus of model specification is clear – primary interest centers on

the quantity of interest, and other model aspects that may affect the

precision with which it can be estimated.

5. Prediction or Forecasting.

We often utter the words prediction and forecasting in the same breath

(or the same sentence or the same item title as above). In this course we

will distinguish between the two as they have seriously different ramifica-

tions for both model formulation and analysis. We will refer to “predic-

tion” as the prediction of an unobserved random variable or functional of

a distribution that is given (conceptualized) existence within the spatial

and/or temporal extent of a set of data. The prediction of the level of

an air pollutant at a spatial location in the interior of a region in which

observations are made at a given time would be an example. The pre-

diction of the number of occupants of a rental property within a 3 mile

radius of the Iowa State Campus center in 2003, based on a (possibly)

random sample of such properties, would be another. If prediction is the

primary objective, we may choose to model data patterns that have no

ready explanation (e.g., trend over time) with mathematical structures

that have no ready interpretation (e.g., polynomial regression). Fore-

casting, on the other hand, we will take to mean the prediction of ran-

dom quantities that are given (conceptual) existence outside the spatial

and/or temporal extent of the available data. This is a fundamentally

different task, as the description of patterns in data that have no ready
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explanation form dangerous structures on which to base a forecast.

We end this brief discussion of objectives with an indication that the cate-

gories given above, while probably not exhaustive, are certainly not mutually

exclusive. A paper by Raftery, Givens, and Zeh (1995) for example, concerns

a modeling problem in which a major element was the (statistical) conceptu-

alization of a problem in a manner that necessarily incorporated deterministic

models from scientific theory, with the ultimate goals being estimation and

forecast of a particular meaningful quantity.

7.2 Additive Error Models

A basic concept in statistical modeling, and one with which you are familiar

from previous courses, is the use of additive error models. The basic concept is

epitomized by the following quote from a book on (both linear and nonlinear)

regression analysis by Carroll and Ruppert (1988):

When modeling data it is often assumed that, in the absence of

randomness or error, one can predict a response y from a predictor

x through the deterministic relationship

y = f(x, β)

where β is a regression parameter. The [above] equation is often

a theoretical (biological or physical) model, but it may also be an

empirical model that seems to work well in practice, e.g., a linear

regression model. In either case, once we have determined β then

the system will be completely specified.
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These authors proceed to discuss reasons why the deterministic relation be-

tween y and x may not hold in practice, including measurement error (poten-

tially in both y and x), slight model misspecification, and omission of important

covariates.

The model form that results is that of an additive error model, in our

notation, for i = 1, . . . , n,

Yi = g(xi, β) + ǫi, (7.1)

where g is a specified function, ǫi ∼ iid F with F an absolutely continuous

distribution function with density f and, typically, E(ǫi) = 0.

The model (7.1) is a direct mathematical expression of the concept that

observable quantities arise from scientific mechanisms or phenomena that can

be represented as “signal plus noise”. The typical assumption that “noise”

has expectation 0 renders “signal” the expected value of responses, that is,

E(Yi) = g(xi, β).

The modeling task with an additive error specifications largely centers on

two issues:

1. Appropriate specification of the function g.

2. Modeling of the variance of the additive errors ǫi; i = 1, . . . , n.

The first of these, specification of the expectation function g can be approached

either through scientific knowledge (re-read the brief description of the objec-

tive of examining scientific theory of Chapter 7.1) or through what is essentially

an arbitrary selection of some function that “looks right” based on examination

of the data.

Notice that the general form (7.1) encompasses situations involving the

comparisons of groups. For example, we may define xi to be an indicator of
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group membership as xi ≡ j if Yi ∈ group j, and

g(xi, β) = βj if xi = j ,

which could then constitute a one-way ANOVA model, depending on how the

distribution of the ǫi are specified. Also, model (7.1) includes group regression

equations if, for example, we define xi ≡ (j, zi), where j is an indicator of

group membership as before, zi is a continuous covariate associated with the

random variable Yi, and, for example,

g(xi, β) = g(j, zi, β) = βj0 exp{−βj1zi}.

Comment

Notice that we have, to a large extent, avoided using multiple subscripting

(e.g., Yi,j for response variable i in group j) and have also written expressions

for individual (univariate) random variables. This is a convention we will try to

adhere to throughout the semester. Multivariate random variables are simply

collections of univariate variables, and vector and matrix notation are simply

convenient ways of reducing notation (primarily in the case of linear models).

There is no notion, for example, of a vector expectation operator; the expecta-

tion of a vector is merely the vector of expectations for the individual random

variables included. Expectation and other properties of random variables are

only defined for scalar quantities. Everything else is just notation.

The digression of the preceding comment aside, the fundamental concept

involved in the specification of additive error models is that of signal plus noise,

with noise consisting of sources of error that combine in a simple manner with

a correctly specified signal given as an expectation function. Additive error

models are clearly well suited for use with location-scale families of distribu-

tions for modeling the error terms. That is, the expectation function g(xi, β)
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in (7.1) constitutes a location transformation of the error random variables

{ǫi : i = 1, . . . , n}. What remains in model formulation is to specify a model

for scale transformations (or the variances) of these error terms, as indicated

in the second item in the list of modeling tasks that follow expression (7.1).

It is this portion of the model formulation that renders additive error models

a viable option for many situations. It is nearly ubiquitous, however, that the

location-scale family chosen for specification of the error distribution is the

normal, the reasons for which are touched on in Section 6.2.2. We will briefly

consider here four situations for modeling the variance of the error terms in

(7.1); constant variance, variance models with known parameters, variance

models with unknown parameters, and what are called “transform both sides”

models.

7.2.1 Constant Variance Models

Models that specify a constant variance for the error terms {ǫi : i = 1, . . . , n}
perhaps form the “backbone” of statistical modeling as applied to much of

scientific investigation; it is worthy of note, however, that this “backbone” is

becoming more “cartilaginous” as computational power increases. The reason

for the historical (at least) prominence of constant variance models may be

the fact that “exact” or “small sample” theory can be developed for linear

models with additive normal errors that have constant variance, but for few

other situations.

Curiously, statisticians have had the tendency to hang on to this “gold stan-

dard” idealization despite the fact that it is of limited application. What do we

(we meaning statisticians) typically teach individuals learning basic regression

methods in situations for which a linear, constant variance model does not
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appear to be appropriate? Why, transformation of course. Transform (usu-

ally) the response variables so that they more nearly meet the assumptions

of a linear expectation function and normally (or at least symmetrically) dis-

tributed error terms with constant variance. No matter that the transformed

scale of measurement may be totally inappropriate for scientific inference, the

statistical gold standard has been achieved.

The above assessment is unnecessarily harsh. Constant variance models

and, in particular, linear constant variance models, are highly useful, both

in their own right and as “baseline” formulations that allow modification to

more complex structures. The intention of the negative comment relative to

linear constant variance models is to help us escape from the idea that this is

what statistical modeling is all about. Under what situations, then, does one

naturally turn to a constant variance model as the a priori choice for model

formulation? Fundamentally, in situations for which the assumption of a de-

terministic relation between a response quantity and a covariate is plausible

in the absence of measurement error. These situations are common in studies

for which the objective is essentially that of testing scientific theory (see the

first portion of item 3 of Chapter 7.1 ). Bates and Watts (1988) present any

number of examples of such situations.

Example 7.1

One of the examples presented in Bates and Watts involves enzyme kinet-

ics for a given enzyme treated with Puromycin (see Bates and Watts, 1988,

Figure 2.1 and Appendix A1.3). In this example, response random variables

were associated with the “velocity” of a chemical reaction (measured in counts

of a radioactive substance per squared minute), and a covariate of substrate
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Figure 7.1: Scatterplot of data on the “velocity” of an enzyme reaction on

substrate treated with Puromycin and untreated substrate.

concentration (what the substrate was is not identified by Bates and Watts).

These data, from an original source cited in Bates and Watts, are reproduced

in Figure 7.1. It can be seen that the variability of these data about a reason-

able expectation function should be small. It was hypothesized in this example

that the data could be described by a Michaelis-Menten equation, which re-

lates the theoretical velocity of an enzyme reaction to the associated substrate

concentration. For one group of random variables from this example (treated

or untreated) the Michaelis-Menten equation can be expressed as in model
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(7.1) with,

g(xi, β) =
β1xi
β2 + xi

,

where xi represents the substrate concentration for observation i.

Bates and Watts (1988, page 35) point out that it is possible to transform

the Michaelis-Menten equation to have a linear form by taking the reciprocals

of both sides of the equation.

1

g(xi, β)
=

β2 + xi
β1 xi

=
1

β1
+
β2

β1

1

xi
,

and this is in the form of a linear model y′ = β ′
0 + β ′

1 x
′
i say. What happens to

the data plot of Figure 7.1 if we use this transformation?

It is clear from Figure 7.2 that the transformation has indeed made the

relation between the (transformed) response and the (transformed) covariate

linear. It has also, however, produced a situation in which the variance of

an additive error term could not be reasonably assumed constant, and has

also produced a situation in which observations at the highest (transformed)

covariate value would have exceedingly great leverage on a fitted equation.

Bates and Watts demonstrate that fitting a linear, constant variance model and

back-transforming parameter estimates to reflect the values of the Michaelis-

Menten equation results in a poor fit to the data in the region of the asymptote

(which is of primary scientific interest in this problem).

This example has involved a specific model of scientific interest (the Michaelis-

Menten equation). Many other situations can be initially approached with a

constant variance model, the estimation and assessment of which provide in-

formation for model modifications.
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Figure 7.2: Scatterplot of transformed data for Puromycin example using recip-

rocal expression of both covariate and response variables.
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7.2.2 Linear and Nonlinear Models

Before moving on to additive error models that have nonconstant variance, we

pause to briefly indicate the meaning of linear and nonlinear models. Consider

an additive error model of the form (7.1) for which

E(Yi) = g(xi, β); i = 1, . . . , n, (7.2)

under only the assumption that the error terms have zero expectation.

We define a model of this type to be nonlinear if at least one of the deriva-

tives of g(·) with respect to elements of β depends on one or more elements of

that parameter; note that this is obviously not the case for a linear expectation

function. One point of clarification is in order. Some authors of applied linear

regression texts use the phrase “intrinsically linear” to refer to models that

we will consider intrinsically nonlinear, but “transformably linear”. For exam-

ple, Draper and Smith (1981) consider the following model to be intrinsically

linear.

Yi = g(xi, β) = exp(β0) exp(−β1xi),

because it may be transformed to

log(Yi) = β0 − β1 xi.

Since the derivatives of g(xi, β) with respect to either β0 or β1 depend on β,

we will consider this an intrinsically nonlinear model.

The topic of nonlinearity results in two notions of the way in which an

additive error model can be nonlinear, and these are called intrinsic curvature

and parameter effects curvature. While there are techniques for quantifying

the relative contributions of these types of nonlinearity for specific models, for

now we confine our efforts to gaining a more intuitive understanding of just

what these types of nonlinearity are.
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To have a basic understanding of intrinsic and parameter effects curvatures

we must first introduce the concept of an expectation surface, which is also fre-

quently called a solution locus (some authors use both terms interchangeably,

e.g., Seber and Wild, 1989). Consider a model of the form (7.1) in which the

covariates xi consist of a single numerical value. The quantities involved in

this model, other than the parameters β and σ, may be viewed as the vectors

Y ≡ (Y1, . . . , Yn)
T and x ≡ (x1, . . . , xn)

T . Think of Y and x not as vec-

tors of length n, but rather as individual points in n−dimensional real space.

Similarly, think of β ≡ (β1, . . . , βp)
T as a point in p−dimensional real space,

with p < n. The expectation function, which we will momentarily write as

g ≡ (g(x1,β), . . . , g(xn,β))T , defines a relation between the p−dimensional

space of β and the n−dimensional space of x and Y . Now, for a fixed x, g is

a p−dimensional surface in n−space, that is, a p−dimensional manifold (recall

p < n). This manifold is what is called the solution locus (or expectation

surface).

To avoid confusion here, note that we are not describing the straight line

in the 2−dimensional space of a scatterplot that is formed by β0 + β1xi as the

xi vary. Rather, for fixed x of any dimension (> 2) the solution locus of a

simple linear regression model is a 2−dimensional plane formed as β0 and β1

vary. For a multiple regression model the solution locus is a p−dimensional

plane, assuming β = (β1, . . . , βp)
T .

All we will say about the quantification of intrinsic and parameter effects

curvatures are that such quantification depends on arrays of first and second

derivatives of g(xi, β) with respect to the elements of β. Note that, for any

function linear in the elements of β, the first derivatives are constants and the

second derivatives are all 0. Curvature is thus exhibited by any surface that

has non-zero second derivatives. This is where the geometry and algebra of
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vector spaces becomes more complex than what we desire to get into at this

point, but an intuitive understanding can be gained by considering two aspects

of a solution locus g (both of which have already been mentioned above):

1. First, g forms a p−dimensional manifold in n−dimensional space. The

degree to which this manifold differs from a p−dimensional plane is re-

flected in intrinsic curvature.

2. Secondly, g maps points from p−dimensional space (i.e., βs) to n−dimensional

space. If equally spaced points in p−space are mapped into unequally

spaced points in n−space, then the model exhibits parameter effects

curvature; note that for a linear manifold equally spaced points in the

parameter space are mapped into equally spaced points in the data space.

We mention these two types of curvature because one of them, intrinsic cur-

vature, cannot be changed by re-expression of the model through parameter

transformations while the other, parameter effects curvature can be changed

by this means. This can sometimes be desirable for purposes of estimation, in-

ference, and interpretation (see Ross, 1990, for an extensive discussion). Note

that transformation of parameters is an entirely different matter than trans-

formation of random variables. A distribution is invariant to the former but

obviously not the latter.

7.2.3 Models with Known Variance Parameters

In both this subsection and the next we will consider additive error models

for which the assumption of constant error variance is relaxed. The result

is, essentially, that we need to form a model for the variance structure, sim-

ilar to forming a model for the mean structure. At present, we will consider
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models for the variance that contain no unknown parameters other than those

also involved in the model for mean structure (the β of expression (7.1)). At

first, this may seem an artificial device, similar to specifying a normal model

with known variance, but that is not really the case. There are two realistic

situations in which this approach to model formulation is quite viable. At

the same time, the reason for separating the models of this subsection from

those of the next does depend on methods of estimation that may be applied,

thus fore-shadowing topics to come. What ties the two situations discussed

in this subsection together is that they may both be considered as producing

“regression weights” for individual random variables (and the associated ob-

servations). In the first case the resultant weights are fixed and known, while

in the second they must be estimated, but only as functions of the parameters

β that also appear in the model for expectations.

Known Weights

The simplest extension of model (7.1) occurs in situations for which the vari-

ances of the response variables {Yi : i = 1, . . . , n} are not equal, but differ

by only known constants of proportionality. A model appropriate for this

situation is,

Yi = g(xi, β) + (σ/
√
wi) ǫi, (7.3)

where, as in model (7.1), the ǫi are assumed to be iid random variables follow-

ing a location-scale family F such that E(ǫi) = 0 and (usually) var(ǫi) = 1. As

for constant variance models, the nearly ubiquitous choice for F is the normal

distribution.

The most obvious situations in which we might want to consider model

(7.3) with known weights {wi : i = 1, . . . , n} are those for which the data used
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as a realization of the model are composed of sample means.

Example 7.2

Consider a situation in which the phenomenon of interest is the infestation

of a commercial crop by an insect pest, to be compared among groups of in-

secticide treatments (e.g., passive control, standard chemical insecticide, nat-

ural biological insecticide). Since our primary concern in this example is a

large-scale phenomenon (we don’t really care about individual plants, only the

average effects when the treatments are applied to fields), the observations

may be in the form of the average number of pests found on plants in experi-

mental plots given the various treatments (note that this also corresponds to

the notion from the experimental approach that observations should be made

on “experimental units” to which treatments are independently applied, not

necessarily “sampling units” on which individual measurements are made). In

this hypothetical example, suppose that recorded observations are the average

number of insects of concern on plants in a number of experimental plots under

each treatment. Say there are 5 plots per treatment, but that the number of

plants actually sampled per plot varies from 12 to 30, depending on the number

of field assistants available to visit the various plots on the day of observation.

We could also imagine an experimental design in which averages are taken over

a number of days. Regardless, if we would believe that a constant variance

model is appropriate for random variables associated with the sampling units

(plants), then this would not be true for plot (or plot/time) averages. Model

(7.3) would likely be more reasonable, with the wi given as ni, the number of

observed plants in plot (or plot by time unit) i.

The situation of Example 7.2, in which we have known weights, is a quite
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simple one. It is clear that model (7.3) could be easily re-expressed as

Y ∗
i = g∗(xi, β) + σ ǫi,

where Y ∗
i ≡ (w1/2)Yi, g

∗(·) ≡ (w1/2)g(·) and, for example, ǫi ∼ iidN(0, 1); i =

1, . . . , n. In this case, we have done nothing untoward to the model by trans-

formation of the responses (this would, in fact, be true for any linear transfor-

mation applied to the random variables {Yi : i = 1, . . . , n} – why?)

Finally, it is also true in this example that we would need to be mindful

of the potentially deleterious effect of assuming normal distributions that was

seen in Example 6.7. If plot averages for one or more of the treatment groups

constituted sets of small numbers, something other than a model with additive

normal errors might be suggested, regardless of how variances were dealt with.

Weights as Specified Functions of Means With Unknown Parameters

Consider applying the basic concept of weights based on variances in a simple

linear regression model for which we have available replicate values of the re-

sponse for a given level of covariate. In this situation it may be tempting to

apply something similar to model (7.3), except in which we replace (σ/w
1/2
i )

by σj where j indexes distinct levels of the covariate. Carroll and Rupert

(1988, section 3.3.6, page 86) caution against this type of model in situations

for which the number of replicates is small; apparently even from 6 to 10 repli-

cates per value of the covariate can lead to poor estimates of the weights and

subsequent overestimation of the variance of the estimated regression para-

meters (see references given in Carroll and Rupert, page 87). Why would we

suggest something like model (7.3) and then turn around and caution against

what appears to be a straightforward extension of the same idea? What’s the

difference?
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The difference between what we have considered in model (7.3) with the

hypothetical situation of Example 7.2, and the notion of the preceding para-

graph is that, in the former case but not the latter, we have assigned a “reduced

structure” to the variances in a manner similar to that used for the mean struc-

ture. That is, in the hypothetical Example 7.2, we used a model that specified

variances differing only through the “mechanism” of sample sizes used to calcu-

late averages (ok, ok, I won’t say go read Chapter 5.3 on statistical abstraction

again, but you should). This amounts to modeling the variances in a manner

analogous to modeling expected values. A difference is that, while we some-

times have scientific knowledge available to help with a model for means, this

is rarely true for modeling variances. We must, for the most part, rely on

what we know about the behavior of statistical models, and the experiences of

previous analyses.

One basic idea that has emerged from these sources is that modeling vari-

ances as functions of the mean is often a useful technique. The type of model

that results may be written as, for i = 1, . . . , n,

Yi = g1(xi, β) + σg2(xi, β, θ) ǫi, (7.4)

where, as before, ǫi ∼ iid F with E(ǫi) = 0 and, almost always, F is the

standard normal distribution. If the xi; i = 1, . . . , n are considered known

constants and we assume that the dependence of g2(·) on the combination of

xi and β is only through the way these quantities are combined in the function

g1(·), then we can also write model (7.4) as,

Yi = µi(β) + σ g(µi(β), θ) ǫi, (7.5)

with assumptions on {ǫi : i = 1, . . . , n} as before. Here, g1(xi, β) in (7.4) has

been replaced with µi(β) and g2(xi, β, θ) has been replaced with g(µi(β), θ).
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What renders model (7.5) appropriate under the topic of this subsection (known

variance model parameters) is that we assume the value of the parameter θ

is known. Specification of this value is generally considered a part of model

selection rather than an issue of estimation, in the same manner that selection

of an appropriate power for a Box-Cox transformation is considered a part of

model selection in linear regression analyses. If we take the
√
wi from model

(7.3) to be given by 1/g(µi(β), θ) in (7.5), then this model can be considered

to be in the form of a “weighted” regression. The result, however, is that the

weights for model (7.5) must be estimated, since β is unknown, rather than

specified as known constants. On the other hand, the situation is simplified

by taking the additional parameter θ as a known value in the model.

By far, the most common model formulation of the type (7.5) is the “power

of the mean” model, in which,

g(µi(β), θ) = {µi(β)}θ.

In this case, we have, from model (7.5), that

var(Yi) = σ2 {µi(β)}2θ,

or,

2 log
[

{var(Yi)}1/2
]

= 2 [log(σ) + θ log{µi(β)}] ,

or,

log
[

{var(Yi)}1/2
]

= log(σ) + θ log{µi(β)}, (7.6)

that is, the logarithm of the standard deviation of Yi should be linearly related

to the logarithm of its expectation.

Now, a result due to Bartlett (1947) is that, if Yi, having mean µi and

variance σ2g2{µi}, is transformed to h(Yi), then a Taylor series expansion
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results in,

var{h(Yi)} ≈
(

d

dµi
h(µi)

)2

{σg(µi)}2.

Thus, if g(µi, θ) = µθi , the transformed variable h(Yi) has approximately con-

stant variance if,
(

d

dµi
h(µi)

)

∝ µ−θ
i , (7.7)

any constant of proportionality being absorbed into σ2. The relation of ex-

pression (7.7) will hold if

h(µi) ∝ µ1−θ
i . (7.8)

Now, when h(·) of (7.8) is applied to response random variables Yi, we have ob-

tained a power (Box-Cox) transformation of the Yi that will stabilize variance.

Also, (7.6) indicates a practical manner by which the power parameter θ may

be easily estimated (plotting the logarithm of standard deviations against the

logarithms of means for groups of data), and looking at the slope to estimate

θ.

We are not advocating here the indiscriminant use of power transforma-

tions to produce constant variance but, rather, the use of model (7.5) to reflect

the phenomenon of interest. The point is, simply, that this is the exact same

theory that leads to power transformations. In effect, if you are willing to

accept the latter as potentially useful, you should be equally willing to accept

model (7.5) since this is where you actually started (whether that is made clear

in courses on applied regression methods or not).

Example 7.3

This example is taken from Trumbo (2002). Major airlines must schedule

flights based on any number of factors, one of which is the necessary “flight
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time” (time in the air) to complete a given trip. A data set presented in

Trumbo (2002) contains data from 100 non-randomly chosen flights made by

Delta airlines in 1994. The data set contains several variables, of which we will

use the distance of the flights (recorded in miles) and the flight time (recorded

in hours). For our purposes we also ignore two flights of much greater distance

than the others; inclusion of these two flights would change nothing in this ex-

ample, but excluding them makes it easier to look at plots. A scatter plot of the

98 observations used here is presented in Figure 7.3. It is clear from this display

that time appears linearly related to distance, and it also seems that the vari-

ability among times increases as distance increases. An ordinary least squares

fit to these data results in β̂0 = 0.63064, β̂1 = 0.00192 and σ̂2 = 0.06339. A

plot of the studentized residuals from this regression are presented in Figure

7.4, which exhibits the unequal variances noticed in the scatterplot. We might

consider, for this situation, model (7.5) with µi(β) ≡ β0+β1 xi, where for flight

i, i = 1, . . . , n, Yi corresponds to time, xi is distance, ǫi ∼ iidN(0, 1), and θ is

to be determined prior to estimation of β and σ2.

Alternatively, we might consider using a power transformation to try and

stabilize the variance. What occurs in this example if we take this approach

and proceed to employ data transformation in a typical manner (i.e., power or

Box-Cox transformations)? While there are a number of observations for the

same distances in the data, this is not true for many other distances. But we

might bin or group the data by values of distance, compute sample means and

variances within each group, and examine a plot of log standard deviations

against log means. Travel distances range from 134 miles to 2588 miles. If our

98 observations were evenly spaced in this range there would be one observation

for each 25 mile increase in distance. If we want about 4 observations per group

we might choose bin sizes of 100 miles, {100−200, 200−300, . . . , 2500−2600}.
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Figure 7.3: Scatterplot of travel time versus distance for a sample of flights

conducted by Delta airlines in 1994.
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Figure 7.4: Plot of studentized residuals for an ordinary least squares fit to

the data of Figure 7.3.
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Figure 7.5: Box-Cox transformation plot from using binned data from Figure

7.3.

This is a crude and ad hoc manner for forming bins, but it is effective here

since the observations are fairly well spread out over the range of distances.

The resulting plot is given in Figure 7.5. This plot is playing the role of a

diagnostic or exploratory tool, and we want to avoid getting too “fine-grained”

or picky in its assessment. The slope of an ordinary least squares fit to the

values of Figure 7.5 is 1.09. If one uses an eyeball method, not paying too

much attention to the first two values on the left side of the figure, a value

of around 1.5 for the slope also may be reasonable. The first of these values
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Figure 7.6: Box-Cox diagnostic plot for log transformed data.

would suggest a logarithmic transformation Y ∗
i = log(Yi) and the second a

reciprocal square root transformation Y ∗
i = 1/

√

(Yi). If we conduct these

transformations and then reconstruct Box-Cox diagnostic plots beginning with

the transformed values, we obtain what is presented in Figure 7.6 (for the

log transform) and Figure 7.7 (for the reciprocal root transform). Neither

of these plots are “textbook” nice, but they both look as if there has been

some improvement over the pattern of Figure 7.5. We can now try to fit

regressions using one or the other of these data transformations. The first

indications of unequal variances came from the scatterplot of Figure 7.3 and

the residual plot of Figure 7.4 (the Box-Cox plots were constructed primarily

to help choose a power for the transformation, not to indicate whether one was
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Figure 7.7: Box-Cox diagnostic plot for reciprocal root transformed data.
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Figure 7.8: Scatterplot for log transformed time.

needed). Scatterplots for log (Yi) and 1/
√

(Yi), both against distance (xi) are

presented in Figure 7.8 and Figure 7.9. What has happened? First, the power

transformations conducted did seem to help with the problem of nonconstant

variance (which is what they were intended to do). But, they also changed what

was originally a fairly linear relation (in Figure 7.3) into nonlinear relations.

Mathematically, the reason for this is obvious. If Y is linear in x, then Y z will

not be linear in x. Less obvious, but equally true, is that if additive error terms

ǫi in a model for response variables Yi are normally distributed, then additive

error terms in a model for transformed Yi cannot be normally distributed

(and may not even have identical location-scale distributions). Interpretation

of a model relative to a set of response variables {Yi : i = 1, . . . , n} is not
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Figure 7.9: Scatterplot for reciprocal root transformed time.
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necessarily straightforward if an additive error model was fit to transformed

response variables {Y ∗
i : i = 1, . . . , n}. One of the simplest examples, of which

you may already be aware, is that if

log (Yi) = β0 + β1 + σ ǫi; i = 1, . . . , n,

where ǫi ∼ iidN(0, 1), then,

E(Yi) = exp
{

β0 + β1 xi + σ2/2
}

,

not,

E(Yi) = exp {β0 + β1 xi} .

The advantage of model (7.5) over a constant variance model fitted to the

transformed responses {Y 1−θ
i : i = 1, . . . , n} is that all inferences or predictions

concerning the responses are maintained in the original scale of measurement

or observation. For the problem of this example, a reasonable model would

be of the form (7.5) with µi(β) = β0 + β1 xi and θ = −0.5. A fit of this (or

any other model) should certainly be subject to model assessment procedures

which will come later in the course.

Comments

1. If transformations (of response variables) are so fraught with dangers,

why have they been so popular, even making their way into courses for

applied scientists (e.g., Statistics 401 at ISU)?

The answer to this question probably depends at least in part on compu-

tational history and institutional inertia. That is, estimation with model

(7.5), although not difficult today, does require iterative numerical tech-

niques. Transformations have always been one way to replace a model



7.2. ADDITIVE ERROR MODELS 195

for which constant variance is clearly not appropriate with a model for

which constant variance is more appropriate, and for which estimation

by ordinary least squares is possible. Once such methods made it into the

“standard” set of material taught to scientists and applied statisticians

there has always been resistance to removing them.

2. But why have statisticians hung onto the basic ideas of additive error

constant variance models with such fervor? Computation of estimates

for models such as (7.5) is not something that has only recently become

available in, say, the past 15 years. Surely there must be more to it than

just computation and history.

Yes, there is. Recall the opening paragraph to Section 7.2.1. It is typ-

ically the case that exact theory is only available for constant variance

models (and, in fact, linear constant variance models). This is certainly

a mature and beautiful set of theory, and one that has proven to be of

great applicability and value in practice. But there has been a tendency

for statisticians to hang on to parts of this body of methodology even

when it is clear that not all of it is appropriate for a given problem. This

“statistical denial” leads to such things as, for example, computing inter-

val estimates with quantiles from t−distributions even in cases for which

the only distributional result available is asymptotic normality (see, e.g.,

Section 3.7 of Part 1 of this course).

A counter-point to the above assertion is that it is not really exact theory

that is the goal, but having estimation methods that are robust, and these

are the most easily developed for constant variance models (linear models

are also helpful, but nonlinearity is not the same roadblock to achieving

robustness that it is for exact theory). Note that the term robust is used
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here in a distributional context, not relative to extreme observations.

Methods that are not greatly affected by extreme observations are called

resistant; ordinary least squares, for example, is robust but not resistant.

7.2.4 Models with Unknown Variance Parameters

We turn now to models very similar to that of expression (7.4) but for which

we generalize the variance model. Specifically, in this subsection we consider

models of the form,

Yi = g1(xi β) + σg2(xi, β, zi, θ) ǫi, (7.9)

with, for i = 1, . . . , n, ǫi ∼ iid F such that E(ǫi) = 0 and (usually) var(ǫi) = 1.

As for all additive error models, F is taken to be in a location-scale family and

is usually specified to be N(0, 1). Model (7.9) extends model (7.4) in that the

function g2 includes zi, which may be a part of xi or may be other covariates

that are believed to affect the variance but not the mean, and the parameter

θ is no longer assumed known. Sometimes, we we can impose a restriction

similar to that used in moving from expression (7.4) to expression (7.5) by

taking µi(β) ≡ g(xi, β) and writing,

Yi = µi(β) + σ g(µi(β), zi, θ) ǫi, (7.10)

with the same assumptions on the ǫi as in model (7.9). Models (7.9) and

(7.10) are the basic structures we will consider in this subsection. They allow

the variance to depend on the covariates (possibly only through the mean),

but no longer assume that θ is a part of model selection. Rather, θ is to

be estimated along with the other parameters β and σ2. The inclusion of

additional covariates zi in (7.9) and (7.10) could also have been made to (7.4)

and (7.5) but, as noted previously, the power of the mean model is dominant
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among those for which θ becomes a part of model selection; thus, there seemed

little motivation to include zi in the formulations of (7.4) or (7.5).

A number of possible forms (not meant to be exhaustive, by any means) for

g are given in Carroll and Rupert (1988), and I have extended the suggestions

below with a few of my own possibilities. These include:

σ g(µi(β), zi, θ) = σ {µi(β)}θ

σ g(µi(β), zi, θ) = σ exp{θµi(β)}

σ g(µi(β), zi, θ) = σ exp{θ1xi + θ2x
−1
i }

σ g(xi, β, zi, θ) = σ(1 + θ1xi + θ2x
2
i )

σ g(xi, β, zi, θ) = θ0 + θ1xi + θ2x
2
i

σ g(xi, β, zi, θ) = θ0 + θ1zi + θ2z
2
i

Notice that the first of these is the power of the mean model discussed in the

previous subsection. We may certainly specify this model without setting θ to

a known (or selected) value. Note also that the first three models in this list

take the logarithm of the standard deviations of the response variables Yi as

linear in either the mean or covariates, while the last three take the standard

deviations of the responses as linear in covariate values. By no means should

you consider the above list either all of the possibilities or even to constitute

“tried and true” suggestions. The fact is that we are much less advanced in

our modeling of response variances than in modeling response means.

Example 7.4

Foresters and environmental scientists are interested in estimating the vol-

ume of trees (obvious from a commercial standpoint, but also an indicator of
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biomass production). Measuring the volume of a tree is a difficult and destruc-

tive process. On the other hand, field workers can easily measure the height of

trees and what is known as “diameter at breast height” (DBH) in an efficient

and non-destructive manner. The question is how these variables are related

to the characteristic of interest, which is volume. Data for this example come

from a study conducted in the Allegheny National Forest in Pennsylvania in

which height and DBH were recorded for a number (here 31) trees which were

subsequently cut and the volume measured in a more elaborate process. Our

goal is to develop a statistical model that relates DBH and height to volume in

a manner that would allow prediction for trees left standing, and may be ap-

plicable (with different parameter values) to species other than Black Cherry.

The data used here are given by Ryan, Joiner, and Ryan (1985), where they

are used to illustrate multiple linear regression.

A scatterplot matrix of the three variables of concern is presented in Figure

7.10, from which we see that volume and DBH are strongly linearly related,

volume and height are weakly linearly related, and height and DBH are also

weakly linearly related. To develop an additive error model for these data we

begin with definition of variables involved. Let {Yi : i = 1, . . . , n} be random

variables associated with the actual volume of trees. Let {x1,i : i = 1, . . . , n}
be fixed variables that represent the measured DBH of trees (at 4.5 ft above

ground level), and let {x2,i : i = 1, . . . , n} be fixed variables that represent

the measured height of trees. As a first step in developing a model we might

conduct simple linear regressions of the Yi (volumes) on each of x1,i (DBHs) and

x2,i (heights). The first of these regressions (on DBH) yields results depicted

in Figure 7.11 with studentized residuals presented in Figure 7.12, while the

second (on height) results in the analogous Figures 7.13 and 7.14. An

examination of these plots reveals the following:
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Figure 7.10: Scatterplot matrix of volume, height, and DBH for Black Cherry

trees.
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Figure 7.11: Regression of volume on DBH.

1. While the regression of volume on DBH is fairly nice, there are a few

“small” trees that are not well described by the regression line.

2. More disturbing is the U−shaped pattern in residuals for this model,

seen in Figure 7.12, and this appears to be due to more than the 3 small

trees of Figure 7.11.

3. The relation between volume and height is weak, as we already knew

(Figures 7.10 and 7.13), and the variances of volume clearly increase

with (estimated) volume in this regression (Figure 7.14).

The natural next step is to fit a multiple linear regression model using both

DBH and height as covariates. Estimated parameters for this multiple regres-

sion, as well as the two simple linear regressions using only one covariate are
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Figure 7.12: Studentized residuals for the regression of Figure 7.11.

presented in the following table (which has been arranged so that parameter

estimates in the same column are comparable):

Estimated Values

Model β0 β1 β2 σ2 R2

DBH −36.94 5.06 18.079 0.9353

Ht −87.12 1.54 179.48 0.3579

DBH, Ht −57.99 4.71 0.34 15.069 0.9479

This table largely reflects what has already been seen in the plots of Figures

7.10 through 7.14. It is perhaps surprising that what is certainly a weak linear

relation between height and DBH (see Figure 7.10) has such a great impact on

the estimated value of the regression coefficient associated with this covariate

(β2 in the table) and such a small impact on the coefficient of determination
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Figure 7.13: Regression of volume on height.

(R2 in the table). Nonetheless, we might choose to retain both covariates in

the model based on the reality that height must certainly be important in

modeling the volume of trees.

As good statisticians we should certainly examine a residual plot for the

multiple regression, which is presented in Figure 7.15. The curious U−shaped

pattern of residuals seen in the regression of volume on DBH is repeated in

this residual plot, even ignoring the three leftmost and one rightmost points

of the plot (which may not be a good idea here as with 31 data values this

represents about 15% of the total data).

In a multiple regression, a plot of residuals may not reveal everything shown

in plots of residuals against the individual covariates. Plotting the studentized

residuals against both DBH and height individually results in Figures 7.16

and 7.17. Figure 7.16 reinforces the suggestion that the mean function is not
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Figure 7.14: Studentized residuals for the regression of Figure 7.13.

correctly specified in terms of DBH. The same U−shaped residual pattern is

hinted at for height in Figure 7.17, although in the absence of previous evidence

one would be reluctant to see much in this plot.

Where does this leave us? We have a linear multiple regression model that

appears quite good for describing the pattern of data (an R2 value of nearly

0.95 is, in general, nothing to sneeze at). On the other hand, we certainly

want to accomplish more than describing the data pattern. The finding that

volume is greater for taller, fatter trees than it is for shorter, thinner trees

is not likely to set the world of forest mensuration on fire. We would like to

develop a model that can predict well, and the general form of which might

be amenable to use for other tree species. This means that we would like

to determine a pleasing statistical conceptualization for the problem that can

hopefully take into account the anomalies seen in the residual plots of the
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Figure 7.15: Studentized residuals for the regression of volume on DBH and

height.
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Figure 7.16: Studentized residuals from the regression of volume on DBH and

height against DBH.
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Figure 7.17: Studentized residuals from the regression of volume on DBH and

height against height.
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linear regression models. These plots have suggested that the relation between

DBH and volume is not exactly a straight line, and that height may have

some connection with variability in volumes. Residual plots from the multiple

regression point toward a strategy of addressing the expectation function first

(why?).

Is there a simple conceptualization of this problem other than “adding

things together”? Well, the problem essentially deals with quantities that

reflect basic geometry relative to trees. What is a simple geometric concept of

a tree (no need to get fancy – close your eyes and think of a wooden telephone

pole). It would seem that a very basic connection between volume and the two

measurements of height and diameter (twice the radius) would be the volume of

a cylinder, V = πr2H . To make use of this idea for an expectation function in

this example we must bring the units of measurement into agreement. Volume

(Yi) is in cubic feet, height (x2,i) is in feet, DBH (x1,i) is in inches and is also

2 times the radius. A possible model for the expectation function is then,

E(Yi) = β0 + β1

{

2π(x1,i/24)2 x2,i

}

, (7.11)

which, if we define φ(xi) = {2π(x1,i/24)2 x2,i} is just a simple linear regression

of volume (Yi) on φ(xi)), which we might call “cylinder”. To investigate the

possibility of using (7.11) as a linear expectation function we might simply fit

a constant variance regression using ordinary least squares,

Yi = β0 + β1 φ(xi) + σ ǫi, (7.12)

where, for i = 1, . . . , n, ǫi ∼ iid F with E(ǫi) = 0 and var(ǫi) = 1. The result

is shown in Figure 7.18, with a studentized residual plot presented in Figure

7.19. Estimated values for the regression model (7.12) are β̂0 = −0.298,

β̂1 = 0.389, σ̂2 = 6.2150, and R2 = 0.9778. Relative to the regressions in
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Figure 7.18: Scatterplot and least squares fit for volume against cylinder.
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Figure 7.19: Studentized residuals for the regression of volume on cylinder.
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Figure 7.20: Studentized residuals for the regression of volume on cylinder

plotted against values of height.

the table immediately following Figure 7.12, we have reduced the estimate of

σ2 by more than half, and increased R2 over the regression with only DBH

by more than twice the increase resulting from the multiple regression model.

Perhaps more importantly, there is nothing in the residual plot of Figure 7.19

to indicate that our expectation function is lacking in form.

We might wonder if there remains a relation between variance and height

for this regression. Plotting studentized residuals from the fit of model (7.12)

against height (x2,i) results in the plot of Figure 7.20. This plot suggests that

there is still a relation of the variability in tree volumes, after adjusting for

the effects of height and DBH through use of the variable cylinder, to the
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measurement of tree height. A similar plot of residuals against DBH looks

nearly identical to the plot of Figure 7.19 and is not presented.

Putting these preliminary analyses of tree geometry together, we should

be willing to entertain a model of the general form (7.10), with zi ≡ x2,i and

µi(β) = β0 + β1 φ(x). Possible forms for σg(zi, θ) would include

σ g(zi, θ) = θ0 + θ1 zi

and

σ g(zi, θ) = σ exp{θ0 + θ1 zi}

(7.13)

We will (hopefully) discuss additional plots that are useful in selecting a vari-

ance model later in the course.

7.2.5 Transform Both Sides Models

We close discussion of additive error models with a brief mention of one ad-

ditional modeling idea, promoted by Carroll and Rupert (1988). While this

idea, transforming both sides of a theoretical relation between a response vari-

able and a set of covariates (including the case in which covariates are group

membership indicators) has been used in a number of particular situations

over the years (see Carroll and Rupert, 1988, pages 119-121) apparently Car-

roll and Rupert (1984) were the first to suggest this methodology as a general

modeling strategy.

Consider again the quote from Carroll and Rupert (1988) presented at the

beginning of Chapter 7.2 of these notes, which reflects the concept that a

response y may sometimes (i.e., in some, but not all, problems) be viewed as a

deterministic function of a covariate x if there were no sources of uncertainty.
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This concept feeds nicely into the use of additive constant variance models

(Section 7.2.1) at least as an initial step. Evidence of nonconstant variance may

be exhibited (e.g., Example 7.3), leading to the desire to either (1) transform

the responses, or (2) model the heteroscedastic variances. In Example 7.3

it was seen that modeling the variances may be preferable if transformation

“destroys” what was a pleasing expectation function (in that example this

was an empirical linear function, in other situations it may be a theoretical

model). In addition, transformation of responses affects distributional form,

a topic we have not discussed explicitly but certainly underlies, for example,

our discussion of potential limitations to the use of a normal distribution (see

Example 6.7).

Three fundamental departures from an additive error model with constant

variance are:

1. Incorrect specification of the expectation function.

2. Nonconstant (heteroscedastic) error variances.

3. Nonsymmetric error distributions (usually non-normal error distribu-

tions).

It can, in fact, be difficult to separate these three types of departures from an

additive error model with constant variance. For example, is the pattern of

residuals in Figure 7.4 really due to heteroscedastic error variances (the focus

of that example), or might there be evidence of either a nonlinear expectation

function (there is some hint of an inverted U pattern), or an error distribution

that is skew left (count points above and below the zero line)?

Modeling of variance structures (what Carroll and Rupert call “weighting”,

in deference to the general form of equation (7.3) as discussed in Section 7.2.3)
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addresses heteroscedastic error variance without changing either the expec-

tation function or the assumed distribution of (location-scale family) errors.

Transformation affects all three properties listed above. In elementary courses

it is generally assumed that all three aspects of expectation function, variance

structure, and error distribution “go together”, and that transformation to

“fix” one of these problems also “fixes” the others, or at least does no damage.

Examples 7.1, 7.3, and 7.4 are all indications that this is not, in general, the

case.

The transform both sides methodology was developed in response to situa-

tions in which there exists a fundamental expectation function for the original

variables that we do not wish to change, and yet there is evidence of either

nonsymmetry or nonconstant variance for additive error terms. In particular,

nonsymmetric error distributions may indicate that, in the original scale of

observation, an additive error model is not really appropriate (since additive

error models essentially imply location-scale distributions which are typically

symmetric). The basic idea is that we begin with a model of the form,

Yi = g(xi, β) + error,

where g(·) has scientific meaning or is a pleasing empirical form (e.g., linear),

but for which the error term does not led itself to modeling through a location-

scale specification. To “fix” the problem with error specification, but without

changing the expectation function beyond hope, we might transform the re-

sponses Yi to produce “nice” error terms but also transform g to maintain the

basic relation between responses and covariates. This leads to the transform

both sides (TBS) model,

h(Yi, λ) = h{g(xi, β), λ} + σ ǫi, (7.14)
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where, for i = 1, . . . , n, ǫi ∼ iid F with E(ǫi) = 0, usually var(ǫi) = 1, and

frequently F is N(0, 1).

Because it is not a certainty that a transformation h(·, λ) will have appro-

priate effects on both symmetry and constancy of error variance, model (7.14)

can be extended to include additional modeling of variance structure as,

h(Yi, λ) = h{g1(xi, β), λ} + σ g2(xi, β, zi, θ) ǫi, (7.15)

where assumptions on the error terms ǫi are the same as for (7.14). In the

same way that we moved from model (7.4) to model (7.5) and model (7.9) to

model (7.10), if the variance portion of (7.15) depends on β only through the

expectation function g1, we may write

h(Yi, λ) = h{µi(β), λ} + σ g(µi(β), zi, θ) ǫi. (7.16)

Now, the models given in (7.15) and its reduced version in (7.16) are very

general structures indeed. A word of caution is needed, however, in that one

can easily use these models to produce the statistical version of “painting one-

self into the corner”. This stems from the fact that it is not merely diagnosing

differences among the three effects listed previously that is difficult, but also

modeling them separately. For example, probably the most common form of

the transformation h is a power transformation h(Yi, λ) = Y λ
i , but this is also

a common form for the variance model g2 in (7.15) or g in (7.16). Including

both of these in a model such as (7.16) would result in,

Y λ
i = {µi(β)}λ + σ {µi(β)}θ ǫi.

This model will prove difficult if one wishes to estimate both λ and θ simul-

taneously. In principal, such problems can be avoided (e.g., a power transfor-

mation is often used to remove dependence of variance on mean so that µi(β)
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can probably be eliminated from the variance model), but they are certainly

a consideration in model formulation. There are, also, difficulties in deriving

predictions (and the associated intervals) from such a model with anything

other than a “plug-in” use of parameter estimates. That is, uncertainty in

parameter estimates are not reflected in predication intervals. As Carroll and

Rupert (1988, page 151) indicate, “More research is needed on predication

intervals based on transformation models.”

7.3 Models Based on Response Distributions

We turn now to an approach to model formulation that differs in a radical

way from the concept of additive error. It is this approach to modeling that I

referred to in Chapter 5 of these notes as being greatly influenced by what are

called generalized linear models. While this is true, we should avoid thinking

that generalized linear models encompass all that is available in this approach;

in fact they are but a small, and fairly restricted, subset.

7.3.1 Specifying Random Model Components

All of the model formulations in Chapter 7.2 on additive error models can be

thought of as mathematical representations of signal plus noise. Throughout

that section we increased the complexity with which we were willing to model

the noise (error) component, and attempted to deal with lack of independence

between signal (i.e., expectation function) and noise (i.e., error) resulting from

modifications to the model by transformations and weighting.

A radical departure from that strategy of formulating models as signal plus

noise is to consider models as consisting of random and systematic components
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which may combine in a nonadditive fashion. While the systematic model

component is essentially the same thing as the expectation function in additive

error models, the random component refers to the basic distribution of response

variables, not additive errors.

While for additive error models we generally begin model formulation by

specifying a form for the expectation function or systematic model component,

the models under discussion in this section are usually formulated by first de-

termining an appropriate distribution for response variables if any other factors

involved in the model are held constant. The last portion of the preceding sen-

tence is important. One cannot examine the appropriateness of an assumption

of normality for additive errors in a simple linear regression model by examin-

ing a histogram (or conducting a test) of response observations across levels of

the covariate. Similarly, one cannot determine an appropriate random model

component (normal or otherwise) by looking at the empirical distribution of

responses across all levels of other factors that may be involved in the problem.

Considering the random model component first has sometimes been crit-

icized because, due to the fact that one often needs some type of “residual”

or “conditional quantity” to assess distributional assumptions, attempting to

specify a distribution before a mean structure results in something of a “catch

22”; you need residuals to examine conditional distributions, but you need

means to define residuals, but you need conditional distributions before speci-

fying the structure of means. This argument is essentially a red herring (some-

thing that needlessly confuses an issue). An assumption of normality is just

as much a distributional assumption as any other specification. A full model

is arrived at regardless of the order in which one considers systematic and

random model components. All initial models should be assessed relative to

the specification of both systematic and random components, and adjusted
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accordingly. What then, becomes the difficulty with giving first consideration

to the random rather than systematic model component? I’m left with the

conclusion that for many statisticians who have been raised on additive error

models the answer is that it is simply not something that they are accustomed

to doing. This said, there does remain a valid question about how one is to

start the process of considering distributional form first.

In the development of an additive error model we may have the first step

handed to us as a consequence of scientific theory (this is the happy situation).

If not, we generally look first at a graphical displays such as histograms and

side-by-side boxplots (for a problem with groups) or a scatterplot or scatterplot

matrix (for a regression problem). The same type of displays are useful in

considering random components as well as systematic components. If one

constructs a scatterplot of responses on one covariate quantity and sees a

increasing curve with a “fan-shaped” scatter, attention is immediately focused

on distributions for which the variance increases as a function of the mean

(e.g., gamma or inverse Gaussian). If one constructs boxplots for which the

“tails” extend about the same amount from both ends of the box, attention

is immediately drawn to symmetric distributions (e.g., normal or logistic). If

one constructs a histogram in which there appear to be two or even three

local modes, attention is drawn to finite mixture distributions (more on this to

come). This is really nothing different than what we always do, except the focus

of attention is shifted from looking at means first to looking at distributional

characteristics.

Even prior to the examination of basic data displays, however, it is often

possible to form a preliminary idea of the kinds of distributions that might

be appropriate. This is tied in with the definition of random variables and

the sets of possible values Ω that are attached to them (see Chapter 5.1 and,
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in particular, Example 5.1). If Ω consists of the non-negative integers, we

may begin thinking of Poisson-like distributions. If Ω is the positive line, we

may begin thinking of distributions with this support such as gamma, inverse

Gaussian, or lognormal distributions or, if the observable quantities to be

modeled are of great enough magnitude we might be thinking of a normal

approximation.

Sometimes it is even possible to construct random variables that have par-

ticular sets Ω. This occurs, for example, in situations for which the observation

or measurement process is not conducted on a well-defined physical quantity.

Example 5.2 (cont.)

Consider again Example 5.2 from Chapter 5.1, which was about the effect of

violent cartoons on aggression in young children. Suppose that, in this study,

children were (randomly would be a good idea) divided into four groups. One

group were read “happy” children’s stories. One group were read “violent”

children’s stories (e.g., Grimm’s Fairy Tales or Little Red Riding Hood or the

Three Pigs). One group viewed “happy” cartoons (e.g., Barney, or Winne

the Pooh). Finally, one group viewed “violent cartoons” (most of the Looney

Tunes). The intent of these groups, of course, is to investigate possible inter-

action between violent content per se and the media of communication; this

possible interaction is confounded with the reality of the violence – in Little

Red Riding Hood, for example, both Grandma and the Wolf actually die of

non-natural causes, while the Coyote always recovers from being crushed or

blown up in the Roadrunner cartoons. Suppose that the observation process

to assess aggression is to present the children with a series of (maybe 10 to

20) pictures judged by psychologists to appeal to aggressive instincts. The



7.3. MODELS BASED ON RESPONSE DISTRIBUTIONS 219

children are asked whether they “like”, “do not like”, or “don’t care about”

each picture.

How might we go about defining random variables by which to compare the

“treatment” groups in this example, and what type of a distribution might be

considered for such random variables? There is no one answer to this question.

Some possibilities include the following.

Binomial Formulation

One could choose to ignore the “do not like” and “don’t care about” responses

in the study and focus only on the number of “like” responses, which sup-

posedly indicate aggressive tendencies; the more “like” responses, the more

aggression. For each child and picture, then, define

Xi,j =











0 if response was not “like” to picture j

1 if response was “like” to picture j
,

where i = 1, . . . , n indexes child and j = 1, . . . , m indexes picture. Combine

these variables for each child as

Yi =
1

m

m
∑

j=1

Xi,j,

where now ΩY ≡ {0, (1/m), . . . , 1}. It is natural to consider a binomial speci-

fication for the probability mass functions of Yi as, for yi = 0, (1/m), . . . , 1,

f(yi|θ) =
m!

(myi)! (m−myi)!
pmyi (1 − p)m−myi

= exp [m{yiθ − b(θ)} + c(yi, m)], (7.17)

where θ = log(p) − log(1 − p), b(θ) = exp(p)/(1 + exp(p)), and c(yi, m) =

log{m!} − log{(myi!)} − log{(m−myi)!}.
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Our modeling exercise would now consist of determining how many values

of θ are necessary; same θ for everyone; one θ for each group; one θ for each

child (more on this later under mixture models). One advantage of expressing

this binomial distribution (for observed proportions) as an exponential disper-

sion family in (7.17) is that we immediately have available expressions for the

mean and variance of Yi, and also an unbiased estimator of b′(θ) from any joint

distribution for a collection of Yis assumed to have the same θ.

Multinomial Formulation

A multinomial formulation is very similar to the binomial model, and its de-

velopment will be left as an exercise. Note here, however, that each Yi will

be a vector, as will each p, but we will only include two components in these

vectors due to a “bounded sum” condition on their elements.

Beta Formulation

An alternative to the binomial and multinomial models would be to define ran-

dom variables having a conceptual set of possible values ΩY ≡ (0, 1) as follows.

First, for each child (indexed by i) and picture (indexed by j) combination,

define

Xi,j =



























0 if response was “do not like”

1 if response was “don’t care”

2 if response was “like”

Note that this assumes some sort of ratio scale for these categories, which

might be a question. Now define, for each child, the random variable

Yi =
1

2m

m
∑

j=1

Xi,j.

The value 2m is the “maximum” aggression score possible, so that Yi represents
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the proportion of maximal aggression that is exhibited by a child. This variable

is more easily handled than binomial or multinomial formulations in the case

that not all children provide recorded responses for all pictures (children of

this age group are unpredictable, may refuse to reply to some questions, get

picked up early by their parents, etc.); we simply replace m by mi in the above

definition of Yi. On the other hand, our assumption that this theoretical

construct has possible values in the interval (0, 1) may cause difficulties if

most m (or mi) values are not large enough to prevent many “ties” in the

data; a potential way around this difficulty will be discussed in the portion of

the course on likelihood estimation.

We might now assign the random variables Yi beta distributions, based on

the fact that a beta distribution has support that matches ΩY and is quite

flexible in shape; a beta density may be unimodal symmetric, unimodal skew

(both left and right), J−shaped, or U−shaped. We can then assign distribu-

tions as,

f(yi|α, β) =
Γ(α + β)

Γ(α) Γ(β)
yα−1
i (1 − yi)

β−1, (7.18)

for yi ∈ (0, 1). Model (7.18) may again be expressed in exponential family

form, although for this a two-parameter family is required. Analysis of this

hypothetical example would then proceed in a manner similar to that men-

tioned under the binomial formulation in determining how many distinct values

of the parameters (α, β) are necessary to adequately account for the entire set

of children.

One advantage (a major one in my opinion) of the beta formulation is

that it does not assume that individual “trials” (corresponding to decisions

on individual pictures by individual children) are independent and identically

distributed. With the same set of pictures shown to each child, this is the
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only (other than totally artificial) way to have the records for children within

a group result in identically distributed replicates of the same multinomial.

Consider, for example, 3 children from each of two groups, “happy readers”

and “violent readers”. Suppose the following responses were obtained:

Category Beta

Group Obs. 0 1 2 Score

Happy

Readers 1 4 8 8 0.60

2 6 5 9 0.58

3 4 9 7 0.58

Violent

Readers 1 10 5 5 0.38

2 3 12 5 0.55

3 1 5 14 0.82

Consider the multinomial formulation for this problem. Without going into

a full discussion of estimation, if we just wanted unbiased estimates of the

multinomial probabilities (probabilities that individual observations fall in each

category) these are immediate from (1) expressing the multinomial in expo-

nential family form, and (2) the result of expression (6.8) of Section 6.1.4 for

joint distributions.

The result is that, for iid random variables {Xi,j : i = 1, . . . , n; j =

1, . . . , m} defined as indicated under the heading Beta Formulation, and a

corresponding multinomial formulated using Yi,1 =
∑

j I(Xi,j = 0) and Yi,2 =
∑

j I(Xi,j = 1), parameterized with p0 ≡ Pr(Xi,j = 0), p1 ≡ Pr(Xi,j = 1) and

m = 20, unbiased estimators are,

p̂0 =
1

mn

n
∑

i=1

Yi,1,
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p̂1 =
1

mn

n
∑

i=1

Yi,2.

Thus, for the data in the table above, p̂0 = 0.233 and p̂1 = 0.367 for both

the happy reader and violent reader groups. It is impossible, then, that any

assessment would indicate the distributions differ for these two groups. But

it seems clear from the numbers, and is reflected in the “Beta Score” values,

that there is much greater uniformity in responses for the happy reader group

than for the violent reader group. The difficulty for the multinomial formula-

tion illustrated in this example is that the assumption of iid individual trials

(and, hence, replicate observations from the same multinomial) may not be

reasonable.

7.3.2 Generalized Linear Models

What are known as generalized linear models are a class of (typically, but

not necessarily) nonlinear models that begin by specifying response random

variables {Yi : i = 1, . . . , n} as following probability density or mass functions

that belong to exponential dispersion families of the form of expression (6.5);

note that this immediately implies the properties given in expression (6.6). We

do not, however, need to consider these random variables as iid, although we

will allow them to differ only through their natural parameters (θi), but not

in what is assumed to be a constant dispersion parameter (φ). For the set of

response variables, then, we can write the pdf or pmf functions as,

f(yi|θi) = exp [φ{yiθi − b(θi)} + c(yi, φ)] , (7.19)

and the properties of expression (6.6) as,

µi ≡ E(Yi) =
d

dθi
= b′(θi),
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var(Yi) =
1

φ

d2

dθ2
i

b(θi) = b′′(θi) =
1

φ
V (µi).

As mentioned way back in the introduction to this part of the course on

modeling, it was the advent of generalized linear models (Nelder and Wedder-

burn 1972; McCullagh and Nelder 1989) that gave rise to the terminology of

systematic and random model components. The random model component is

given by expression (7.19). The systematic model component (in generalized

linear models) consists itself of two parts, the linear predictor and the link

function.

The linear predictor is exactly what it sounds like, and is usually repre-

sented as a typical linear model. For random variable Yi this is

ηi = xTi β, (7.20)

for xTi = (x1,i, x2,i, . . . , xp,i) a vector of covariates associated with Yi. Often,

as in linear models, the first of these covariates plays the role of an intercept

term as x1,i ≡ 1, but this is neither necessary, nor does “intercept” always

have the same interpretation as for linear models.

The other portion of the systematic model component is the link function,

and is defined as the relation,

g(µi) = ηi. (7.21)

As for additive error models, the covariates may be simply group indicators,

assigning a separate fixed value of expectations to random variables that are

members of certain groups. In the case that the covariate vectors xi contain

one or more quantities that function on a ratio scale of measurement (e.g.,

continuous covariates) the link function g(·) is a monotonic function of the

linear predictors ηi.
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Note at the outset that there exists a duplicity of notation in generalized

linear models. Since µi = b′(θi) for a simple function b(·), there is a one-to-

one relation between the expected value of Yi and the exponential dispersion

family natural parameter θi. So, we could equally well write expression (7.21)

as g(b′(θi)) = ηi. The link function g(·) is generally taken as a (often nonlinear)

smooth function and is given its name because it “links” the expected values

(and hence also the natural parameters) of response pdfs or pmfs to the linear

predictors.

There is a special set of link functions called canonical links which are

defined as g(·) = b′−1(·). The name stems from the fact that what I have

usually called natural parameters are also known as canonical parameters in

exponential families. Canonical link functions have the property that, if g(·)
is a canonical link for the specified random model component, then,

g(µi) = b′−1(µi) = b′−1(b′(θi)) = θi.

For particular common random components, the corresponding canonical link

functions may be seen to be:

1. Normal random component: g(µi) = µi

2. Poisson random component: g(µi) = log(µi)

3. Binomial random component:

g(µi) = log{µi/(1 − µi)}

4. Gamma random component: g(µi) = 1/µi

5. Inverse Gaussian random component:

g(µi) = 1/µ2
i
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Note here that, in particular, the binomial random component is assumed to

be written in terms of random variables associated with observed proportions

as in expression (7.17). Now, since, for independent exponential dispersion

family random variables, the joint distribution is of exponential family form

with sufficient statistic
∑

i Yi, canonical links lead to θi = ηi = xTi β and thus

sufficient statistics for each of the of the βj that consist of
∑

Yi xj,i. While

this is a “nice” property, there is nothing particularly special about what it

allows in practice, and we should avoid attaching any “magical” properties to

canonical link functions.

What link functions must, under most situations, be able to do is map the

set of possible expected values (i.e., the possible values of the µi) onto the entire

real line, which is the fundamental range of linear predictors ηi = xi β (unless

we restrict both xi and β). For example, any link function appropriate for use

with binomial random variables must map the interval (0, 1) onto the real line.

This makes, for example, the use of an identity link function g(µi) = µi poten-

tially dangerous with a binomial random component. A similar situation exists

for Poisson random components, although constraints on the allowable values

of the covariates and the “regression” parameters in β may allow, for example,

the use of an identity link with a Poisson random component. Other common

link functions, without attaching them to any particular random components,

include:

1. Log link: g(µi) = log(µi) for 0 < µi.

2. Power link: g(µi) =











µλi λ 6= 0

log(µi) λ = 0

for any fixed λ and −∞ < µi <∞.
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3. Complimentary Log-Log Link:

g(µi) = log{1 − log(1 − µi)} for 0 < µi < 1.

It is also possible to embed link functions into parameterized families of func-

tions, without specifying the value of the parameter. One example is the power

family, for which an equivalent specification to that given in item 2 immedi-

ately above is,

g(µi, λ) =
(µλi − 1)

λ
.

We then would need to estimate the parameter λ along with all of the other

parameters of the model (we may or may not get to this, but see Kaiser 1997).

One additional aspect of the generalized linear model formulation is of

fundamental importance, that being the variance function V (µi). This function

is proportional to the variance of the response variables Yi (equal up to the

scaling factor 1/φ, see expression (7.19) and what follows immediately after).

The variance function is not something that is open to specification in the

model, but is determined by the choice of random component. For some of the

more common random components, the variance function takes the forms:

1. Normal random component: V (µi) ≡ 1.

2. Poisson random component: V (µi) = µi.

3. Binomial random component:

V (µi) = µi(1 − µi).

4. Gamma random component: V (µi) = µ2
i .

5. Inverse Gaussian random component:

V (µi) = µ3
i .
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Keeping in mind that specific random components imply specific variance

functions, which dictates the relation between means and variances, and com-

bining this with knowledge of the set of possible values for response variables

Ω, the examination of scatterplots can often provide hints about potentially

useful random component specifications (although this can almost never dis-

tinguish among several possibilities).

Example 7.6

Contamination of fish by metals can be a serious problem, due to both ef-

fects on ecosystem function and potential health effects for humans. Metals

can be accumulated by fish through a number of mechanisms, including pri-

mary routes of uptake from water through the gill tissue and dietary uptake

(by eating other contaminated organisms). Particularly for uptake from direct

contact with contaminated water (i.e., absorption in the respiratory system

through gills) many metals exhibit a change in what is called “bioavailability”

with changes in other water chemistry variables, primarily as reflected in PH

or acidity of the water. That is, in more acidic waters, many metals become

dominated by ionic forms that are more easily bound to biological tissues than

the ionic forms that predominate in less acidic waters. Thus, the more acid

the water, the more accumulation of a metal occurs, even with constant (total)

concentrations of the metal in the water itself. This is perhaps exemplified by

aluminum (Al) which, in water that is neutral pH (pH= 7.0), is relatively inert

and is not a problem in fish or other aquatic organisms. But, in water that is

low pH (pH < 5.5), Al assumes an ionic form that is readily accumulated by

aquatic organisms and becomes highly toxic. On the other hand, for metals

with a primary route of uptake from gill contact with water, lower pH can
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(at least initially) work in the opposite manner, since H ions can compete for

binding sites on gill tissue with bioavailable forms of metals. If the pH of a lake

were to decrease relatively rapidly, the issue becomes partially one of whether

H ions or bioavailable forms of metals are becoming abundant more rapidly.

This phenomenon of metals becoming more available and toxic at low water

pH values has been a concern for states with large amounts of sport fishing.

such as Minnesota, Wisconsin, Michigan and, to a lesser extent, Iowa.

A great deal of the materials that lower the pH of a lake come from at-

mospheric deposition (e.g., what is called “acid rain”), a major source being

power plants that burn “high-sulfur” coal. But because of the complexity of

the chemical and physiological processes involved, there has been a good deal

of controversy about whether decreasing pH values in lakes of these states

constitutes a serious environmental problem (at least as regards metal concen-

trations in fish).

A study was conducted beginning in the mid-1980s to help resolve some

of these issues (see Powell, 1993). Based on the concept of the experimen-

tal approach (see Part 1 of the course notes) that there are no such things

as “natural” experiments, a lake in north-central Wisconsin was used for an

experimental acidification study. This lake, called Little Rock Lake, has no

natural inflow or outflow, but receives all of its water from rainfall and runoff

from the surrounding watershed. The lake consists of two natural basins, which

are connected by a thin stretch of water (think of an hourglass). In the early

fall of 1984 a special vinyl curtain was used to separate the two basins and

prevent the exchange of water between them. One of the basins, called the

“reference” basin, was not tampered with. The other, called the “treatment”

basin, was artificially acidified over a period of years. The basins were quite

similar in morphology; the reference basin was 8.1 ha in size with a mean depth
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of 3.1 m, while the treatment basin was 9.8 ha in size with a mean depth of

3.9 m. The beginning pH of both basins was 6.1, but the pH of the treatment

basin was lowered to 5.6 by the fall of 1986, to 5.2 by the fall of 1988, and to

4.9 by the fall of 1990.

The data used in this example comprise measurements of the whole body

concentration of the metal Cadmium (Cd) and length of fish taken on one of

the principal forage fishes (fish that are eaten by other fish) in Little Rock Lake,

namely Yellow Perch. Length is an important covariate for the concentration

of nearly all pollutants in fish; growth in fish is indeterminate, making length

an indicator of the length of exposure for one thing. The data were collected

in the summer of 1989 after the pH of the treatment basin had been reduced

to 5.2 from its original value of 6.1. Observations verified that the pH of the

reference basin remained at a mean of 6.1 at this time.

The objectives of an analysis with these data centers on what was called

problem conceptualization on page 231 of Section 3.1. Certainly, we would like

to know if acidification makes the concentration of Cd in Yellow Perch greater

or lesser, but the problem is clearly not that simple, particularly given the

interaction of changing H ion concentrations relative to biologically available

forms of metals, as mentioned above. What we would really like to achieve

is a statistical model that seems to “capture’ the important features of the

relation between Cd concentration and length in this fish. We must admit

that what we mean by the important features of the relation is, at this point,

based primarily on empirical patterns in the data. On the other hand, we

would like a parsimonious description of the distribution of Cd concentrations

for given lengths (since, for example it may the the upper quantiles rather than

the mean that are of primary concern in the protection of human health).

With all of this in mind, we may examine scatterplots of Cd concentration
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Figure 7.21: Scatterplot of Cd concentration against length in Yellow Perch

from Little Rock Lake, WI for the reference basin.

(which was measured in ng/g) against fish length (which was measured in

mm). A plot for the reference basin is presented in Figure 7.21, and one for

the treatment basin is presented in Figure 7.22. These two plots, which have

the same plotting scales, are rather dramatically different in what they suggest

about the relation between Cd concentration and length in Yellow Perch in

this lake. Clearly, whatever the effect of acidification, it involves more than

the expectation function of responses. Also, it appears that, in both basins,

the variability of responses increases as the mean increases. What is the effect
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Figure 7.22: Scatterplot of Cd concentration against length in Yellow Perch

from Little Rock Lake, WI for the treatment basin.
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Figure 7.23: Scatterplot of log Cd concentration against length in Yellow Perch

from Little Rock Lake, WI for the reference basin.

of a log transformation, for example, on these data? Plots of the logarithm

of Cd concentration against length for the reference and treatment basins are

presented in Figure 7.23 and 7.24, respectively. The log transformation

appears to have done a fairly nice job of rendering the expectation function

for the treatment basin both linear and nearly constant variance (Figure 7.24),

but the same cannot be said for the reference basin (Figure 7.23).

Perhaps the log transformation was simply not “strong” enough. What

happens if we try a more severe transformation, say a reciprocal? The results
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Figure 7.24: Scatterplot of log Cd concentration against length in Yellow Perch

from Little Rock Lake, WI for the treatment basin.
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Figure 7.25: Scatterplot of reciprocal Cd concentration against reciprocal

length in Yellow Perch from Little Rock Lake, WI for the treatment basin.

are shown in Figure 7.25, in which we have also used the same transformation

on length to prevent the relation from becoming “reversed”; this is essentially

the “transform both sides” idea of Section 7.2.5. Certainly, Figure 7.25 seems

to exhibit more constant variance than do either Figures 7.21 or 7.23. It is

also clear, however, that an additive normal error model fit to these data

would suffer from the difficulties of Example 6.7 of Section 6.2.2 with normal

distributions putting positive probability on regions that are outside of the

physical reality of the response variables.

Where does this leave us in model development? First of all, it indicates

that the distributions of original responses (Cd concentration in ng/g) seems to
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differ between the reference and treatment basins. Thus, we strongly suspect

that the effect of acidification (in the treatment basin) has affected more than

the expected value of responses. If, as suggested in the description of Example

7.6, quantiles of the (conditional on length) distributions of Cd concentration

in these two basins is of interest, this is a major issue for modeling. Consider,

for example, fitting linear regression models to the log transformed Cd con-

centrations against length for the treatment basin data of Figure 7.24, and

similarly for the reciprocal transformed Cd concentrations against reciprocal

length for the reference basin data of Figure 7.25 (ignore, for the moment the

difficultly with a normal error assumption in the latter). How would we com-

pare these models with regard to the relation of Cd concentration to length in

these two situations? What would it mean if our two regressions had the same

or different slopes? Would it even be possible (without a great deal of pain, at

least) to estimate the 85% or the 90% level of Cd (not transformed Cd against

possibly transformed length) for fish of length 150 mm for these two basins?

Let’s go back to the scatterplots of the measured variables in Figures 7.21

and 7.22. What might we be able to discern from these figures that could

help us form a combination of random and systematic model components for

a potential analysis using generalized linear models? First, it is clear that, for

both basins, the expectation function is nonlinear in length. In your “minds

eye” envision a curve through the points of Figure 7.21. Most reasonable

such curves would be such that more points lie above the curve than below

(based on the “density” of points on the plot). Thus, our attention is drawn

to random model components that are skew right. Possibilities include gamma

and inverse Gaussian among the basic exponential dispersion families. Now,

conduct the same exercise for the data of Figure 7.22. Here, it is less clear. It

could be that a skew random component is appropriate (especially given the
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two points at length of about 140 mm) but this is by no means certain to be

better than a symmetric random component, most likely a normal. On the

other hand, the variance in Figure 7.22 does appear to increase as a function

of the mean, which casts additional doubt on the appropriateness of a straight

normal specification (for which V (µi) ≡ 1). Thus, for the reference basin we

might initially consider gamma and inverse Gaussian random components, and

for the treatment basin, we might consider gamma, perhaps inverse Gaussian,

and perhaps normal random components.

In both Figure 7.21 and Figure 7.22 the mean seems to be a concave

curve that increases with length. Our initial attention is then drawn to an

exponential-like function, or perhaps a positive power function. These corre-

spond to the (inverse form of) link functions g(µi) = log(µi) or g(µi) = µλi

with λ < 1. Of these two, initial modeling attempts might be conducted with

the log link, particularly in light of the evidence of Figure 7.24 that, at least

for the treatment basin, this may well be an adequate link function.

Overall, it seems clear that the random components appropriate for the

data of Figures 7.21 and 7.22 will differ. Whether this means we must use

different distributional forms or only different parameters (e.g., in a gamma

or inverse Gaussian random component) remains an open question. It also

seems clear that the expectation functions will differ for these two data sets,

but again, whether this requires different functional forms or only differences

in parameter values remains to be seen.

The point of this example is not that we have, through consideration of

models formulated as generalized linear models, “solved” a difficult modeling

problem (we don’t know that yet). And it is true that, as yet, we have no solid

evidence that we can “do better” with this problem than we could with models

formulated as either weighted or transformed additive error models. The point
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of this example is that we have been able to suggest plausible models that

may well be better statistical abstractions of the problem under study than

are additive error (and, in particular, linear additive error) models. And,

importantly, we have done so without modification of the original scales of

measurement for the quantities observed.

We end this introduction to generalized linear models with a very brief in-

dication of the flexibility that has been gained through consideration of models

as composed of random and systematic components that have more “equal”

stature than in additive error models, in which the distributional attributes

of the model play a decidedly subservient role to specification of the expecta-

tion function. It was not that long ago (I would say less than 25 years) that

nonlinear models were thought applicable almost exclusively in situations for

which scientific theory indicated a particular (nonlinear) expectation function,

and all that remained was to formulate an appropriate additive error distrib-

ution for the observational process. This view of statistical modeling was still

fixated on what I have called the “signal plus noise” approach. If “errors” in

the original model formulation did not appear to follow an “appropriate” (i.e,

location-scale and primarily normal) distribution, the solution was to employ

transformations of one type or another to produce such appropriate behavior

in the resultant quantities. Certainly, advances have been made to these ideas

even within the context of additive errors (e.g., see Sections 7.2.4, 7.2.5), but

the idea that, perhaps, one should consider the distribution of responses on a

more equal footing with the expectation function has been a major advance-

ment. The demonstration that what are now called generalized linear models

could unify this idea for at least a particular class of models (with distributions

given by exponential dispersion families) was a huge influence in promoting the

general concept of paying attention to distributions as more than mere “error”
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models.

It should also be noted that, although the specification of link functions

is definitely facilitated with models that contain only one type of covariate

(because then you can see the inverse link exhibited in scatterplots), the ideas

underlying generalized linear models are not limited to single covariate sit-

uations. The book by McCullagh and Nelder (1990) contains a number of

examples, and Kaiser and Finger (1997) presents an example that uses not

only multiple covariates but also lagged values of those covariates; it is not

entirely clear whether the model used in this reference is really a generalized

linear model or not, but it certainly makes use of the general structure of

random and systematic model components.

7.4 Models With Multiple Random Compo-

nents

The topic of this section is models that contain not a single random component,

but several random components. I believe that there are three fundamental

schools of thought from which the development of models with more than one

stochastic component can be approached.

The first school of thought draws on an extension of additive error mod-

eling, under which multiple sources of variation function at different levels of

a data structure. This leads, for example, to the types of random effects and

mixed models you have seen in Statistics 500 and 511 with linear systematic

model components. Usually, the division of errors into “variance components”

under this approach are determined from the observational structure of the

study (e.g., the entire book by Bryk and Raudenbush (1992) is founded on
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this idea). Estimation and inference can proceed in a manner that attempts

to maintain as much of the exact theory (i.e., derivable sampling distribu-

tions for estimators under all sample sizes) of ordinary least squares as pos-

sible, although this doesn’t really work; consider, for example “approximate

t−intervals”, which is a complete oxymoron, that result from the Cochran-

Satterhwaite approximation. I say that approximate t−intervals is an oxy-

moron because t−distributions depend exactly on the sample size n, while

approximations are inherently asymptotic in nature. I’m not claiming that

the Cochran-Satterhwaite approximation is not a useful statistical result. It

is. But to believe that we can use it to hang on to Gauss-Markov-like properties

for estimators is simple self-delusion.

The second school of thought for formulation of models with multiple sto-

chastic elements rests on the concept of “random parameter” specifications for

models of random variables associated with observable quantities. This leads

to multi-level or what are called hierarchical models. As we will see, there

is nothing inherently Bayesian about such model formulations; it is true that

Bayesian analysis is quite natural for many such models, but analysis of a

model is a separate issue from formulation of a model. In the case of linear

models it turns out that mixed model formulations are usually nothing more

than special cases of random parameter formulations. Except in situations

for which the investigator is able to exercise a great deal of control over fac-

tors that may influence a response of interest, this second approach has more

scientific appeal than does the “extension of additive error” approach briefly

described above. We will illustrate this in the following subsections.

The third school of thought is not so much a different view of the same

situation as the first two (i.e., a true school of thought), but is more of a

“catch-all” for situations that cannot be addressed by those approaches di-
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rectly. We might call this the “latent variable” approach. There are few, if

any, conventions for how one might add to a model random variables that

represent unobservable phenomena (which is the latent variable idea). We will

briefly discuss this approach after covering the first two.

7.4.1 Mixed Models

The entire presentation of Chapter 7.2 on additive error models was designed

to communicate the fact that, for models with additive error terms, nonlinear

models are not an extension of linear models but, rather, linear models are

special cases of general additive error models. Linear models are of particular

interest because of the results they allow for estimation and inference proce-

dures. But as models they form only a class of restricted expectation functions

for additive error formulations. My view on what are called mixed models is

different. Mixed models are fundamentally an extension of linear models. In

this subsection, then, we will discuss mostly linear mixed models. Toward

the end, I will provide a few comments indicating what I view as the extreme

limitations of trying to use the same formulation with nonlinear models.

You have already had an introduction to linear mixed models in Statistics

500 and 511, primarily from the viewpoints of estimation (e.g., REML) and

structures for controlled experimental studies (e.g., balanced nested designs).

We will not dwell on these same topics here, but will instead focus on the

underlying scientific mechanisms or phenomenon being represented in these

models; see Chapter 5.3. It is generally useful in this context to distinguish

between what are often called random effects models and random coefficient

models (e.g., Longford, 1993).
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Linear Random Effects Models

Random effects models refer to situations in which responses of interest are

subject to a number of identifiable sources of variability, and in which we have

information that will allow us to estimate the magnitudes of those sources as

distinct from one another. The latter portion of the preceding sentence is

italicized because it is fundamental to the statistical conceptualization of a

“source of variability”. In practical terms, what this means is that we must

have replicate observations of a source of variability in order to identify it as

such a source in the first place.

Example 7.7

This example was adapted from one given in Longford (1992). Consider the

formulation of a linear model for the relation between log liabilities and log

assets for companies of various types in various parts of the world. The basic

idea is that, if Yi represents the log liabilities of a company and xi the log

assets, then we might consider the simple linear regression model,

Yi = β0 + β1xi + σ ǫi.

This model implies that, if β1 = 1, the logarithm of the ratio of liabilities

to assets, namely log(liabilities)/ log(assets) is constant, and the position of

a company in the distribution of this quantity might be used by financial

institutions in making loan decisions (e.g., a company in the far right tail

might not be a good “bet”). In fitting this model to observed data, it is

presumed that the estimated value of β1 will be near 1 or perhaps just slightly

below, at least for companies that survive. Primary interest then centers on

the constant β0, which then represents the mean of the log ratio of liabilities
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to assets; the only reason for writing the model with liabilities as a function

of assets is to ensure that an estimate of β1 is, in fact, near a value of 1.

Otherwise, we could write, with Yi = log(liabilities)/ log(assets),

Yi = µ+ σ ǫi, (7.22)

Now, it is generally felt (i.e., known or accepted) among financial analysts

that the sector of the economy a company operates in may influence the value

of µ; sectors include categories such as construction, food, transportation, con-

glomerates, clothing, and so forth. It is also believed that the area of the world

in which a company operates is an important factor; Global, North America,

Central America, South America, Southeast Asia, Central Asia, Western Eu-

rope, Eastern Europe, Southern Africa, and so forth are possibilities. It would

certainly make sense to model these additional sources of variability, which we

could do by defining Yi,j,k as the logarithm of liabilities to asset ratio associ-

ated with company i in economic sector j in world region k, and specifying a

random effects model of the type

Yi,j,k = µ+ δj + λk + ǫi,j,k, (7.23)

where

δj ∼ iidN(0, τ 2)

λk ∼ iidN(0, ψ2)

ǫi,j,k ∼ iidN(0, σ2)

But suppose that the only data available are a hodgepodge of information

from companies in different economic sectors from different regions around

the world, with few, if any, replicate observations of companies in the same

economic sector and region. Or, data were available for only one economic
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sector in all the regions. Or, data were available for most economic sectors in

all regions but for only one economic sector in one region. The result is that

we would be unable to distinguish model (7.23) from model (7.22).

The point of Example 7.7 is not that random effects models are ineffectual,

but that there is an intimate connection between useful model formulations

and the data collection scheme. In fact, when one has control over the ob-

servational structure, random effects models are both powerful and elegant.

The connection between linear random effects models and situations that al-

low carefully designed data collection plans is indicated by the fact that much

(if not, in fact, most) early development of these models was motivated by the

analysis of problems stemming from experiments in agricultural and animal

breeding. The connection between control over observational structure and

the appropriateness of linear models will also appear in consideration of linear

random coefficient models.

A major hurdle to understanding the structure of linear random effects

(and, later mixed effects) models is the variety of notations that can and have

been used to represent such models. Consider, first, the representation of a

simple linear regression model with {Yi : i = 1, . . . , n} as response variables,

{xi : i = 1, . . . , n} as covariates, and {ǫi : i = 1, . . . , n} as iid N(0, 1) errors.

This model can be written in various forms as,

Yi = β0 + β1 xi + σ ǫi,

Yi = xTi β + σ ǫi; xTi = (1, xi),

Y = X β + ǫ,

E(Y ) = X β; var(Y ) = σ2 In,

where, in the last expression, In stands for the identity matrix of dimension

n× n.
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Now, these various model forms typically cause us no difficulties, as we are

able to move from one to the other quite easily. The situation can become less

clear rapidly, however, when one begins adding in additional random variables

on the right-hand-side (rhs) of these expressions. For example, a random

effects model for responses that are observed in “clusters” or “groups” could

be written in at least the following ways.

Yi,j = xTi β + δj + σ ǫi,j ,

Yi = xTi β + zTi γ + σ ǫi

Y = X β +Z γ + σ ǫ

E(Y ) = X β; var(Y ) = V + σ2 In

It is much less clear than in the simple linear regression case, how to consider

indexes, dimension of matrices, and whether those matrices have unique only or

repeated rows and/or columns, in order to make these formulations equivalent.

Now, imagine what is possible if one adds more than one random variable to the

rhs of such linear models, variables that might correspond to clusters or groups

of varying sizes or nestings. Consider what might be possible if one allows

nonlinear models into the picture. Even reasonably competent statisticians (if

I may flatter myself for the moment) can become easily confused. Is there a

way to “unwind” the potential confusion caused by various notations, or are we

doomed to have to learn multiple equivalent forms for which the equivalence

is not immediately obvious?

One possibility is to draw on the previously expressed reluctance to use

multiple subscripting in cases that would require a large number of subscripts,

and recall that statistical operators such as expectation are inherently uni-

variate in nature. While this technique seems, at first, overly cumbersome, it

can help us keep track of “what is truly going on” in a model. Under this
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convention, the simple linear model is perhaps best presented in one of the

first two forms given (the use of xTi β seems to cause no great difficulties here,

since responses are still indexed by a single variable i).

The key notational convention being suggested is that a collection of re-

sponse variables be indexed individually as, perhaps, Y1, Y2, . . . , Yn, and that

auxiliary information is available, such as sets Cj that contain the elemental

indices i belonging to different “clusters” indexed by j. We could then write

a linear random effects model as

Yi = xTi β + τ
J
∑

j=1

δj I(i ∈ Cj) + σ ǫi, (7.24)

where, for j = 1, . . . , J < n, δj ∼ iidN(0, 1), and, for i = 1, . . . , n, ǫi ∼
iidN(0, 1) and with independence among all δj and ǫi. What is accomplished

by this “univariate” view of the world? For one thing, it facilitates the deriva-

tion of expected values and covariances for the joint distribution of Y1, . . . , Yn

on which estimation must be based. That is, given normal distributions for

both δj and ǫi, all i and j, it is a simple matter to determine for model (7.24)

that the joint distribution of Y1, . . . , Yn is multivariate normal such that,

E(Yi) = xTi β; var(Yi) = τ 2 + σ2,

and,

cov(Yi, Yk) =











τ 2 if i ∈ Cj and k ∈ Cj ,
0 o.w.

Now, for a situation in which we might only need double subscripting (using

i and j, say) this convention presents no huge advance. But consider the fol-

lowing example.

Example 7.8
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The classical example of a situation in which a random effects model is a

useful conceptualization of the problem is that of sub-sampling and extensions

of sub-sampling to contain both nested ( sub-sampling structure) and crossed

(factorial structure) elements. Consider a study in which the objective is to

estimate the magnitude of some soil constituent (e.g., nitrogen content or con-

tamination with polychlorinated biphenyls known as PCBs) in a particular

region (e.g., field). A number of soil samples are taken, and each sample is ho-

mogenized (i.e., physically mixed). Each homogenized sample is divided into

subsamples, and three subsamples of each sample are sent to each of a number

of different chemical laboratories. Each laboratory again divides each of its

three subsamples into further subsamples sometimes called aliquots; suppose

for simplicity that three aliquots of each subsample are used. Each aliquot un-

dergoes a separate extraction procedure in which the compound of interest is

“extracted” from the soil, often by running a solvent (such as dimethylsulfox-

ide, known as DMSO, or some chloric substance such as chloroform) through

a column that contains the material and collecting the elutriant (what comes

out the bottom). Each processed aliquot is then subject to an appropriate

measurement procedure from analytical chemistry (e.g., liquid chromatogra-

phy).

Using a multiple subscripting scheme, basic random variables would need

to be defined as Yi,j,k,s where i indexes sample, j indexes subsample, k indexes

laboratory, and s indexes aliquot. If, as indicated in this example, the ob-

servational structure was completely balanced, this could certainly be done in

matrix notation, but doing so would, in my mind, not be easy. For example,

is it clear what Z would look like, and what γ would be if we wrote the model
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as follows?

Y = X β +Z γ + σ ǫ.

Other situations are impossible to write in clean matrix notation, such as il-

lustrated by the following.

Example 7.9

Suppose we have a study that results in longitudinal data, such as the ob-

servation of low density lipoproteins (LDL) over time for patients on a given

treatment (e.g., the drug with brand name Zocor?) Each patient is to be

observed (have LDL measured) every 4 weeks, except when they forget their

appointment, or except when their son or daughter has an important school

event but they can make it in the next week, or except when they move, or

except when they die, or except when too many medical staff are unavailable

to take the readings, or . . .

Clearly, a model for this situation will be in the form of random variables

for elemental measurements (LDL for a given patient at a given time) with a

covariate of time, and clusters of observations taken within patients. Suppose

that we assume (not unquestionable, but suppose that we do) that the “tra-

jectories” of LDL over time are the same for each patient and linear (i.e., equal

slopes in linear regressions on time). Then we may wish to use a mixed model

with fixed regression slope but random effect (which then affects the model

intercept for each patient). It is unclear in this setting how to use a double in-

dex system (i could be patient, but how would time be indexed by j when the

values of j are not the same among patients). It would be difficult to construct

a clean matrix representation for a model in this situation(vectors of observa-
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tions are of different lengths for different patients). On the other hand, we may

define response variables for the total number of observations made (across all

patients, which we will denote as n) in the form {Y (si) : i = 1, . . . , n} in which

the (non-random) variables si are defined as

si ≡ (m, j),

where m denotes patient (m = 1, . . . , k) and j denotes observation number

for patient m, with j = 1, . . . , nm. Note that n =
∑

m nm. Associated with

each Y (si) is a covariate vector x(si) ≡ (1, ti)
T in which ti is the time of

observation. Then, we can easily write

Y (si) = x(si)
T β + τ δ(si) + σ ǫ(si), (7.25)

where δ(si) ≡ δp if si = (p, j) for any j and p = 1, . . . , k. In (7.25) we

would most likely assume that δp ∼ iidN(0, 1) for p = 1, . . . , k, that ǫ(si) ∼
iidN(0, 1) for i = 1, . . . , n, and that there is independence between these

terms.

A final issue that should be addressed here is the question of how one de-

cides whether to model an effect as fixed or random. This is, first of all, an

old question that eludes a simple answer. A basic idea, given in one form

or another in most books on linear models, is whether one “cares” about the

particular levels of a given factor. Longford (1993, p.16) casts this in terms

of “exchangeability” and whether the inferences we wish to make depend on

the particular levels of a factor included in a study. As noted in Longford

(1993, p.24), the view presented by Searle (1971) is to consider a study a re-

sult of a random process. If another realization of this process would lead

to the same levels for a given factor, then that factor should be considered

fixed, and random otherwise. As also noted by Longford (1993, p.24) this idea
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seems quite applicable for designed experiments, but may not be as effective

for observational situations. One point that is often overlooked is that random

effects models can be dangerous when there are a small number of levels of the

random term; of course, fixed effect models can also be dangerous if there is,

in fact, a random term with a small number of levels but this is ignored.

Example 7.10

Consider a situation in which a mixed model with simple linear fixed effect

and a clustering or group structure for the random effect is appropriate. We

could write a model for this situation as

Yi,j = β0 + β1 xi,j + τ δj + σ ǫi,j ,

Yi = β0 + β1 xi + τ
J
∑

j=1

δjI(Yi ∈ Cj) + σ ǫi,

Y (si) = x(si)
T β + τ δ(si) + σ ǫ(si).

Either of the first two formulations may be the easiest in this example, the

third is valuable primarily because it generalizes more easily than either of the

others. Suppose then that in the first model formulation given above j = 1, 2, 3

and xi,j = 1, 2, . . . , 25 for each j, δj ∼ iidN(0, 1), ǫi,j ∼ iidN(0, 1), τ = 0.5,

σ = 0.5, β0 = 1.2 and β1 = 0.5.

From this model, the conditional expected value of Yi,j, given the value of

δj is,

E(Yi,j|δj) = (β0 + τ δj) + β1 xi,j ,

and the conditional variance is,

var(Yi,j|δj) = σ2.
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At the same time, the unconditional (i.e., marginal) expectation and variance

of Yi,j are,

E(Yi,j) = β0 + β1 xi,j; var(Yi,j) = τ 2 + σ2.

A random realization of this model is presented in Figure 7.26, where group

membership is not indicated, and the marginal expectations β0 + β1 xi,j =

1.2 + 0.5 xi,j are given as the solid line.

While at first glance this looks like a fairly “good regression”, a closer look

will reveal that there are substantially (in fact, twice as many) points above

the line as there are below the line. Recall that the line in Figure 7.26 is the

“true” line, not a estimated line. Any estimated line would almost certainly

be “higher” than (but possibly parallel to) the true line. Recall that this

example data set was simulated using 3 values of δj , assumed to be normal

random variables with mean 0 and variance 0.25. It turned out that the values

obtained were δ1 = 1.349, δ2 = 2.248 and δ3 = −1.271. That is, two of the

three values of δj were greater than 0 and one was less. The same data, but

this time identified by “group”, along with the conditional means and same

overall marginal mean as in Figure 7.26 are given in Figure 7.27. What can

be gained from this example?

1. When data are obtained from clusters or groups, it can be misleading to

base estimates of marginal structure on a small number of groups. The

collection of data from an odd or even number of groups is of little import;

it could easily have occurred that all three values of δj were positive (or

negative).

2. It may be that, in situations that involve a small number of groups,

conditional analyses are more meaningful than attempting to model the
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Figure 7.26: Scatterplot of simulated data from a random effects model with

three clusters or groups.
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Figure 7.27: Scatterplot of simulated data as in Figure 7.26, but with group

identification and conditional means added.
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marginal structure. For example, it is clear from Figure 7.27 that con-

ditional regressions fit to each group individually would give reasonably

good estimates of the conditional mean structures (relation between re-

sponses and covariate). It would be difficult, if not impossible, however,

to obtain a “good” estimate of the marginal mean structure from these

data (although an unbiased estimate could be obtained).

Linear Random Coefficient Models

In at least Statistics 500 you were introduced to mixed models that included

an interaction term between the random and fixed effects, probably along the

lines of

Yi,j,k = µ+ αi + βj + (αβ)i,j + σ ǫi,j,k, (7.26)

where i = 1, . . . , a indexed fixed effects, j = 1, . . . , b indexed random effects,

and the interaction (αβ)i,j was hence also a random term in the model, usually

with an assumption that (αβ)i,j ∼ iidN(0, σαβ) or something similar. This

formulation draws on the usual interpretation of models for only fixed effects;

the interpretation of a finding that σ2
αβ differs from zero implies that fixed

effects are not constant across levels of the random effect or vice versa. When

the fixed effects in model (7.26) involve one or more covariates that function

on a ratio scale, this implies that each group (as defined by the random effect

terms βj) may have its own “regression line”. Compare this to the model

of Example 7.10 in which each group had its own intercept, but there was

common slope across groups (see, e.g., Figure 7.27).

This situation is often modeled by what we are calling random coefficient

models after Longford (1993). A standard formulation for this is to take groups
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indexed by j and assign a linear structure as

Y j = Xj β +Zj γj + ǫj ; j = 1, . . . , k, (7.27)

where it is assumed that the columns of Zj consist of a subset of the columns

of Xj . It is often assumed that the first column of Xj is a column of 1s and

that this is the same as the first column of Zj . In (7.27) we generally have

that γj ∼ iidN(0, V ) for some covariance matrix V , and ǫj = (ǫ1,j , . . . , ǫnj ,j)
T

is N(0, σ2Inj
).

Notice what is implied by model (7.27), which is that the “fixed” para-

meters β do not depend on the group j, while the “random” parameters γ

do depend on the group j. It would, of course, be possible to “stack” vec-

tors and matrices in (7.27) to arrive at the general but uninformative version

Y = Xβ +Zγ + ǫ given in Example 7.8 for random effects models.

Example 7.11

Example 7.10 resulted in a model of parallel regression lines that differed in

(random) intercept values. We may expand that situation to one that includes

random slopes by taking

Yi,j = β0 + β1 xi,j + τ1δj + τ2γj xi,j + σ ǫi,j , (7.28)

where δj ∼ iidN(0, 1), γj ∼ iidN(0, 1), ǫi,j ∼ iidN(0, 1) and all of these

variables are independent; note that we could assign (δj , γj) a joint distribution,

but for our purposes at the present independence is sufficient. Model (7.28)

describes a situation in which each group (index j) has its own conditional

regression line (conditional on the random variables δj and γj). In fact, the
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conditional model takes Yi,j to be normally distributed with,

E(Yi,j|δj , γj) = (β0 + τ1δj) + (β1 + τ2γj) xi,j,

and,

var(Yi,j|δj , γj) = σ2.

In the conditional model, Yi,j is independent of all other response variables.

The marginal model, on the other hand, gives,

E(Yi,j) = β0 + β1 xi,j,

var(Yi,j) = τ 2
1 + τ 2

2 x
2
i,j + σ2,

and,

cov(Yi,j, Yk,j) = τ 2
1 + τ 2

2xi,jxk,j,

for i, k = 1, . . . , nj, j = 1, . . . , k. All other covariances are zero.

Notice immediately that the marginal model indicates the variances of re-

sponses becomes large as a function of the magnitude (or absolute value) of

the covariates xi,j . This is not quite so obvious if, for example, we write the

model in the (semi) matrix form of expression (7.27), although that expression

is certainly legitimate. Consider again a situation in which j = 1, 2, 3 and

xi,j = 1, 2, . . . , 25 for each j.

Suppose now that model (7.28) applies with σ2 = 4, τ 2
1 = 0.25 (same as τ 2

in Example 7.10) and τ 2
2 = 0.25 as well. Using the same values of δj ; j = 1, 2, 3

as in Example 7.10, but generating independent values for γj; j = 1, 2, 3 and

ǫi,j; i = 1, . . . , 25; j = 1, 2, 3 produces an overall scatterplot presented in

Figure 7.28. These data used the same values δj ; j = 1, 2, 3 as Example

7.10. The values of γj used were γ1 = −0.181, γ2 = 0.311 and γ3 = −0.420.

The scatterplot of Figure 7.29 shows the data with conditional regression lines
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Figure 7.28: Scatterplot of simulated data from a random coefficient model

with three clusters or groups.
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Figure 7.29: Scatterplot of simulated data as in Figure 7.28, but with condi-

tional regressions added.
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(dashed lines), as well as the marginal expectation function (solid line). Notice

that, in example 7.10 the variance of the random terms was similar to that

of the independent error terms (τ 2 = 0.25 and σ2 = 0.25). In example 7.11,

however, the variance of, in particular, the random term for slopes (γj in model

(7.28)) was much smaller than the error variance (τ2 = 0.25 while σ2 = 4).

These differences were used to produce “nice” pictures, meaning simulated

data that could be displayed on one page. This is, however, the same pattern

we would expect in situations for which linear random effects or linear random

coefficient models are appropriate; note that the relative magnitudes of error

and random effect terms for “nice” data realizations is also influenced by the

range of covariate values.

We will seize the opportunity to use this example for reinforcement of a

point made awhile back that appropriate random components (e.g., symmetric

errors) cannot be determined by examination of histograms that represent

marginal distributions. For the data of Example 7.11, a histogram of all the

responses in presented Figure 7.30. This graph clearly shows a distribution

with long right tail. Yet this is no indication at all that normal error terms

are inappropriate in models for these data. All of the random terms used to

generate these data were, in fact, simulated from normal distributions.

Nonlinear Mixed Effects Models

We will give only a brief overview to efforts at extending the linear mixed

model strategy to formulations involving nonlinear response functions, but

will revisit the issue in a latter section in a discussion of mixed versus mixture

modeling strategies. There have been two primary vehicles used to extend the

mixed modeling idea to nonlinear models based, naturally enough, on nonlinear
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Figure 7.30: Histogram of response variables for Example 7.11.
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additive error models on the one hand, and generalized linear models on the

other.

In the presentation of this subsection we will use the double subscripting

notation Yi,j to facilitate comparison of these notes with most of the published

references cited. This is the context of clusters or groups of random variables

in which Yi,j denotes the ith random variable for the jth cluster. The clas-

sic example is that of a longitudinal study on j = 1, . . . , k individuals with

i = 1, . . . , nj observations for the jth individual. Be alert in reading the litera-

ture, however, as some authors use other notations; see, for example Breslow

and Clayton (1993) for notation more similar to my inclination for modeling

response variables indexed sequentially with i = 1, . . . , n, while Lindstrom and

Bates (1990) reverse the use of i and j subscripts.

What are typically called generalized linear mixed models have the following

form. Let {Yi,ji : i = 1, . . . , nj; j = 1, . . . , k} denote independent response

variables with exponential dispersion family distributions of the form of ex-

pression (7.19),

f(yi,j|θi,j, φ) = exp [φ{yi,jθi,j − b(θi,j)} + c(yi,j, φ)] ,

from which we have µi,j ≡ E(Yi,j) = b′(θi,j) as before. A basic generalized

linear model is completed by taking a known smooth link function g(·) to be

such that g(µi,j) = ηi,j , where ηi,j is given as the linear predictor in expression

(7.20), ηi,j = xTi,jβ. To formulate a generalized linear mixed model, we simply

extend the linear predictor in the same manner as the linear response function

in expression (7.27),

ηi,j = xTi,j β + zTi,j γj,

which then gives the systematic component of the mixed model as

g(µi,j) = ηi,j = xTi,j β + zTi,j γj, (7.29)
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for γj ∼ Fγ with E(γj) = 0. Almost always, Fγ is taken to be multivariate

normal with a covariance matrix of known parameterized form, Γ(ψ) say. For

examples of this type of model see Zeger, Liang, and Albert (1988), Zeger and

Karim (1991), Breslow and Clayton (1993), McGilchrist (1994), and McCul-

loch (1997).

The other form of nonlinear mixed models is to take the basic form of a

nonlinear additive error model, given in expression (7.1) as, for i = 1, . . . , nj ,

j = 1, . . . , k,

Yi,j = g(xi,j, β) + σ ǫi,j,

where, usually, ǫi,j ∼ iidN(0, 1). This model is extended in a straightforward

manner to have the mixed effects formulation as,

Yi,j = g(xi,j , λj) + σ ǫi,j , (7.30)

where

λj = β + γj,

where, as for generalized linear mixed models, γj ∼ Fγ with E(γj) = 0 and,

almost always, Fγ is taken to be multivariate normal with a covariance matrix

Γ(ψ). Note that Lindstrom and Bates, for example, use a more complex ver-

sion in which λj = Aj β + Bj γj, where Aj and Bj are “design matrices” for

parameters. I have kept the specification of (40) simple, which corresponds to

Aj = I and Bj = I, the identity matrix (this is the most common situation).

The vast majority of attention in the literature has centered on estimation

of parameters in these models (e.g., Zeger, Liang, and Albert, 1988; Schall,

1991; Zeger and Karim, 1991; Breslow and Clayton, 1993; McGilchrist, 1994;

Kuk, 1995; McCulloch, 1997). While this is not inappropriate, given the diffi-

culties involved (we hope to touch on this in the section on estimation meth-

ods), it is true that much less attention has been paid to the modeling aspects
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of how such nonlinear mixed structures conceptualize scientific mechanisms or

phenomena of interest (i.e., Section 5.3 again). Without going into great detail

at this point we will indicate the basic difficulty in interpretation.

Consider first a linear mixed model of the form

Yi,j = xTi,j β + zTi,j γj + σ ǫi,j , (7.31)

with ǫi,j ∼ iidN(0, 1) and γj ∼ indepN(0,Γ(ψ)). Here, in a manner similar

to what we saw in Example 7.11, conditional and marginal systematic model

components (expectation functions) are,

E(Yi,j|γj) = xi,j β + zTi,j γj,

E(Yi,j) = xTi,j β.

That is, the fixed parameters β have exactly the same effect on responses in

a marginal model as they do in a conditional model. Thus, if we estimated

the model from a set of longitudinal observations on individuals {Yi,j : i =

1, . . . , nj; j = 1, . . . , k} using model (7.31), or estimated the model from a set

of independent observations {Yi,j : i ≡ 1; j = 1, . . . , k}, we would be estimat-

ing the same β. The difference, relative to the fixed parameter β is only in the

marginal covariance structure that results from considering “commonalities”

among groups of responses in (7.31). This is exemplified in the comment of

Lindstrom and Bates (1990, p. 686) that “In fact, the SS linear mixed ef-

fects model [our conditional model] can be viewed as just one way to generate

a parameterization for the marginal covariance in a PA model [our marginal

model].”; the acronyms SS and PA stand for “subject specific” and “population

average” models and were used initially by Zeger, Liang and Albert (1988).

The implication is that it is parameters in the marginal model that are truly
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of interest, and consideration of the conditional model primarily provides in-

formation by which can make estimation of those parameters more efficient.

This idea is common in the literature on nonlinear mixed effects models which

has, in large part, centered on population-level models in biostatistics.

Now consider a nonlinear mixed model of the form of expression (40), which

can also be written as,

Yi,j = g(xi,j, β + γj) + σ ǫi,j. (7.32)

Here, β is still the fixed parameter. The expected values for conditional and

marginal models under the formulation (7.32) are,

E(Yi,j|γj) = g(xi,j , β,+γj),

E(Yi,j) = E {g(xi,j, β,+γj)}

=
∫

g(xi,j, β,+γj) d Fγ(γj).

If g(·) is a nonlinear function, it will not be true that E(Yi,j) = g(xi,j, β) even

though we do have E(γj) = 0; this is a consequence of Jensen’s Inequality. So,

the basic difficulty with nonlinear mixed models (the same phenomenon is true

for generalized linear mixed models) is what interpretation should be attached

to the fixed parameter. Clearly, the parameter beta in a model with E(Yi,j) =

g(xi, β) is not the same as the β in model (7.32); there is an argument that it

can be “approximately” the same under certain conditions (see Section 7.4.2).

In the introduction to Chapter 7.4 I offered some relatively harsh words

regarding nonlinear mixed models. This is not a consequence that they suffer

from the fact that expectations of nonlinear functions of random variables are

not equal to those same functions of the expectations (this is simply Jensen’s

Inequality). Models formulated in the next subsection as hierarchical models
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will not be different in this regard. A stumbling block for writing nonlinear

models in a mixed model form occurs if one attempts to write random pa-

rameters as θ = θfixed + θrandom, but yet to interpret θfixed as something

meaningful other than simply the expected value of θ. Why has there been

so much effort devoted to writing models in this way? I have no convincing

answer. In the next subsection we will consider an alternative approach to

the formulation of models with multiple stochastic components that seems to

have a more pleasing scientific context in general than do mixed models, and

focuses to a much greater extent on the conditional model form as what is

meaningful.

7.4.2 Models With Parameter Hierarchies

Consider a set of random variables {Yi : i = 1, . . . , n} that are associated with

observable quantities. We will call these “observable random variables”, even

though we know that “observable” is not quite an accurate adjective to ap-

ply to the concept of random variables (see Chapter 5.1). A basic statistical

model for such random variables represents a conceptualization of a scien-

tific mechanism or phenomenon of interest, through some (possibly function

of) the parameter vector θ. Probability distributions assigned to the random

variables Yi represent the variability or uncertainty associated with observable

quantities, given our conceptualization of the underlying mechanism through

θ. The specification of a model such as f(yi|θ) thus is a model for an observable

process, and we will call it the observation process or data model.

Now, consider the collection of observations corresponding to the concep-

tualization {Yi : i = 1, . . . , n} with distributions f(yi|θ); i = 1, . . . , n under

a number of different sets of circumstances. The setting of Example 7.6 can
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be used to illustrate this. Suppose, for example, that some generalized linear

model (e.g., inverse Gaussian random component with log link) was deemed

appropriate to represent the relation between Cd concentration and length in

Yellow Perch from the reference basin in Little Rock Lake (see Figure 7.21).

Would we expect this same regression equation (that is, with the same para-

meter values) to also describe the relation of Cd concentration to length in

Yellow Perch from Lake Puckaway (a lake somewhat larger than Little Rock

Lake, and located in south-central rather than north-central Wisconsin)? Most

likely we would not be that naive. We might believe, hope, or wish to investi-

gate whether the same model structure (i.e., inverse Gaussian random compo-

nent with log link) is adequate in both situations, but it would be unrealistic

to assume that the same parameter values would apply. In effect, given that

that the relation between responses (Cd concentration) and covariate (length)

does reflect a meaningful mechanism (bioaccumulation of Cd), the two lakes,

Little Rock in the north and Puckaway in the south, represent two different

manifestations of that mechanism. If our model form is adequate to describe

the mechanism over a range of situations, differences in the parameter values

reflect the variability in the way the mechanism is manifested under different

circumstances.

Now suppose that we were able to obtain observations from a variety of

particular manifestations of the mechanism in, for example, k different lakes (a

random sample of lakes would be good here). Then, we might take each lake

as having its own regression, and model the parameters of those regressions

as coming from some distribution. The mechanism we are trying to model is

then embodied in the distribution of parameters, not necessarily a marginal

model. It will likely be true that we need the joint marginal distribution of

all our observable random variables in order to estimate that distribution, but
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the form of the marginal model itself may be of little concern otherwise.

Basic Mixture Models

We will first consider situations that involve groups of independent response

variables, for which each variable has its own distribution. The simplest of

these are the beta-binomial and gamma-Poisson mixture models. Such models

are useful in comparison of groups. These models have sometimes been con-

sider ways to cope with what is called overdispersion, but we present them

here in the context of the introductory comments to this section. In addition,

we will describe these models as they would be formulated for a single group;

this is adequate for the comparison of groups as will become clear when we

discuss estimation and inference.

Consider a set response variables {Yi : i = 1, . . . , n}, assumed to be in-

dependent given a corresponding set of parameters {θi : i = 1, . . . , n}. Let

the density or mass functions of the Yi be denoted as {f(yi|θi) : i = 1, . . . , n}.
This set of distributions then constitutes the data model or observation process.

Now, let the parameters θi be iid random variables following a common density

or mass function g(θi|λ). This is then the random parameter model or what we

will call the mixing distribution. Following the argument in the introductory

comments, the scientific mechanism or phenomenon of interest is now concep-

tualized through the parameter λ, or some function of λ. We can write the

joint data model as

f(y1, . . . , yn|θ1, . . . , θn) = f(y|θ) =
n
∏

i=1

f(yi|θi),

and the joint random parameter model as,

g(θ1, . . . , θn|λ) = g(θ|λ) =
n
∏

i=1

g(θi|λ).
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The joint “marginal” distribution of the response variables is then derived as,

h(y|λ) =
∫

. . . ,
∫

f(y|θ) g(θ|λ) dθ1, . . . , dθn.

Now, because of independence throughout this model formulation, it is gener-

ally simpler to derive h(y|λ) as

h(y|λ) =
n
∏

i=1

h(yi|λ),

where,

h(yi|λ) =
∫

f(yi|θi) g(θi|λ) dθi. (7.33)

In the above general notation, we use the following nomenclature:

• f(yi|θ) is the data model for Yi

• g(θ|λ) is the mixing distribution

• h(yi|λ) is the resultant mixture of f over g

• log{h(y|λ) =
∑

i log{h(yi|λ)} is the marginal or mixture log likelihood,

a figures prominently in most useful methods for estimation of λ (i.e.,

maximum likelihood or Bayesian analysis)

Example 7.12

The Central Valley of California is a large agricultural region, but largely be-

cause of extensive irrigation. The Central Valley was originally quite arid, and

the underlying geology is that of an ancient sea bed. It is also a historical stop-

ping grounds for migratory waterfowl in what is called the “Pacific Flyway”,

essentially a broad corridor for waterfowl that breed in the north (e.g., Alaska

and British Columbia) but winter in Mexico and Central America. When one
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irrigates an area heavily, over a period of years the water table rises. If that

area was formed on the sedimentary material of an ancient sea bed, the un-

derlying bedrock contains a large amount of minerals and salts, which become

dissolved as excess irrigation water percolates down through the soil. When

the water table rises to the level of the root zone of plants, the salinity kills the

plants. The engineering solution to this problem is to tile agricultural fields,

and drain excess irrigation water from the ground. There of course needs to be

a depository for this “irrigation return flow” which, in the Central Valley was

accomplished by construction of a great number of “evaporation ponds”. The

original thought was that such ponds would also be ideal habitat for migrating

waterfowl as they moved through the area, as well as holding the potential for

benefits from human recreation. But, when salt and mineral-laden irrigation

return water evaporates it leaves behind much of the salt and mineral burden,

which can become toxic in high concentrations. When the evaporation ponds

in the Central Valley began to yield deformed frogs (e.g., six legs, two heads

but no legs) and other aquatic life, concern was raised for both the health

of the ecosystem and potential implications for humans using the ponds for

fishing, boating, and other recreational activities.

To make a long story somewhat shorter, attention eventually focused on

Selenium (Se), a necessary trace element for life to exist, but teratogenic in

high concentrations. A contentious issue, however, was whether Se was in fact

causing problems “in the real world”, or whether it could only be shown to have

an effect in controlled laboratory studies using unrealistically high exposures.

A large number of field studies of the Central Valley region ensued. One such

study was conducted by the U.S. Fish and Wildlife Service to examine the

potential teratogenic effect of irrigation return water to aquatic life by looking

at reproductive success in Mosquitofish Gambusia spp.. Gambusia are a small
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fish that form the basis of many aquatic food chains in this region, and they

are also one of the few fish taxa that are viviparous (give live birth).

Now, for irrigation return water to be delivered to evaporation ponds re-

quires the construction of what are called “irrigation return flow canals”. One

of the larger of these in the Central Valley is called the San Luis Drain. In

1983 a large fish kill was observed in the San Luis Drain and Se levels at that

time were extremely high. From 1983 to 1985, Gambusia was the only fish

observed in the San Luis Drain, although previously the canal had supported

populations of largemouth bass, striped bass, catfish, and bluegill, among oth-

ers. A nearby area, the Volta National Wildlife Refuge receives no irrigation

return water, and did not experience a similar fish kill.

In June, 1985, gravid female Gambusia were collected from both the San

Luis Drain and the Volta NWR. Fish of similar length, weight, and stage of

pregnancy were held in the laboratory until parturition and the number of

live and stillborn young counted for each female. Now, the problem was, of

course, not so simple. One concern was that fish collected from one type of

water but held in clean laboratory water could undergo shock, thus affecting

their reproductive success. This is particularly true if the salinity level of the

collection water and holding water differs. The average salinity of water in the

San Luis Drain (SLD) around the time of the study was judged to be about

16 ppm, while that of the Volta area was 10 ppm. As a result, laboratory

water was clean of all ionic content (R − 0, pronounced “R-oh”) and then

reconstituted to 10 and 16 ppm salinities (R − 10 and R − 16). There were

actually four treatment groups used in the study. SLD fish held in R− 10 and

R− 16 water, and Volta fish held in R− 10 and R− 16 water. The data used

here consisted of observations of the total number of young for each female

and the number of young born live. Thus, high proportions are an indication



7.4. MULTIPLE RANDOM COMPONENTS 271

of good reproductive success while low proportions are an indication of poor

reproductive success.

We will hopefully have access to the data in lab, but for now suffice it

that the observed proportions indicate the presence of “overdispersion”, that

is, more variability among females than if all individuals within a treatment

group were conceptualized as generating identical binomial outcomes (we can

find a test for this, e.g., in Snedecor and Cochran, 1967). As a result, a beta-

binomial model was fit to each group.

For one treatment group (e.g., SLD with R-16 holding water) let Yi; i =

1, . . . , m be random variables associated with the number of live young pro-

duced by female i. Let ni; i = 1, . . . , m be the total number of young for

female i; we will consider the ni fixed constants, although it would certainly

be reasonable to also model them as random variables in a more complex struc-

ture. Given parameters θi; ı = 1, . . . , m, assume that the Yi are conditionally

independent with probability mass functions

fi(yi|θi) ∝ θyi

i (1 − θi)
ni−yi, (7.34)

for yi = 0, 1, . . . , ni and where 0 < θi < 1. Further, assume that θi; i =

1, . . . , m are iid with probability density functions,

g(θi|α, β) =
Γ(α + β)

Γ(α) Γ(β)
θα−1
i (1 − θi)

β−1, (7.35)

for 0 < θi < 1 and where 0 < α and 0 < β.

Combining the data model (7.34) and the mixture (or random parameter

model) (7.35) yields the marginal pmf,

h(yi|α, β) ∝ Γ(α+ β)

Γ(α) Γ(β)

∫ 1

0
θα+yi−1
i (1 − θi)

β+ni−yi−1 d θi
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=
Γ(α + β)

Γ(α) Γ(β)

Γ(α + yi) Γ(β + ni − yi)

Γ(α+ β + ni)

=

yi−1
∏

j=0

(α + j)
ni−yi−1
∏

j=0

(β + j)

ni−1
∏

j=0

(α + β + j)

(7.36)

Comment

It is important here to keep track of the sets of possible values for all of the

various quantities involved in these derivations. We have,

1. In f(yi|θi), yi ∈ ΩY = {0, 1, . . . , ni} and θi ∈ Θ = (0, 1).

2. In g(θi|α, β), θi ∈ Θ = (0, 1) and α > 0, β > 0.

3. In h(yi|α, β), yi ∈ ΩY = {0, 1, . . . , ni} and α > 0, β > 0.

It is crucial that these sets of possible values (for yi, θi, α, β) all match through-

out the progression. Thus, the function h(·) is a probability mass function

for the discrete random variable Yi, and the derivation of h(yi|α, β) has not

changed the set of possible values from f(yi|θi). If it had, our model would

not make sense.

Now, in any estimation method we use, the log likelihood formed from

the pmfs in (7.36) will be important (e.g., method of moments, maximum

likelihood or Bayesian estimation). Using independence (Yis conditionally in-

dependent given the θis, and the θis iid implies that marginally the Yis are

iid) we have that the log likelihood is,

L(α, β) ∝
m
∑

i=1





yi−1
∑

j=0

log(α+ j) +
ni−yi−1
∑

j=0

log(β + j)

−
ni−1
∑

j=0

log(α+ β + j)



 . (7.37)
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To illustrate what can be obtained from this model, consider the Gambusia

data. The scientific mechanism or phenomenon of interest is embodied in the

parameters α and β of the mixture model with log likelihood (7.37) which

is written for one group (i.e., treatment group). In this example we have 4

treatment groups, SLDR− 10, SLDR− 16, V oltaR− 10 and V oltaR− 16.

An initial question of interest might be whether there is evidence of a difference

between the holding water ionic contents R−10 and R−16 within each location

(SLD and Volta). The log likelihood (7.37) was maximized (how to do this

in the estimation section) in α and β separately for each of the 4 treatment

groups. The resulting maximum likelihood estimates α̂ and β̂ were put into

beta pdfs, and those functions graphed. The two resulting estimated densities

for R − 10 and R − 16 holding waters are shown for the SLD area in Figure

7.31 and for the Volta area in Figure 7.32. Recall that the observed quantities

were number of live young, so that high values of the beta variates are “good”.

It would appear from Figure 7.31 that a holding water of lower ionic content

R − 10 than the SLD environment from which these fish were collected (16

ppm) has shifted probability mass to the right (“good”) in these densities.

The same effect seems to be even more pronounced in Figure 7.32, computed

for data from the Volta area. Thus, it appears that fish in R − 10 holding

water may have had higher reproductive success than their counterparts (i.e.,

fish from the same area) that were held in R − 16 water and that this could

be true for both the SLD and Volta areas. We might proceed then to compare

fish between the two areas at a constant level of holding water ionic strength.

If, for example, it is only the difference between R− 10 and R− 16 water that

is important, then there should be no difference between SLD fish at R − 16

and Volta fish at R− 16.

Estimated beta mixing densities are presented for fish from the two areas
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Figure 7.31: Estimated beta mixing pdfs for the SLD area with R − 10 and

R− 16 holding waters.
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Figure 7.32: Estimated beta mixing pdfs for the Volta area with R − 10 and

R− 16 holding waters.
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Figure 7.33: Estimated beta mixing pdfs for the SLD and Volta areas with

R− 16 holding water.

in R − 16 holding water in Figure 7.33. Here, both densities are J shaped,

although it appears that the density for the Volta area “picks up probability”

more slowly than that for the SLD area. Often, in comparison of J and U

shaped densities it is easier to interpret cumulative densities, and the cdfs that

correspond to the densities of Figure 7.33 are presented in Figure 7.34. It is

clear from this plot that the distribution for the SLD fish does place higher

probability on smaller values than the distribution for the Volta fish. We

have not conducted a formal testing procedure but for now assume that the

difference in these distributions is meaningful (i.e., significant). The conclusion
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Figure 7.34: Estimated beta mixing cdfs for the SLD and Volta areas with

R− 16 holding water.
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Figure 7.35: Estimated beta mixing pdfs for the SLD and Volta areas with

R− 10 holding water.

we would reach is that the fish from SLD tend to have fewer live young than

the fish from Volta.

A similar comparison can be made for fish held in R − 10 water, and the

resulting densities and cumulative densities are presented in Figure 7.35 and

7.36, respectively. The pdf for the SLD area indicates the possibility of positive

probability at both ends of the range (0, 1) with a uniform accumulation of

probability over the remainder of the possible values, although it is difficult to

tell whether or not there is substantial mass at the ends (the upward bends

of the U may be so sharp as to have little probability mass beneath them).
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Figure 7.36: Estimate beta mixing pdfs for the SLD and Volta areas with

R− 10 holding water.

The density for the Volta area again indicates the majority of probability is

attained for larger values. The cdfs make the situation with the SLD area

more clear. In Figure 7.36 it is clear that the distribution is nearly uniform,

with little additional probability contained at the two extremes.

Thus far, we would seem to have an indication (albeit only speculative at

this point without a formal probabilistic comparison) that fish from the SLD

area tend to have broods of fish with a smaller proportion of live young than

do fish from the Volta region, and this is true across ionic strengths of holding

water. This provides at least indirect evidence that there is something about



280 CHAPTER 7. MODEL SPECIFICATION

Variate Value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

S-16
V-10

Figure 7.37: Estimate beta mixing pdfs for the Volta area with R − 10 and

R− 16 holding waters.

the SLD area that decreases reproductive success other than simple that fact

that the water is of higher ionic strength. In nature, the SLD area has ionic

strength of about 16ppm, while the value for the Volta area is about 10ppm,

and fish from these areas are not moved to different water before giving birth.

What difference might we expect to see in the actual situations of SLD and

Volta? This is represented by a comparison of the SLD R − 16 and Volta

R−10 groups, the pdfs for which are presented in Figure 7.37. The distinction

between these pdfs is clear, the J shaped densities appearing as almost “mirror

images” relative to regions of positive probability. An interesting summary of
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Figure 7.38: Estimated beta mixing cdfs for all four groups of fish.

the four groups used in this study is presented by the plot containing all four

cdfs in Figure 7.38. Here, the effect of higher ionic strength of holding water

is seen as a shift of probability to smaller values of the beta random variables

θi for both SLD and Volta areas, while the same difference is seen between

distributions for the two areas when compared within ionic strength of holding

waters. A complication to reaching a totally unambiguous conclusion is that

the cdf for SLD R−10 puts more probability at higher values than does the cdf

for Volta at R− 16, although we certainly do not know at this point whether

that apparent difference is meaningful.

Our general notation for a mixture distribution given by expression (7.33)
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applies to situations in which the dominating measure ν is either Lebesgue

measure or counting measure. When ν is counting measure, the resultant h(·)
is called a finite mixture distribution. In this case the mixture distribution

g(·) is a probability mass function that is typically assumed to put positive

probability at a small set of points given by {θi : i = 1, . . . , k}. If, in this

context, we have

g(θi|λ) =



































































π1 if θi = θ1

π2 if θi = θ2

. .

. .

. .

πk if θi = θk

then (7.33) becomes

h(yi|π1, . . . , πk) =
k
∑

j=1

πj f(yi|θj). (7.38)

The density or mass function given by (7.39), depending on whether f is a pdf

or pmf, is that of a finite mixture. The term mixture model historically im-

plied a finite mixture and, to some statisticians, still does; the term compound

distribution used to be used to refer to what we are calling mixtures, although

this has nearly died in standard nomenclature.

Finite mixtures are useful in a number of circumstances. We may have a

scientific hypothesis that the observed data have arisen from several “groups”

that differ in distributional characteristics, but it is impossible to assign sam-

pling units to these groups a priori.

Example 7.13
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Consider a hypothetical example in which the goal is to determine whether

two different “substrates” have an effect on the length of time blooms last

for cultured orchids. It is believed (or suspected) that the orchids in ques-

tion consist of two sub-populations of “short-timers” and “long-timers” for

genetic reasons that we have not yet discovered (based, for example, on the

observation of bimodal histograms for bloom length in previous observations).

Since plants are relatively “plastic” in terms of genetic expression, we would

like to know whether the growth substrates might affect the proportion of a

given seed stock that develop into short-timers and long-timers, as well as

determining whether the substrates affect length of viable bloom within each

sub-population. We have not been able to establish a relation between any

observable characteristics and short versus long bloom times and, in addition,

it is likely this is a artificial division with considerable overlap in the tails of

bloom time distributions. In this situation it might be appropriate to consider

fitting a finite mixture model with k = 2 “components”and component distri-

butions f(yi|θ1) and f(yi|θ2). We might, based on either previous experience

or simply in hopes that it would prove appropriate, take the component dis-

tributions to be normal with parameters θ1 ≡ (µ1, σ
2
1) and θ2 ≡ (µ2, σ

2
2). This

would result in a model (for each treatment group) containing 6 parameters

to be estimated, namely π1, π2, µ1, µ2, σ
2
1 , and σ2

2.

It is also the case that many observed data patterns may be described by

finite mixtures of normal distributions. This application is perhaps less of a

true “modeling” exercise than it is a matter of pure “data description”. Note

that, in both of these potential applications of finite mixture distributions,

the number of components k is assumed known. The estimation of a finite

mixture with an unknown number of component distributions is a difficult
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problem; there are several ideas for how to approach the problem of estimat-

ing k along with other model parameters, which are beyond the scope of this

course.

To close this subsection, we list a number of data model/random parameter

model combinations that are frequently used. There is nothing “magic” about

these combinations, and our thinking should not be constrained by the fol-

lowing list. Nevertheless, the following data model/random parameter model

combinations do have nice mathematical properties and often seem reasonable

combinations to use in practical situations.

1. Beta-Binomial. This mixture model, illustrated in example 7.11, was

introduced by Williams (1982) in the context of studies of teratogenic

effects. Despite that fact that Williams presents both the model and

analysis in purely frequentist terms, (too) many statisticians still asso-

ciate mixture models with Bayesian formulations.

2. Gamma-Poisson. Here, the data model consists of conditionally indepen-

dent Poisson distributions (e.g., for counts) with parameters that follow

iid gamma distributions. This model is sometimes referred to as a “neg-

ative binomial” distribution, but under the development of a negative

binomial as the number of binary trials preceding a given number of

successes, this is only true for integer-valued gamma parameters.

3. Normal-Normal. If the data model consists of conditionally independent

normals with either known variances or variances considered as uninter-

esting “nuisance” parameters, a natural choice for the distributions of

data distribution means is again the normal.

4. Normal-Inverse Gamma-Normal. If the data model consists of condi-
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tionally independent normals with unknown variances that are also to

be modeled as random variables (as well as the means), then a common

structure is to assign the random data model means a normal distribution

and the random data model variances an inverse gamma distribution; an

inverse gamma distribution is the distribution of 1/X for a random vari-

able X that follows a gamma distribution.

5. Multinomial-Dirichlet. The multinomial is an extension of the binomial.

The Dirichlet is an extension of the beta. In the same way that a beta

makes an attractive mixing distribution for binomial data models, the

Dirichlet makes an attractive mixing distribution for multinomial data

models. It is important to note, however, that what are called bounded

sum conditions become important in such formulations. That is, if Y i ≡
(Y1,i, . . . , Yk,1) is multinomial withm polychotomous trials , then

∑

Yh,i =

m and, if the parameters of a multinomial are taken to be p1, . . . , pk,

then
∑

ph = 1. Such bounded sum conditions automatically introduce

negative dependence among the component quantities.

While we certainly want to avoid thinking that the combinations given above

are the “best” combinations of data models with random parameter models,

one thing the all share in common is that the sets of possible values for the

various quantities involved match nicely.

Mixture Models in Regression

It should be clear that for linear regression models, assigning the regression

parameters a normal distribution gives equivalent models to using random

effects and/or random coefficient linear models as discussed under the heading

of Mixed Models in Section 7.4.1.



286 CHAPTER 7. MODEL SPECIFICATION

For example, a linear random effects model for grouped random variables

was given in expression (7.24) as

Yi = xTi β + τ
J
∑

j=1

δjI(i ∈ Cj) + σǫi,

and was also written for double subscripting and a single covariate in Example

7.10 as,

Yi,j = β0 + β1xi,j + τδj + σǫi,j.

In these models we took δj ∼ iidN(0, 1). The conditional models may be

written as,

Yi =







β0 + τ
J
∑

j=1

δjI(i ∈ Cj)






+ xTi β + σǫi

or

Yi,j = (β0 + τδj) + β1xi,j + σǫi,j,

still with δj ∼ iidN(0, 1). But, these models could also be written with

random intercept parameters as,

Yi =
J
∑

j=1

β0,jI(i ∈ Cj) + xTi β + σǫi,

or

Yi,j = β0,j + β1xi,j + σǫi,j , (7.39)

where now β0,j ∼ iidN(B0, τ
2). The models of (7.39) are in the form of

mixture models, but are equivalent to the previous random effects models.

Similarly, linear random coefficients models, such as those of (7.27),

Y j = Xjβ +Zjγj + σǫj ,

or (7.28),

Yi,j = β0 + β1xi,j + τ1δj + τ2γjxi,j + σǫi,j
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may be written as a random parameter models. Let W j denote a the matrix

of columns of Xj that are not included in Zj. Then the first model above can

be written as, with βf a fixed constant,

Y j = Wβf +Zjβj + σǫj .

In situations for which Zj = X j (which are probably the most common) or

in which there is only one covariate measured on a ratio or interval scale we

can define xi ≡ (1, x1,i, . . . , xp,i)
T , βi ≡ (β0,i, . . . , βp,i)

T , and write the linear

random parameter regression model as,

Yi = xTi βi + σǫi, (7.40)

where β ≡ (βT1 , . . . ,β
T
n )T has a joint (n × (p + 1)) Gaussian distribution. If

the random variables Yi are grouped, we can use model (7.40) with βi = βj

if i is in group j, j = 1, . . . , k, and take β = (βT1 , . . . ,β
T
k )T to have a joint

(k × (p+ 1)) Gaussian distribution.

Notice that the notation becomes far more involved than the concept, here.

For linear regressions in which we want one or more of the regression para-

meters to have a random component, we can write those coefficients as either

a mean plus random portion (having mean 0), which is the mixed model for-

mulation, or as random variables having a location scale distribution (almost

always normal), which is the random parameter formulation. The models are

equivalent, as we have shown for the conditional models. This is also true for

the marginal models since, if h(x, β) is a linear function of fixed x and random

β, E{h(x, β)} = h(x,E{β}).
The situation changes little, relative to conditional model specification,

for nonlinear additive error models. That is, if a model is formulated as in

expression (7.1), it makes little difference whether we take β = βf + βr, with



288 CHAPTER 7. MODEL SPECIFICATION

f denoting fixed and r denoting random, or take β as random with some

location-scale distribution. This all stems from the fact that, for any random

variable ǫ following a location scale distribution F with mean 0 and variance

1, the following are equivalent:

Q = µQ + τ ǫ; ǫ ∼ F

and

Q ∼ F (µQ, τ
2)

The modeling decision between mixed and mixture formulations will depend

on (1) whether the mean µQ has any viable interpretation in a marginal model,

and (2) whether a location-scale distribution is appropriate for modeling β.

The situation is slightly different in the case of models formulated along

the lines of generalized linear models. Here, of course, the emphasis may well

be on a (other than location-scale) distribution for the response variables, as

discussed at some length in Section 7.3.2. There are two alternative model

formulations that are commonly used in this situation. The first is similar to

what has already been covered in this subsection, except that the systematic

model component is not linear. Specifically, let {Yi : i = 1, . . . , n} denote

response random variables that follow a typical generalized linear model, with

pdfs or pmfs of the Yi as in expression (7.19) and,

g(µi) = xTi β,

which combines expressions (7.20) and (7.21). If the link function g(·) has

range over the entire line, then it is common to assign β a Gaussian distribution

(e.g., Gelfand and Ghosh, 2000). For example, if the Yi are Poisson with means

λi, in the exponential dispersion family form of (7.19) the natural parameter



7.4. MULTIPLE RANDOM COMPONENTS 289

is

θi = log(λi),

which has values −∞ < θi <∞. If g(·) is the canonical link g(µi) ≡ g(λi) = θi,

then we have −∞ < xTi βi < ∞, and a Gaussian distribution for βi may well

be adequate.

But, the exponential dispersion family form of (7.19) presents an alternative

for model formulation. This is to take the natural parameters θi as random,

and then assign the systematic model component at the level of these random

parameters. Specifically, let Yi have the form of an exponential dispersion

family (7.19), and take, the θi, for i = 1, . . . , n to have density or mass functions

given by,

h(θi|λi, ψ) = exp [ψ{λi θi − b(θi)} + k(λi, ψ)] , (7.41)

where b(·) is the same function that appears in the exponential form for the

response variables Yi. For a more complete discussion of such models see Albert

(1988), although that paper focuses on a Bayesian analysis, which is not (at

this point) our emphasis. To complete the model, then, take a known smooth

function g(·) such that,

g(λi) = xTi β,

for fixed parameters β. Now, it turns out that (e.g., Morris, 1982) that

E(θi) = λi so that assigning a systematic model component through the link

function g(·) to λi from (7.41) is assigning a systematic model component to

the expectation of the natural parameters rather than the random parameters

themselves. It is not well understood what the difference is in what is being

modeled (i.e., the statistical conceptualization given to a problem) between

formulations in which a generalized linear model is assigned to observable

random variables Yi with random regression parameters β and formulations
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in which natural parameters θi are random with a (fixed) generalized linear

model assigned to their expected values λi.

Conditional and Marginal Models

We have touched briefly on the issue of conditional versus marginal models in

a comparison of nonlinear mixed versus mixture models in Section 7.4.1. The

basic issue was presented there as follows:

1. In linear models, regardless of whether they are specified in mixed model

or random parameter (i.e., mixture model) form, the fixed parameters of

the conditional model (or the means of the random parameter distribu-

tion) are parameters in the systematic component of a marginal model

that has the same form (linear) as the conditional model. That is, if

g(xi, βf , βr) is the systematic component of the conditional model spec-

ification in a mixed model structure, with βf fixed and βr random such

that E{βr} = 0, then

E{g(xi, βf , βr)} = g(xi, βf).

Alternatively, if g(xi, βr) is the systematic model component of the con-

ditional model such that E{βr} = βf , then

E{g(xi, βr} = g(xi, E{βr}) = g(xi, βf).

2. Due to Jensen’s Inequality, this same relation does not hold if g(·) is not

a linear function. That is, the expected value of a conditional model

with random parameters (or some fixed and some random parameters)

is not equal to the conditional model evaluated at the expected values of

the random parameters.
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This discrepancy motivated Zeger, Liang and Albert (1988) to introduce the

terms population average and subject specific models to refer to marginal and

conditional model specifications, respectively.

Unfortunately, these terms have sometimes (and are, in fact) easily misin-

terpreted to mean that, in a nonlinear mixed model parameterization, the fixed

parameters represent “typical parameters” in the conditional model while they

represent parameters that produce a “typical response vector” in the marginal

model (e.g., Lindstrom and Bates, 1990, p.686). This may be true for lin-

ear models, but is not at all clear thinking when it comes to nonlinear models.

How in the world can we, as statisticians, explain to scientists that the “typical

response in the population” is not the same as the response for “typical parame-

ter values”. Zeger, Liang and Albert (1988) were very careful in their original

wording, indicating that the population averaged (i.e., marginal) model was a

model for responses averaged over the population, while the subject specific

(i.e., conditional) model was a model for individual responses. This is entirely

correct, and is related to what is often called the aggregation effect in regres-

sion, which is also related to Simpson’s Paradox, often presented in terms of

categorical data. Put simply, there is no reason to believe that a model for

aggregated data should be of the same form as models for unaggregated data.

The question is whether one wishes to formulate a model in which the fo-

cus is on population-level responses or on responses at the level of individual

sampling units. If the former, a mixed model formulation may have some jus-

tification in terms of interpretation of the fixed model parameters (if the model

is linear, but not if it is nonlinear). This is the motivation for considering con-

ditional (or subject-specific) models as a mechanism by which to formulate a

covariance matrix for the marginal distribution of responses (see the material

following expression 7.31 in these notes). If, however, one makes use of the
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mixture concept that a scientific mechanism is leading to different realizations

in different circumstances, then interest centers on conditional model specifica-

tion. That is, the mechanism of interest is not necessarily reflected in a model

for population averages. The “average” mechanism in the population is the

conditional model evaluated at the expected parameter values, h(xi, E{β}),
not the marginal model E{h(x, β)}.

There has been considerable effort to collapse the emphasis on conditional

or marginal models. Zeger, Liang and Albert (1988) and Breslow and Clayton

(1993) both explore the possibility that marginal models constitute first-order

approximations of conditional models, sometimes by adding what is known

as an “offset” in generalized linear models, and sometimes by altering values

of either the covariates or the regression parameters in a systematic fashion.

While such attempts are interesting, and certainly add to our overall knowl-

edge of what such models are doing, they are fundamentally misplaced effort.

That is, if one is primarily interested in modeling population-level responses,

consideration of conditional models serves only to help formulate the marginal

model, primarily in terms of the covariance matrix. If, on the other hand, one

is primarily interested in modeling responses of individual sampling units, the

marginal model is really not a “model” at all, but merely a joint distribution

of response variables that must be used for estimation.

Consider the situation of Example 7.6, dealing with the concentration of

cadmium in fish. Given observations from a number of lakes (i.e., groups or

clusters) our concern is with the manner in which the lengths of fishes are

related to the corresponding cadmium concentrations. Thus, the scientific

mechanism or phenomenon of interest is embodied in the conditional model.

There really is no marginal model in the sense that we care little what relation

(if any) might exist between average length and average cadmium concentra-
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tion for fish from a variety of lakes (which differ in all kinds of factors that

may play a role in determining the relation of interest – lengths and cadmium

concentrations of individual fish).

7.4.3 Latent Variable Models

We turn now to our third manner of formulating models that results in mixture

distributions for marginal response models. This is the use of random variables

to represent “unobservable” effects in a model. The title of latent variables is,

in this context, a broad concept. In many applications connected with the

social sciences, the term latent variable model implies what are known as

“structural equations” models. This is not our implication. Rather, we will

use the term latent variable to refer to the portion of a model that corresponds

to a phenomenon (or a collection of phenomena) that cannot be measured or

observed.

As indicated in the introductory comments of this section on models with

multiple stochastic elements, there are few guiding principles as to how such

models are formulated. Thus, our presentation will consist of an example in-

tended to illustrate the flexibility of such models. In addition, this example is

intended to convey one other aspect of modeling, namely that useful models

are often formulated on the basis of very fundamental scientific concepts. We

will, yet again, bring up the basic message of Chapter 5.3, which is the en-

capsulation of a scientific mechanism or phenomenon of interest in a small set

of model parameters. Latent variables are often a useful manner of modeling

at least some of the things left unexplained by that mechanism in various cir-

cumstances.
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Example 7.14

We have already introduced an example (albeit hypothetical in nature) that

concerned the level of a particular toxic algal genus known as Microcystin

(Example 6.7). This example concerns the same problem, but with real data.

What is pertinent from the previous example is that the concentration of nitro-

gen in lakes and reservoirs may be related to the concentration of Microcystin

in those waters. This idea is based on a very basic ecological concept known

as the Law of Limiting Factors. The fundamental ideas are captured in the

two portions of this theory, called Leibig’s Law of the Minimum and Shelford’s

Law of Tolerance. Very briefly (and in reduced technical form) these two laws

are as follows:

1. Leibig’s Law of the Minimum.

When a biological process (such as growth) depends on a number of nec-

essary inputs (such as nutrients) that are consumed during the process,

the process is limited (i.e., stopped) by the input that is used up the most

quickly. For example, if the growth of a plant depends on the primary

plant nutrients of phosphorus and nitrogen, radiant energy (as sunlight),

and carbon, whichever of these factors are in shortest supply will stop

the growth process when it runs out. This concept is employed, by the

way, in agriculture when a farmer decides what type of fertilizer to apply

to a crop.

2. Shelford’s Law of Tolerance.

The ecological fitness of an organism is often reflected in the abundance

of that organism (e.g., species or genus). The environment in which

organisms exist consist largely of a set of environmental gradients such
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as gradients in altitude, temperature, salinity, oxygen availability, etc.

Along a given gradient, a type of organism will have a range of tolerance

outside of which it cannot exist. But, even within that range, there will

be a preferred level along the gradient at which the organism is most

“comfortable”. This is often represented as a unimodal curve for which

the vertical axis is abundance and the horizontal axis is the environmen-

tal gradient. The mode of the curve is interpreted as the “optimal” level

of the gradient for the given organism.

How do we reflect these ideas in statistical models? Leibig’s law of the

minimum is reflected, for a single factor, in the type of model introduced by

Kaiser, Speckman and Jones (1994), a simple version of which has the form

Yi = xiγ Ui + σ ǫi, (7.42)

in which Yi is the response variable, xi is the factor of concern, and Ui is an

unobservable (i.e., latent) random variable with possible values on the interval

(0, 1). If Ui < 1, then some factor other than xi must be limiting for the

observation connected with the response Yi. Kaiser, Speckman and Jones

(1994) took Ui ∼ iid beta (α, β) and ǫi ∼ iidN(0, 1) for i = 1, . . . , n, and

Ui independent of ǫi. This model leads to an expected data pattern of a

triangular array (or “wedge”) of data scattered below a straight line through

the origin, as illustrated by a simulated data set in Figure 7.39. These data

were simulated using a beta (2, 3) distribution for the latent Ui variables, which

gives an expected value of 0.40 times the line xi γ. There are a host of questions

regarding response function form (e.g., other than linear through the origin)

that we are brushing aside at the moment. The point is that a latent random

variable Ui has been used to model departures from the mechanism (limiting
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Figure 7.39: Simulated data showing model for limiting factors based on

Leibig’s law of the minimum.
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factor) of interest. Various data patterns can be generated by this model,

depending on the values of the beta parameters and σ that are used.

Now, combine this modeling idea with Shelford’s law of tolerance. Con-

sider a unimodal curve that describes the tolerance or affinity of an organism

for various levels of a single environmental gradient (this is Shelford’s law of

tolerance). Certainly, the abundance of that organism depends on a number

of factors besides the one gradient in question, and abundance may not reach

the potential level it could for a given level of the gradient under study (the

limiting factor model concept). The inescapable conclusion is that the entire

unimodal curve in question represents an “optimum”, given that all other fac-

tors are at their “most favorable” levels. Thus, in observed data what should

we expect? We should expect observed values of the abundance of an organism

to be scattered below a unimodal curve, because it is not always true that all

other factors are at their most favorable levels.

What is needed to formulate a model for this situation? Essentially, replac-

ing the linear limit function xi γ of model (7.42) with a unimodal curve. There

are any number of possible choices for unimodal curves, many of which have

restrictions on shape other than unimodality (e.g., a normal pdf is a unimodal

curve, but must always be symmetric). One possibility is the function

f(xi, θ) =
θ1

Γ(θ2 + θ3xi + θ4x2
i )
. (7.43)

The function in expression (7.43) is quite flexible, with fairly nice connections

between its behavior and the values of θ1, θ2, θ3 and θ4; θ1 governs height, θ2

governs whether both or only one tail is seen, θ3 governs rate of increase, and

θ4 governs rate of decrease. A model for the situation we are trying to capture

may then be formulated as,

Yi = f(xi, θ)Ui + σǫi, (7.44)
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where f(·) is given in (7.43), Ui ∼ iidG for some distribution on the interval

(0, 1), and ǫ ∼ iid Fǫ for a location-scale family Fǫ with E(ǫi) = 0 and var(ǫi) =

1.

Model (7.44) has been applied to data on Microcystin abundance (Yi) with

the covariate or potential limiting factor of nitrogen concentration (xi). In

this application, Fǫ was taken to be logistic, and G was a “histogram model”

formed by dividing the unit interval into a partition (e.g., 0 to 0.25, 0.25 to 0.5,

0.5 to 0.75, and 0.75 to 1.0). A simulated data set is presented in Figure 3.41,

along with the true limit function f(xi, θ) (as the solid curve) and an estimated

limit function based on maximum likelihood estimates of the components of θ

(as the dashed curve).

To fully specify models (7.42) or (7.44) we need to write down forms of the

various distributions involved so that we can derive the marginal distribution

of the Yi given parameters involved in the distributions of the Ui and ǫi.

Assuming continuous Yi and continuous Ui, the general form implied by

model (7.44) is as follows. First, for given Ui, the conditional density of Yi is

a location-scale transformation of Fǫ,

f(yi|ui, θ, σ) =
1

σ
fǫ

(

yi − f(xi, θ) ui
σ

)

. (7.45)

The marginal distribution of the Ui are (iid) with pdf g(ui,η) which may

depend on the parameter (vector) η. Then the joint of Yi and Ui is,

p(yi, ui|θ, σ,η) = f(yi|ui, θ, σ) g(ui,η), (7.46)

and the marginal of Yi is given by the mixture distribution,

h(yi|θ, σ,η) =
∫

f(yi|ui, θ, σ) g(ui,η) dui. (7.47)

For model (7.42), which is a special case of (7.44), f(xi, θ) = xiγ, θ ≡ γ, fǫ(·)
is standard normal and g(·) is beta with η ≡ (α, β) so that
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Figure 7.40: Data simulated from model (7.44) with true limit function given

as the solid curve and estimated limit function as the dashed curve.
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p(yi|γ, σ, α, β) =

Γ(α + β)

(2πσ2)1/2Γ(α)Γ(β)

×
∫ 1

0
exp

{−1

2σ2
(yi − γxiui)

2
}

uα−1
i (1 − ui)

β−1 d ui.

In the application to Microcystin data, we defined λj ≡ 0.25 j, for j =

0, 1, 2, 3, 4, defined η ≡ (η1, η2, η3, η4), and took

g(ui|η) = ηj I(λj−1 < ui < λj); j = 1, 2, 3, 4.

Note this is a “histogram” model with probabilities 0.25ηj so that we have

imposed the restriction
4
∑

j=1

ηj = 4.

For the moment, leave fǫ(·) unspecified. Then (7.46) becomes, for j = 1, 2, 3, 4,

p(yi, ui|θ, σ,η) = f(yi|ui, θ, σ)ηj I(λj−1 < ui < λj),

which leads to the mixture distribution of (7.47) as,

h(yi|θ, σ,η) =
4
∑

j=1

ηj

∫ λj

λj−1

f(yi|ui, θ, σ). (7.48)

Now, let

wi ≡
1

σ
{yi − f(xi, θ)ui} ,

or,

ui =
1

f(xi, θ)
(yi − σwi);

d ui
dwi

=
−σ

f(xi, θ)
.

Then from (7.45) and (7.48),

h(yi|θ, σ,η) =
∑

j=1

4ηj

∫ ξj

ξj−1

fǫ(wi)

f(xi, θ)
dwi
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=
4
∑

j=1

ηj
f(xi, θ)

[Fǫ(ξj) − Fǫ(ξj−1)] ,

(7.49)

where

ξj ≡
1

σ
{yi − f(xi, θ)λj−1} ; ξj−1 ≡

1

σ
{yi − f(xi, θ)λj}

The fact that ξj is a function of λj−1 and ξj−1 is a function of λj comes from

(d ui/dwi) < 0. In this particular example, Fǫ was taken to be a logistic

distribution, Fǫ(x) = (1 + exp(x))−1.

Now, all of this effort has been expended to render the mixture (7.59) in a

form that does not involve an unevaluated integral as is present in the mixture

formulated from model (7.42). It would, of course, have been possible to use

the same type of distributions for both Ui and ǫi in (7.44) as was done in (7.42)

or, to use the histogram model for Ui and logistic Fǫ in model (7.42).

In any case, returning to the general notation of (7.45) through (7.47), the

log likelihood for a set of observed y1, . . . , yn is,

L(θ, σ,η) =
n
∑

i=1

h(yi|θ, σ,η). (7.50)

An application of model (7.44) with f(xi, θ) as in (7.43) and the resulting mix-

ture in the form of (7.49) to the actual Microcystin data resulted in estimates

presented in Figure 7.41. In this figure, the unimodal “tolerance” curve (7.43),

evaluated at maximum likelihood estimates of the components of θ is shown

as the solid line, with point-wise 90% interval estimates given as dashed lines.

Actual inference in this problem depends, of course, not only on the estimated

value of θ but also σ and, importantly, η; these latter values determine the

probability that responses reach various proportions of the tolerance curve.

The models presented in this subsection are intended to illustrate the use of

latent variables in the formulation of models, not be an exhaustive survey of
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Figure 7.41: Actual data on abundance of Microcystin as a function of nitrogen

concentration in midwestern lakes and reservoirs.
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the ways that latent variables can be incorporated into models. As we will

(hopefully) see in consideration of methods of estimation, latent variables may

often be considered as “missing information”, which leads to the need for ei-

ther numerical methods for dealing with intractable integrals or estimation

strategies such as the EM algorithm, or both.

7.5 Models Based on Stochastic Processes

The final topic in our tour of basic methods of model specification (Chapter

7) is models that are based on what are typically called stochastic processes.

The most common models included in this category are time-series models,

models of spatial processes, and models used in what is known as queuing the-

ory. Each of these types of models are topics unto themselves (our department

offers 3 courses on time series at different levels, 2 courses on spatial analysis

at different levels, and queuing theory is covered in various places, notably

in a service course offered to computer scientists). Thus, our objective is not

to cover this topic in all of its variety but, rather, to communicate the basic

concepts of stochastic processes and the manner in which they lead to certain

statistical model formulations.

7.5.1 Restrictions in Statistical Models

Consider the simple model, for i = 1, . . . , n,

Yi = µ+ σ ǫi; ǫi ∼ iidN(0, 1).
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This model offers several restrictions on the distribution of the variables Yi.

Certainly there is a restriction to normal distributions, but even more we have

specified that each random variable has the same expected value (µ) and the

same variance (σ2). Such restrictions serve a fundamental purpose, which

is to give us multiple variables from the same statistical population. This is

necessary for progress to be made, first of all in statistical abstraction and

also if we have any hope of producing estimators with known properties. For

example, contrast the above mode with the alternative

Yi = µi + σi ǫi; ǫi ∼ iidN(0, 1).

What would we do with such a model without some restrictions or further

modeling for the µi and/or σi? (not much would be a good answer).

We often place restrictions on distributions through the first two moments

(mean and variance) by:

1. Specifying a constancy among a group of random variables, such as µi =

µ or σ2
i = σ2.

2. Modeling unequal quantities as a function of covariates that depends on

a small number of parameters, such as regression models for means or

variance models such as those described in Section 7.2.4.

3. Modeling of means and/or variances as random variables that follow dis-

tributions with a small number of parameters, such as the hierarchical

or mixture models described in Section 3.4.2.
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7.5.2 Stochastic Processes and Random Fields

The world we encounter on the scale of typical human experience (i.e., forget

special relativity for the moment) is 4−dimensional in nature. Three of these

are spatial dimensions and the fourth is temporal. A stochastic process is a

collection of random variables indexed by one or more of these dimensions,

in which restrictions on distributional characteristics (usually means and vari-

ances) are also functions of the indices. Such collections of random variables

are often called stochastic processes for indices in one dimension, and random

fields for indices in more than one dimension, although technically these terms

may be used interchangeably.

We will present a few of the basic models for processes in time and space,

but first list two examples that lie outside of these realms to indicate that we

are not covering all possibilities in detail.

1. Let t = 1, 2, . . . index discrete points in time, and define a random

variable for each of these points as Y (t). Suppose that Y (t) ∈ ΩY ≡
{0, 1, 2, 3}. Here, the set of possible values ΩY is often called the state

space of the process Y ≡ {Y (t) : t = 1, 2, . . . , } since it is the set (i.e.,

space) of the possible states that the process can assume. Now, for

j, k ∈ ΩY , define values tj,k as,

tj,k ≡ Pr[Y (t) = k | Y (t− 1) = j].

The values tj,k may be collected in a matrix

T ≡





















t0,0 t0,1 t0,2 t0,3

t1,0 t1,1 t1,2 t1,3

t2,0 t2,1 t2,2 t2,3

t3,0 t3,1 t3,2 t3,3





















,
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such that tj,k ≥ 0 for all j, k, and
∑

k tj,k = 1 for all j. The stochastic

process Y is called a discrete Markov process (discrete because it is

indexed at discrete points in time) that also has a discrete state space ΩY

This transition matrix can be estimated from a finite sequence of observed

values if suitable restrictions are placed on its component quantities (the

tj,k), generally as properties of the matrix T . Suitable restrictions include

properties of T known as irreducible, positive recurrent, and aperiodic,

which we will not go into further here.

2. Let {N(t) : t ≥ 0} represent the number of some type of events that

have occurred between time 0 and time t. Suppose that,

• N(0) = 0.

• N(t1) −N(s1) and N(t2) −N(s2) are independent for any disjoint

intervals (s1, t1) and (s2, t2).

• For any s, t ≥ 0 and any x ∈ {0, 1, . . .},

Pr[N(t+ s) −N(s) = x] =
1

x!
(λt)x exp(−λt).

Then {N(t) : t ≥ 0} is a continuous-time Poisson process (which has

discrete state space). In this instance, all necessary restrictions are built

into the definition of the process.

7.5.3 Stationarity

For stochastic processes, the types of restrictions made on means and variances

of the process random variables (which are model assumptions) are often those

necessary to produce stationary behavior in the model. There are actually
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several types of stationarity. To introduce these concepts of stationarity, we

first set forth some general notation appropriate for random fields.

Let s denote a (non-random) variable that contains information on a “lo-

cation” in a system of spatial/temporal indices. For example, in a two-

dimensional spatial process s might be defined as s ≡ (u, v) for longitude

u and latitude v, or some transformation of latitude and longitude that makes

(u, v) amenable to Euclidean geometry (e.g., universal transverse-mercator co-

ordinates, or UTMs). In a one-dimensional time series, we may have s ≡ t,

where t is a point in time. Notice that we have taken this location variable s

to be continuous in its time/space domain, which leads to a continuous process

Y ≡ {Y (s) : s ∈ D ⊂ ℜd}, where D is the domain of the process. We assume

from the outset that var{Y (si)} <∞ for all si ∈ D.

1. First-Order Stationarity.

The process Y is said to be first-order stationary if,

E{Y (si)} = µ ∀si ∈ D

2. Intrinsic Stationarity.

The process Y is said to be intrinsically stationary if it is first-order

stationary and

var{Y (si) − Y (sj)} = V (si − sj) ∀si, sj ∈ D,

for some function V (·). This concept of stationarity appears most often

in spatial problems, but there is no reason it does not apply equally to

temporal processes.

3. Second-Order Stationarity.

The process Y is said to be second-order stationary if it is first-order
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stationary and

cov{Y (si), Y (sj)} = C(si − sj) ∀si, sj ∈ D,

for some function C(·). While second-order and intrinsic stationarity

are clearly related, they are not the same. In fact, it is possible to

demonstrate the result that second-order stationarity implies intrinsic

stationarity, but not the converse. Thus, second-order stationarity is a

stronger condition than is intrinsic stationarity.

4. Strict Stationarity. Let s1, . . . , sm be any finite collection of locations in

D. Define

Fs1,...,sm
(y1, . . . , ym) ≡

Pr[Y (s1) ≤ y1, . . . , Y (sm) ≤ ym].

The process Y is said to be strictly stationary if, for all h ∈ ℜd and all

m ≥ 1,

Fs1,...,sm
(y1, . . . , ym) = Fs1+h,...,sm+h(y1, . . . , ym)

Now, what do these various types of stationarity mean? Begin by considering

a process in Re1 such as a time series (could be a spatial transect, but time is

adequate).

If a process in time is strictly stationary, then random variables for any set

of times separated by a fixed distance have the same joint distribution. For ex-

ample, {Y (1), Y (3), Y (10)}, {Y (6), Y (8), Y (15)}, and {Y (20), Y (22), Y (29)}
all have the same joint 3−dimensional distribution. Similarly, {Y (4), Y (5)}
and {Y (150), Y (151)} have the same 2−dimensional joint distribution. This

is, in fact, true for any number of random variables and any fixed difference

in time. Clearly, this is a strong property. If a process in time is second-order
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stationary, then random variables for any set of times separated by a fixed

distance have the same first two moments, but not necessarily the same distri-

bution. Thus, strict stationarity implies second-order stationarity, but not the

converse. Note, however, that if we specify normal distributions then second-

order stationarity does implies strict stationarity since normal distributions

are characterized by the first two moments.

If a process in time is intrinsically stationary, then random variables for

any set of times separated by a fixed distance have variances of their dif-

ferences that are the same. For example, var{Y (1) − Y (3)} = var{Y (6) −
Y (8)} = var{Y (20) − Y (22)}. What is the relation between this and second-

order stationarity? For any two random variables X and Y , var(X − Y ) =

var(X) + var(Y ) − 2cov(X, Y ), or, cov(X, Y ) = (1/2){var(X) + var(Y ) −
var(X−Y )}. It is then entirely possible for var{Y (si),−Y (sj)} to be a func-

tion of si − sj alone (intrinsic stationarity) without cov{Y (si), Y (sj)} also

being such a function (second-order stationarity); in fact, this is guaranteed

only if var{Y (si)} = var{Y (sj)}. Thus, intrinsic stationarity is a weaker

condition than is second-order stationarity. To generalize the above interpre-

tations from 1−dimensional real space to d−dimensional real space requires

only replacing time differences with higher dimension displacement.

7.5.4 Two Fundamental Time Series Models

In this subsection we will consider stochastic processes for which we have

a discrete set of indices indicating equally spaced points in time, si ≡ t for

t = 0,±1,±2, . . .. Two basic structures for temporal models, from which many

more elaborate structures can be constructed (e.g., Newton, 1988; Shumway,

1988; Brockwell and Davis, 1991) are moving average and autoregressive mod-
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els. In most texts on time series, these processes are presented in terms of a

“backshift operator” Bxt = xt − 1. While this leads to compact notation and

is useful in writing down results about these models, it does not necessarily

promote understanding of the structures involved. Thus, we will avoid its use

here, and present moving average and autoregressive models in a very simple

form.

Moving Average Models

A basic moving average model formulation can be written as,

Y (t) =
q
∑

k=0

βk ǫ(t− k), (7.51)

in which we take β0 = 1, and ǫ(t) ∼ iidN(0, σ2). Expression (7.51) would

be said to represent a “qth order moving average model. To see the manner

in which moving average models conceptualize a temporal process, consider a

2nd order process written as

Y (t) = ǫt + β1ǫt−1 + β2ǫt−2. (7.52)

In (7.52) we see clearly that the process at time t is composed of a linear

combination of independent “error” or “innovation” terms. Clearly, the process

has mean 0 for all t and is thus automatically first-order stationary. Although

we will not write down an explicit form here, it should also be clear that the

variances of Y (t) and covariances of Y (t), Y (t+ s), s ≤ q, will be the variance

of the innovation terms (σ2) times a polynomial in the coefficients, the βs.

For “lags” of greater than q, the covariance will be 0. Thus, the process is

second-order stationary.
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A major concern with time series models of this type (this will be true

also for autoregressive models) is whether parameters of the model (7.51) can

be “identified” based on the covariance function of the process. The answer,

in general, is no we cannot do so. Consider an example taken from Newton

(1988, p. 96), for a first order moving average process,

Y (t) = ǫt + β ǫt−1,

which has first and second moments,

E{Y (t)} = 0,

var{Y (t)} = σ2(1 + β2),

cov{Y (t), Y (t+ 1)} = β σ2,

cov{Y (t), Y (t− 1)} = β σ2.

Suppose that var{Y (t)} = 5 and cov{Y (t), Y (t + 1)} = 2. Combinations

of σ2 = 1 with β = 2 or σ2 = 4 with β = 0.5 both lead to these same

moments. In general, for a moving average process of order q, there are 2q sets

of parameters that lead to the same variance and covariances. There is only

one set of parameters, however, that lead to what is called an invertible model.

We will leave this topic until after we have introduced autoregressive models.

Autoregressive Models

The basic form of an autoregressive model is,

Y (t) =
p
∑

k=1

αk Y (t− k) + ǫ(t), (7.53)

where, as before, ǫ(t) ∼ iidN(0, σ2). Expression (7.53) is said to represent a

pth order autoregressive process. Consider, analogous to our 2nd order moving
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average model (7.52) a 2nd order autoregressive model,

Y (t) = α1Y (t− 1) + α2Y (t− 2) + ǫ(t). (7.54)

Models (7.54) and (7.53) look like a linear regression of values of Y (t) on previ-

ous values (which it is). Hence the name autoregressive which is more intuitive

than the previous name of moving average for (7.51) or (7.52). The process of

model (7.53) does not necessarily have constant mean, so it is usually assumed

that the Y (t) have constant mean zero. In practice, data are generally “de-

trended” through regression (over time) or the process of “first-differencing”

to remove at least linear trends in means of the Y (t).

Neither is it the case that an autoregressive process is necessarily second-

order stationary unless some conditions are placed on the coefficients α1, . . . , αp.

This is also related to invertibility and will be covered shortly. The covariance

of an autoregressive model can be determined using what are called the Yule-

Walker equations (e.g., Shumway 1988, p.135). To illustrate the ideas involved,

consider a first order autoregressive model,

Y (t) = αY (t− 1) + ǫ(t),

with ǫ(t) ∼ iidN(0, σ2). Directly from this model we have the inequalities

Y (t)Y (t) = αY (t− 1)Y (t) + ǫ(t)Y (t)

Y (t)Y (t− 1) = αY (t− 1)Y (t− 1) + ǫ(t)Y (t− 1)

. .

. .

. .

Y (t)Y (t− k) = Y (t− 1)Y (t− k) + ǫ(t)Y (t− k)
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Since all Y (t) are assumed to have expectation 0, taking expectations in these

expressions yields,

var{Y (t)} = αcov{Y (t− 1), Y (t)} + σ2

cov{Y (t), Y (t− 1)} = αvar{Y (t− 1)} + 0

. .

. .

. .

cov{Y (t), Y (t− k)} = cov{Y (t− 1), Y (t− k)} + 0

(7.55)

The final term on the rhs of the first equality comes from the fact that

E{Y (t)ǫ(t)} = E
[

αY (t− 1)ǫ(t) + {ǫ(t)}2
]

= σ2,

since Y (t − 1) contains only random variables that are independent of ǫ(t).

This also immediately explains why the remaining right most terms are all 0.

Substituting the second line of (7.55) into the first, and assuming that we

have an equal variance process gives an equality that allows derivation of the

variance of the Y (t),

var{Y (t)} = α2var{Y (t− 1)} + σ2

var{Y (t)} =
σ2

1 − α2
(7.56)

Substituting the first line of (7.55) into the second gives,

cov{Y (t), Y (t− 1)} = α2cov{Y (t), Y (t− 1)} + ασ2

=
α σ2

1 − α2
.

In fact, continuing in this manner shows that

cov{Y (t), Y (t− k)} =
αk σ2

1 − α2
. (7.57)
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Now, equation (7.57) indicates that, for increasing lag k and positive variances

for sums, we must have |α| < 1 in order for a legitimate model to exist (i.e.,

to have positive covariances). Given that this is true, the correlations between

values of the process separated by a distance k is, (here allowing k to take

values 0,±1,±2, . . .),

corr{Y (t), Y (t− k)} = α|k|

An important point here is the distinction between a moving average model

of order one and an autoregressive model of order one. In the moving average

model, covariance (and hence correlation) between values separated by more

than one lag are 0, while in the autoregressive model the covariance (and

hence the correlation) decays more slowly over time as a power function of

the coefficient α (which must be smaller than 1 in absolute value). This same

distinction extends to moving average and autoregressive models of higher

orders.

To gain some intuition regarding this difference, consider an moving av-

erage model of order one and an autoregressive model of order one that are

generated by the same innovation process. I know we are suppose to consider

time point 0 as arbitrary, but suppose we have an actual starting point for the

processes, and that the moving average parameter β is equal to the autore-

gressive parameter α; call this common parameter θ. As these moving average

(MA) and autoregressive (AR) processes progress through time we obtain:

MA : Y (0) = ǫ(0)

AR : Y (0) = ǫ(0)

MA : Y (1) = ǫ(1) + θ ǫ(0)
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AR : Y (1) = ǫ(1) + θ ǫ(0)

MA : Y (2) = ǫ(2) + θ ǫ(1)

AR : Y (2) = θY (1) + ǫ(2)

= ǫ(2) + θǫ(1) + θ2 ǫ(0)

MA : Y (3) = ǫ(3) + θ ǫ(2)

AR : Y (3) = θY (2) + ǫ(3)

= θ{θY (1) + ǫ(2)} + ǫ(3)

= θ[θ{θ ǫ(0) + ǫ(1)} + ǫ(2)] + ǫ(3)

= ǫ(3) + θ ǫ(2) + θ2 ǫ(1) + θ3 ǫ(0)

Deleting the intermediate steps for the AR processes makes the result more

clear as:

MA : Y (0) = ǫ(0)

AR : Y (0) = ǫ(0)

MA : Y (1) = ǫ(1) + θ ǫ(0)

AR : Y (1) = ǫ(1) + θ ǫ(0)

MA : Y (2) = ǫ(2) + θ ǫ(1)

AR : Y (2) = ǫ(2) + θ ǫ(1) + θ2 ǫ(0)

MA : Y (3) = ǫ(3) + θ ǫ(2)
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AR : Y (3) = ǫ(3) + θ ǫ(2) + θ2 ǫ(1) + θ3 ǫ(0)

It is clear from this progression why the pairwise dependence of an autore-

gressive process lasts longer through time than does that of a moving average

process; it is also more clear why the coefficient of an autoregressive process of

order one needs to satisfy the condition of being less than 1 in absolute value.

Inversion

We have mentioned the issue called inversion previously, which deals with

conditions under which there exists a duality between moving average and

autoregressive processes, our primary interest begin situations in which both

processes are stationary. Note that, in the progression used to contrast MA and

AR models of order 1 in this section, we had the same coefficients of the MA

and AR process, but the processes themselves were not the same (equivalent).

Inversion concerns conditions under which the processes are the same. Box

and Jenkins (1970, p. 50) point out that invertibility and stationarity are

different properties. This is true, but it turns out that conditions needed

to produce invertibility of stationary moving average processes are similar to

those needed to produce stationarity in invertible autoregressive processes. We

need to explain this remark, and do so in the following, although without the

requisite derivations. For those see any of the references cited in this subsection

(7.5.4).

A key quantity in determination of both invertibility and stationarity is

what is called the characteristic polynomial or characteristic equation which,

for finite moving average (order q) and finite autoregressive (order p) processes,

and a possibly complex argument z are,

h(z) = 1 +
q
∑

k=1

βk z
k,
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g(z) = 1 −
p
∑

k=1

αk z
k. (7.58)

Comments

1. In these notes, I have written both moving average (expression 7.51) and

autoregressive (expression 7.53) models as sums rather than differences.

It is also common (e.g., Box and Jenkins 1970; Shumway 1988) to write

moving average processes with coefficients being the negative of those in

(7.51), in which case the characteristic polynomials of (7.58) have the

same form (same as given in g(z)); note also that Newton (1988) does

neither of these, writing autoregressive models to isolate the error term

ǫ(t) on the rhs of the model.

2. In consideration of a first order autoregression process we arrived at the

need to have |α| < 1 in order for covariances to remain finite and, in

fact, then also stationary. For a general finite autoregressive process of

order p, this condition is translated into conditions on the roots (zeros)

of the characteristic polynomial g(z), since these will be determined by

values z0 that are functions of the coefficients {α1, . . . , αp}. Similarly,

conditions on the coefficients of a finite moving average process of order

q can be specified in terms of conditions on the roots of the characteristic

polynomial h(z).

3. The conditions that produce desired behaviors in finite moving average

and autoregressive processes turn out to be conditions on whether the

roots of the characteristic polynomials in (68) lie inside, on, or outside

of the unit circle (i.e., less than, equal, or greater than 1 in modulus).

We can now summarize, without proof, what can be a confusing array of results

regarding moving average and autoregressive time series models.
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1. Finite moving average processes are always second order stationary.

2. Finite autoregressive processes are second order stationary if all of the

zeros of g(z) in (7.58) are greater than 1 in modulus.

3. Finite moving average processes can be written as infinite autoregressive

processes if the zeros of h(z) in (7.58) are all greater than 1 in modulus.

4. Finite autoregressive processes can be written as (doubly) infinite moving

average processes as long as none of the zeros of g(z) in (7.58) is equal

to one in modulus. Note: a doubly infinite moving average processes is

as in (7.51) but with the summation going from −∞ to ∞, (see, e.g.,

Fuller 1996). In addition, finite autoregressive processes can be written

as (singly) infinite moving average processes if all of the zeros of g(z) in

(7.58) are greater than 1 in modulus.

Given invertible models (moving average and autoregressive) the question

in an application is which representation is more parsimonious (adequate, with

as few parameters as possible). Clearly, if a process is truly a moving average

model of order one, using an autoregressive representation is not desirable

as the moving average model would have 2 parameters, β and σ2, while the

autoregressive model would have an infinite number of parameters. The reverse

would be true for a process that was in fact an autoregressive process of order

one. This leads, in time series analysis, to the representation of processes as

a combination of moving average and autoregressive models. These are called

autoregressive-moving average (ARMA) models, and have the general form,

p
∑

j=0

αjY (t− j) =
q
∑

k=0

βkǫ(t− k),
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with α0 = β0 = 1. This looks more familiar if we write it as,

Y (t) =
p
∑

j=1

αjY (t− j) +
q
∑

k=1

βkǫ(t− k) + ǫ(t),

Note that the coefficients αj in these two expressions are negatives of each

other.

Dependence on the Past

One final point relative to moving average and autoregressive time series mod-

els is worthy of note (it is, perhaps, even more important from a modeling

standpoint than the topic of inversion). This concerns the manner in which

moving average and autoregressive models represent the dependence of the

current Y (t) on past values. We have already seen, through consideration of

first order processes, that moving average models have pairwise correlation of

zero for lags greater than 1 (in general this will be for lags greater than the

order of the model q), while the pairwise correlation for autoregressive models

dies off more slowly (e.g., expression 7.57).

Now, consider the conditional distribution of Y (t) given Y (t−1) = y(t−1),

for simplicity in the case of first order autoregressive and first order moving

average models. For the autoregressive model we have,

Y (t) = α y(t− 1) + ǫ(t),

which clearly demonstrates that, given a value Y (t − 1) = y(t − 1), the dis-

tribution of Y (t) does not depend on any previous values of the process. On

the other hand, for a first order moving average model of the form Y (t) =

βǫ(t− 1) + ǫ(t),

Y (t) = β ǫ(t− 1) + ǫ(t)

= β y(t− 1) − β2 ǫ(t− 2) + ǫ(t),
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so that, given Y (t−1), Y (t) is not independent of Y (t−2), which is a function

of ǫ(t− 2) as ǫ(t− 2) = Y (t− 2) − βǫ(t− 3).

How can this be? After all, we have shown that the covariance of Y (t) and

Y (t − 2) is 0 for a first order moving average process. How can they then be

dependent? The answer lies in what a covariance matrix represents; we have

been assuming normality throughout this presentation and will continue to do

so. A covariance matrix represents pairwise dependence in a joint distribution

of variables. In the case of normality, this also represents dependence in the

marginal distributions of any subset of component variables. But, even in

the case of normality, the covariance matrix does not represent conditional

dependence. For normal distributions conditional dependence is given by the

inverse covariance matrix.

One way to think of this is that is, in a Gaussian (or joint normal) dis-

tribution, the elements of the covariance matrix represents dependence when

all other variables than the pair involved are averaged over. This is marginal

dependence. On the other hand, the inverse covariance matrix represents de-

pendence when all other variables than the pair involved are conditioned on.

In a first order moving average model, given Y (t − 1), Y (t) is dependent on

Y (t− 2) because they are both related to (dependent on) Y (t− 1). But mar-

ginally, all of that shared dependence of Y (t) and Y (t− 2) has been averaged

out by integrating over possible values of Y (t− 1). In a first order autoregres-

sive model, on the other hand, Y (t) and Y (t − 2) are marginally dependent

(under normality) but conditionally independent.

Another way to form some intuition about all of this is to consider the

process of generation through time by which values of time series are produced

(statistically). In a first order moving average model, it is innovation terms

that are “propagated” through time to directly influence future variables. If we
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would condition on these innovation terms, then there would be no conditional

dependence beyond lag one, that is, Y (t) given ǫ(t−1) would be independent of

all previous terms (either Y s or ǫs). But, because these innovations correspond

to latent (unobservable) variables, we condition on the actual value of the series

at lag one Y (t − 1), which is composed partly of ǫ(t − 1) but also partly of

ǫ(t−2). Thus, conditioned on Y (t−1) the current value Y (t) is still dependent

on ǫ(t − 2) and, hence also Y (t − 2), and this extends to all previous terms

Y (t − 3), Y (t − 4), etc. In a first order autoregressive model, it is the actual

process variables (the Y s) that are directly propagated through time. Thus,

all of the effect of previous ǫs is embodied in Y (t − 1) and, since this value

directly affects Y (t), conditioning on Y (t − 1) is the same as conditioning on

all previous terms. That is, first order autoregressive models possess a first

order Markov property in time (while pth order autoregressive models are pth

order Markov in time).

Goals and Limitations of Traditional Time Series Models

We close our discussion of basic time series structures with a few thoughts on

modeling issues related to these formulations. It should be noted, however,

that the theory and application of time series forms a rich body of statistical

knowledge and investigation, and there are many extensions of the basic ideas

we have presented. Nevertheless, the following seem pertinent:

1. Everything we have considered has assumed zero mean processes (or

constant mean processes in which the constant is easily removed by sub-

traction). In applications for which the mean is not constant, time series

models are usually applied to series of residual quantities from which an

estimated mean structure has been removed, or to a series of differenced
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values (this results in what are often called autoregressive-integrated-

moving average models (ARIMA models). The point is that time series

modeling is focused on a signal plus noise conceptualization of scientific

phenomena, in which the signal is removed and time series are used to

describe remaining structure in the noise, or error, process.

2. Building on comment 1, the goals of time series analyses are generally

those of data description, prediction, and forecasting (see Chapter 7.1)

without an overly great concern for conceptualization of the scientific

problem under study, other than what might be incorporated in modeling

of the mean structure.

3. A practical limitation of the models presented in this section is the as-

sumption of equally-spaced time points t = 0,±1,±2, . . .. While there

are certainly a good number of applications in which this assumption is

met (the references given above contain a large number of examples and

applications) there are also many problems that logically involve tempo-

ral dependence in which observations cannot be taken at equally spaced

points in time, have a few missing values, or cannot be observed for even

entire time periods (e.g., many environmental studies).

4. We have also, in our presentation of moving average and autoregressive

models, assumed that innovation terms followed normal distributions.

Following the same tradition as additive error models, time series mod-

els are most often presented without specific distributional assumptions,

taking those terms to be simply random variables with expectation zero

and constant variance. However, again in a manner similar to additive

error models, there is an implicit appeal to normal distributions. We
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have simply made this explicit in the preceding presentation.

7.5.5 Random Field Models

It is tempting, at this point, to discuss models for spatial processes as a distinct

topic, but doing so would restrict the more general nature of models for random

fields. In fact, everything covered in the previous subsection on time series

models would fit under the heading of models for (discrete index) random

fields and, although we did not cover this, there are models for processes with

continuous time index that would fit under the heading of continuous index

random fields.

Thus, time series models of the type discussed in Section 7.5.4 (which are

called models in the time domain) are simply one class of models for random

fields. It is also true that problems other than those involving only temporal

and/or spatial dependence can be considered within the context of models

for random fields. Despite this, however, spatial problems present a natural

situation which which to illustrate random fields in more than one dimension,

and this subsection will have a decidedly “spatial” flavor. In addition, much

of the discussion of the topics included in this subsection will be found in the

literature on spatial statistics (e.g., Haining 1990; Cressie 1993; Griffith and

Layne 1999; Lawson 2001).

Recall from section 7.5.3 the notion of a (often non-random) “location”

index s. While such indices often contain variables that indicate position in

a space/time structure, this is not entirely necessary. Consider, for example,

a longitudinal study in which ni observations are taken in time for each of k

situations or “subjects”. We can place response random variables in a random

field structure by defining si ≡ (ti, j) where ti is the time of an observation
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on a given subject j, where j = 1, . . . , k. It is sufficient for this discussion of

models for random fields, however, to generally take si ≡ (ui, vi) to denote a

location in physical space, such as longitude ui and latitude vi.

We will, very briefly, present two random field structures which we will

call continuous index random fields and discrete index random fields. A third

type of structure, point processes, will not be discussed here. The primary

distinction among these types of random field models rests on the type of lo-

cation indices s assumed for each. A general structure is given in the following:

Let D ⊂ ℜd be a subset of ℜd that has positive volume. We define a gen-

eral random field process as,

{Y (s) : s ∈ D}, (7.59)

where, at this point, we are making no assumptions about the quantities Y (s)

and s (i.e., random or non-random).

Continuous Index Random Fields

In a continuous index random field, we take, in the general process (7.59), D to

be a fixed subset of ℜd, and allow s to vary continuously over D. The response

variables Y (s) are taken as random. In general, Y (s) may be multivariate,

but we will consider only univariate processes. It is worthy of mention that,

although the process itself is considered continuous, data will be available at

only a discrete and finite number of locations in the form

{y(s1), y(s2), . . . , y(sn)}.

In essence this means that, for a random field with no restrictions on means,

variances, or distributional form, we have available only a partial realization
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of a unique stochastic process (i.e., a sample of size less than one). This means

then, from a modeling viewpoint, that restrictions on means, variances, or

distributional forms are crucial in order to make progress in terms of estima-

tion, inference and, even more fundamentally, statistical conceptualization or

abstraction.

Consideration of dependence in a random field leads to a quantification of

dependence that is an alternative to that of covariance – values of quantities

that are closer together (in a random field distance) should be more similar

than values of quantities that are farther apart. This concept of dependence is

most easily understood if distance means geographic (i.e., spatial) distance, but

a spatial setting is not necessary if a suitable metric can be defined for locations

in a random field. The idea that things that are “closer” together should be

more similar than things that are “farther” apart is directly represented in

a quantity called the variogram, defined as a function which describes the

variances of the differences of random variables at two locations,

2γ(si − sj) ≡ var{Y (si) − Y (sj)}; all si, sj ∈ D. (7.60)

In (7.60) the function 2γ(·) is called the variogram. Just as functions must

satisfy certain conditions to be density or mass functions (≥ 0 and integrate

to one), and matrices must satisfy certain conditions to be covariance matrices

(positive or at least non-negative definite), so too must a function 2γ(·) sat-

isfy certain conditions to be a variogram. This condition is called conditional

negative definiteness, and is defined as follows.

Definition

A variogram 2γ(·) is conditionally negative definite if, for any finite number

of locations {si : i = 1, . . . , m} and real numbers {ai : i = 1, . . . , m} such that
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∑

ai = 0,
m
∑

i=1

m
∑

j=1

aiaj2γ(si − sj) ≤ 0. (7.61)

That is, any function 2γ(·) that satisfies (7.60) must have the property (7.61).

Note, at this point, that we have made no assumptions regarding {Y (s) : s ∈
D} in terms of mean (i.e., first order stationarity) or variance (i.e., constant

variance). Note also, however, that by writing a variogram as a function

of displacement between locations (i.e., the argument to sγ(·) in 7.60 is the

displacement si − sj) we have, in fact, assumed intrinsic stationarity if it has

constant mean.

An additional assumption is often made about the variogram, which may be

checked by a data-driven model assessment, that the value of the variogram for

two locations si and sj depends only on the distance between, di,j ≡ ||si−sj||.
For example, if si ≡ (ui, vi) for a horizontal position ui and vertical position

vi, Euclidean distance would be di,j = {(ui−uj)
2 +(vi− vj)

2}1/2. In this case,

we may write the variogram (70) as a function of only a distance h ∈ ℜ1 as,

2γ(h) = var{Y (s+w) − Y (s)}; s ∈ D, (7.62)

for any w such that ||s−w|| = h. If a continuous index random field process

has a variogram that satisfies (7.62) then we say the process is isotropic.

While we will not go into details here, the goal in application of a continuous

index random field model is often prediction. Forecasting is possible, but

becomes more tenuous than in time series because assumptions are being made

that the form of a process remains similar for observations beyond the scope of

the data in more than one dimension. Forecasting based on data description

but not understanding is, in my opinion, dangerous even in one dimension (such

as time series) but this danger is compounded when a lack of understanding

is extended to more than one dimension of our physical world.
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The general progression of developing a predictor for unobserved locations

is as follows:

1. The variogram 2γ(·) is estimated from a given set of data (this is most

often a method of moments estimator) for a finite set of displacements

(usually distances, under an assumption of isotropy).

2. A theoretical model that ensures conditional negative definiteness is fit

to the estimated variogram values (much like a nonlinear regression).

3. A linear predictor to minimize prediction mean squared error is developed

as a function of observed data and values of the variogram, which are

now taken from the model fitted in step 2.

4. Uncertainty in predictions may be derived by substituting the linear pre-

dictor into the prediction mean squared which it minimizes and assuming

normality.

In the area called Geostatistics such a prediction system is known as kriging.

For a full development of kriging under various assumptions on the process

(e.g., constant versus nonconstant mean, variances, etc.) see Cressie (1993).

As a final comment on continuous index random field models, note that

nothing in the above development has assumed constant variance for the

process {Y (s) : s ∈ D}. A variogram model, combined with a model for

variances yields a covariance model since,

cov{Y (si), Y (sj)} = var{Y (si)} + var{Y (sj)}

− var{Y (si) − Y (sj)}.

For example, under an assumptions of constant variance σ2, and an isotropic

variogram 2γ(h), a covariance model for an isotropic, second order stationary
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process is,

2C(h) = 2C(0) − 2 γ(h).

Thus, modeling the variogram plus the variance leads to a model for the co-

variance, but not necessarily the other way around.

Discrete Index Random Fields

To formulate a discrete index random field we take, in the general process of

(7.59), D to be a fixed set of countable (usually finite) points, so that we have

random field locations si ∈ D for a discrete set of locations {si : i = 1, . . .}.
As for continuous index processes, Y (si) are considered random variables.

In our (very) brief consideration of time series models, dependence was

represented through the manner in which past values (autoregressive mod-

els) or past innovations (moving average models) where propagated through

a process in a forward manner (there, through time). Models for continuous

index random fields allowed an alternative formulation of dependence as a var-

iogram model. Discrete index random fields present yet another vehicle by

which dependence can be incorporated into a model, through what is called

neighborhood structure in a Markov random field. It has become common to

equate models for Markov random fields with what are called conditionally

specified models. But it should be noted that models for Markov random

fields are not a necessary consequence of discrete index random fields, nor

are conditionally specified models a necessary consequence of Markov random

fields. In fact, discrete index time series are discrete index random fields, some

models for which (e.g., first order autoregressive models) possess a Markov

property. Thus, one could consider a first order autoregressive model a model

for a Markov random field, although it would not typically be considered a
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conditionally specified model (it would, at best, constitute a highly restricted

conditional specification).

First, we define what is meant by a neighborhood structure. The neighbor-

hood of a location si is that set of locations Ni such that the random variable

Y (si) is believed to “depend on” the variables at locations contained in Ni.

For the moment we leave what is meant by “depend on” vague. This will be

determined by the manner in which dependence is allowed to enter a particular

model. Neighborhoods are usually determined by other than statistical con-

siderations and are often, in fact, rather arbitrary in nature. Determination

of appropriate neighborhoods is a difficult problem in the application of the

types of models to be considered below. Examples of neighborhoods for spatial

problems with si ≡ (ui, vi) include:

1. If si denotes the center of a county or other political subdivision, we

might define Ni to include those counties that share a common border

with the county of which si is the centroid.

2. If the values ui : i = 1, . . . , C and vi : i = 1, . . . , R denote equally spaced

vertices on a regular grid, we might specify that Ni ≡ {(uj, vj) : uj =

ui±δ, vj = vi±δ}, where δ is the grid spacing. This is known as a “four

nearest neighbors” structure.

3. For locations {si : i = 1, . . . , n} that are either uniformly or non-

uniformly distributed in space, we might define Ni ≡ {sj : ||si−sj|| ≤ κ}
for some predetermined distance κ.

Simultaneous Autoregressive Model

If specified neighborhoods are used to define dependence parameters {bi,j :
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i, j = 1, . . . , n}, the following model has sometimes been called a simultaneous

autoregressive model (SAR):

Y (si) = µi +
n
∑

j=1

bi,j{Y (sj) − µj} + ǫi, (7.63)

where (usually), ǫi ∼ iidN(0, σ2), and bi,i = 0, for all i. Model (73) is called an

autoregressive model because of the structure of Y (si) “regressed” on values

of Y (sj), but it does not share properties with the time series autoregressive

model (63). For one thing, as shown in Cressie (1993, p. 406), the error ǫi is

not independent of the {Y (sj) : j 6= i}.

Markov Random Fields

We are familiar with the standard Markov assumption in time (given the en-

tire past, the present depends on only the most immediate past). What does

this imply for a joint distribution of variables on a one-dimensional random

field (time or otherwise)? Let {Y1, Y2, . . . , Yn} denote ordered random vari-

ables (e.g., time or a spatial transect). Let p(·) denote a generic probability

density or mass function corresponding to its arguments. That is, p(y) is the

marginal density of Y , p(y1, y2) is the joint density of Y1 and Y2, p(y1|y2) is the

conditional density of Y1 given Y2, and so forth. Then, as is always true,

p(y1, . . . , yn) = p(y1)p(y2|y1) . . . , p(yn|y1, . . . , yn−1)

which, by the Markov property, becomes

p(y1, y2, . . . , yn) = p(y1)p(y2|y1) . . . , p(yn|yn−1).

Note also that the Markov property implies that

p(yi|{yj : j = 1, . . . , i− 2}) = p(yi|yi−2)
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Now,

p(yi|{yj : j 6= i})

=
p(y1, . . . , yn)

p(y1, . . . , yi−1, yi+1, . . . , yn)

=
p(y1)p(y2|y1) . . . p(yi−1|yi−2)p(yi|yi−1)

p(y1)p(y2|y1) . . . p(xyi− 1|yi−2)

× p(yi+1|yi)p(yi+2|yi+1) . . . p(yn|yn−1)

p(yi+1|yi−1)p(yi+2|yi+1) . . . p(yn|yn−1)

=
p(yi|yi−1)p(yi+1|yi)

p(yi+1|yi−1)

=
p(yi|yi−1)p(yi+1|yi, yi−1)

p(yi+1|yi−1)

=
p(yi, yi−1)p(yi−1, yi, yi+1)p(yi−1)

p(yi−1)p(yi−1, yi)p(yi−1, yi+1)

=
p(yi−1, yi, yi+1)

p(yi−1, yi+1)

= p(yi|yi−1, yi+1)

Thus, the typical Markov property in one dimension (e.g., time) implies that

the conditional distribution of Yi given all other variables depends on only the

adjacent values Yi−1 and Yi+1.

It is the structure of such full conditional distributions that are the concern

of Markov random fields. A collection of random variables {Y (si) : i =

1, . . . , n} are said to constitute a Markov random field if, for each i = 1, . . . , n,
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the conditional density or mass functions satisfy,

p(y(si)|{y(sj) : j 6= i}) = p(y(si)|{y(sj) : sj ∈ Ni}), (7.64)

where {Ni : i = 1, . . . , n} are neighborhood structures.

Conditional Model Specification

While the definition of Markov random fields just given indicates that neigh-

borhoods are determined by conditional distributions, in model formulation

we typically want to reverse this progression by starting with defined neigh-

borhoods and then using these to write forms for conditional density or mass

functions. This method of formulating models is called conditional model spec-

ification and owes a great deal to early work by Besag (1974). In this method

of modeling, we specify forms for the n full conditionals making use of neigh-

borhoods as in (7.64) to reduce the complexity of these distributions. The

key for modeling is to ensure that a joint distribution exists that has the cor-

responding set of specified conditionals. The key for statistical analysis is to

identify this joint and make use of it in statistical estimation and inference

procedures. This becomes a long and involved topic, beyond the scope of

our class. See Besag (1974) for models based on one-parameter exponential

families. Kaiser and Cressie (2000) relax some of the assumptions of Besag,

and extend this modeling approach to multiple parameter exponential family

conditionals. Kaiser (2001) gives an introductory overview of this approach to

modeling. Arnold, Castillo and Sarabia (1992) provide some characterization

results, especially for bivariate settings. Probably the most common condi-

tional model in applications is formed from conditional normal distributions

and is often called simply the conditional autoregressive model.
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Let {Y (si) : i = 1, . . . , n} be a set of n random variables with (spatial) lo-

cations si; i = 1, . . . , n, and let the full conditional densities of these random

variables be given by,

fi(y(si)|{y(sj) : j 6= i}) =

1
√

2πτ 2
i

exp

[

−1

2τ 2
i

{y(si) − µ({y(sj) : j 6= i})}2

]

, (7.65)

where

µ({y(sj) : j 6= i} ≡ E [Y (si)|{y(sj) : j 6= i}]

τ 2
i ≡ var [Y (si)|{y(sj) : j 6= i}]

Now, further model

µ({y(sj) : j 6= i}) = αi +
n
∑

j=1

ci,j {y(sj) − αj} , (7.66)

subject to the conditions that ci,jτ
2
j = cj,iτ

2
i , ci,j = 0; i, j = 1, . . . , n, and

ci,j = 0 unless sj ∈ Ni, the neighborhood of si. It is common to take τi = τ in

this model so that the condition on the ci,j reduces to ci,j = cj,i.

Let C denote the n × n matrix with ijth element ci,j and M the n × n

matrix with diagonal elements τ 2
i ; for constant conditional variance M = τ 2 In

where In is the n× n identity matrix. As shown by Besag (1974) and Cressie

(1993), the joint distribution of Y (s1), . . . , Y (sn) is then

Y ∼ Gau(α, (In − C)−1M), (7.67)

provided that the n × n matrix (In − C) is invertible and the n × n matrix

(In − C)−1M is positive definite. In (54) α ≡ (α1, . . . , αn)
T .
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7.5.6 An Application to Modeling Nitrates in the Des

Moines River

We present in this subsection an application of a model based on stochastic

processes. This application illustrates, in particular, the flexibility allowed by

conditional model specification in representing dependence structures. The

problem involves modeling nitrate concentrations in a river monitoring net-

work. What is known as the Des Moines River Water Quality Network was

instituted for the purpose of monitoring water quality in the Des Moines River

prior to impoundment of Saylorville Reservoir. The upper map of Figure 7.42

shows the portion of the State of Iowa involved, which is the Des Moines River

from Boone to Pella. Since the original creation of the network, the number

and location of monitoring stations has changed, but for the period of time

involved in this example the network consisted of seven stations along about a

116 mile stretch of the river. These stations are indicated in the schematic map

in the lower panel of Figure 7.42. The triangles in this picture represent two

reservoirs, Saylorville Reservoir upstream (upper left) and Red Rock Reservoir

downstream (lower right). Two of the monitoring stations (stations 2 and 6)

are located in these reservoirs just above the dam sites. Samples from the mon-

itoring stations are assessed for over 100 water quality variables, but our focus

will be on the analysis of nitrate/nitrite concentrations. The data available

for our analysis consist of 2, 954 observations between late November 1981 and

December 1996. The time between observations is roughly two weeks, but the

data record contains irregular spacings in time as well as more than a negligi-

ble number of missing observaitons at particular stations for various sampling

dates. Given the large number of observations, a smaller data set consisting

of 938 observations from November 1981 through December 1985 was created



7.5. STOCHASTIC PROCESSES 335

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 7.42: Maps of Des Moines River Quality Network
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Figure 7.43: Scatterplot matrix for the Des Moines River nitrate data.

for model development. The final model structure chosen was then used to fit

the entire data set of almost 3, 000 values.

Data Exploration and Modeling Concepts

We begin by making use of some simple exploratory data analysis conducted

with the reduced data set, including examination of scatterplots and basic

sample statistics. Figure 7.43 presents a scatterplot matrix of values for the

seven monitoring stations. There appear to be fairly strong pairwise correla-

tions among values from the stations. This is verified by examination of the



7.5. STOCHASTIC PROCESSES 337

sample partial and marginal correlations, which are presented in the following

table: (marginal below diagonal, partial above diagonal):

Site 1 2 3 4 5 6 7

1 1 -.32 .34 .48 .20 -.12 .05

2 .75 1 .94 .18 .19 -.07 .15

3 .77 .99 1 .00 -.15 .14 -.16

4 .84 .93 .93 1 .33 -.05 .14

5 .79 .88 .87 .91 1 .12 -.05

6 .63 .85 .84 .82 .80 1 .88

7 .64 .85 .84 .83 .80 .97 1

The marginal correlations are substantial, and appear to become weaker for

stations separated by greater distances (e.g., correlation between stations 4

and 5 is 0.91 but this drops to 0.82 between stations 4 and 6). Note also that

the correlations between reservoir stations and the corresponding nearest up-

stream station are weaker than most of the other correlations between adjacent

stations. The correlation bewteen station 1 and station 2 is 0.75, while that

between stations 5 and 6 is 0.80, the two weakest values for adjacent stations.

This does not appear to be true for correlations of reservoir stations with the

nearest downstream station, which is not surprising given the configuration in

the schematic diagram of Figure 7.42. The partial correlations given in the

above table do not appear to be entirely consistent. This would make appli-

cation of, for example, a covariance selection model (Dempster, 1972) difficult

to formulate. The strong marginal correlations suggest, of course, that a full

multivariate model (Gaussian if that appears appropriate) would be possible

to fit to these data (this is, in fact done later in the example). But, our objec-

tive is to model the network as a whole making use of structure to describe the



338 CHAPTER 7. MODEL SPECIFICATION

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 7.44: Sample periodogram for the Des Moines River nitrate data.

relations among values for the different stations. A full multivariate Gaussian

model would not accomplish this goal, although we might expect that it would

describe the data quite well.

Given that observations are available over a long time span (3 years even

in the reduced data set), another exploratory tool is examination of a pe-

riodogram, presented in Figure 7.44 for one of the riverine stations, station

number 4. This periodogram suggests the presence of both 12 and 6 month

cycles in the values. The investigators who collected these data have indicated

that the six month cycle is expected based on the hydrology of the region, but

the same was not true of the 12 month cycle. Similar periodograms resulted

for the other stations, although the 12 month cycle was not always identified
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as a major feature for every station.

We might consider a number of modeling structures to represent these data.

Some of our options include:

1. A regression model over time in which all values (among or within sta-

tions) are taken to be independent.

2. Time series structures for each station individually.

3. A spatial structure for all stations, with no explicit structure for temporal

dependence.

4. A multivariate structure across stations with no explicit structure for

temporal dependence.

5. A stochastic structure including terms for both spatial and temporal

dependencies.

The first option listed above constitutes something of a “straw man” model,

given the correlations among stations and periodic structure over time iden-

tified in initial examination of the data. The fourth option results in a large

model with many unconstrained parameters, and fails to provide much in the

way of a parsimonious conceptualization of the structure that might underlie

the processes involved in producing the observed data patterns. As mentioned

previously, however, the initial examination of of the data suggests that such

a model might be expected to represent the data quite well, and will be used

in the sequel as a “brick man” model (in contrast to the straw man model of

opiton 1).

All of the other options listed (numbers 2, 3, and 5) are viable modeling

approaches. Option 2, consisting of individual time series for different moni-

toring stations, fails to provide an overall structure for the entire monitoring
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network, unless the series at the various stations appear to be identical. The

unequal spacing of observation and presence of numerous missing values might

also result in difficulties for this type of model. Thus, we will not consider the

time series approach further. Of the two remaining options, the last results

in the most complex model structure and introduces problems in combining

spatial and temporal dependencies that are beyond the scope of this exam-

ple. In addition, the roughly two week separation of observations represents

what might be considered a substantial time gap for there to remain tempo-

ral dependence in the data. Nevertheless, it would, in future consideration of

this problem, be interesting to see if a model with both spatial and temporal

structures offers improvement to the models presented in what follows.

Having determined that a reasonable approach is to fit a model contain-

ing spatial structure but lacking explicit terms for temporal dependencies, we

must consider how we will formulate the various portions of the model. In

particular, questions center on what effects will be included in an expectation

function (or systematic model component), what effects will be included in a

dependence structure, and what distributional form will be used. A typical

approach, common in time series applications, would be to remove all struc-

ture possible as systematic trend, even if that structure is not well understood

from a scientific viewpoint. Any remaining structure is then modeled through

dependence. This approach is essentially a “signal plus noise” formulation,

with signal taken as any patterns in the data that can be modeled through an

expectation function, and noise taken to be correlated error terms. We will

make use of an alternative approach here, to illustrate the flexibility of con-

ditional model specification. Under this alternative approach, we consider the

underlying scientific process of interest to consist of factors that are external to

the observed process (i.e., the data record of nitrate concentrations) and fac-
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tors that are internal to that process. Overall, we seem to simply have replace

the words “trend” and “dependence” with “external” and “internal” and to

some extent this is true, but with an important impact on the development of

our model. The basic guidelines that emerge may be summarized as follows.

1. External factors should be modeled as systematic trend, but only exter-

nal causes which are understood or at least scientifically plausible should

be included. Here, this implies that a six month cycle should be included

in the systematic model component but not a twelve month cycle.

2. Internal factors and remaining influences that are not understood should

be modeled through dependence structure. Dependence structure should

be modeled according to basic properties of the situation under investi-

gation.

These prescriptions, while still somewhat vague, are intended to provide some

guidance for making necessary modeling decisions. It is well understood that,

in stochastic process models, there is no unique way to decompose trend and

dependence (or large-scale and small-scale structure, or external and internal

processes). As Cressie (1993, page 114) states “. . . one person’s deterministic

mean structure may be another person’s correlated error structure”. If the

sole or primary objective of an analysis is prediction of unobserved values this

may cause no serious difficulties. But if, as is the case here, a primary goal

is a meaningful conceptualization of the scientific processes under study, this

issue should be given careful consideration.

What are the “basic properties” of this situation, which are meant to guide

our modeling of dependence in this problem? To re-phrase this question, what

are the basic reasons we might expect spatial dependence, as exhibited in the

data? The presence of systematic trends that are common to all monitoring
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stations should produce correlations among values. Beyond this, however, val-

ues might be correlated essentially because of physical transport. Put very

plainly, nitrate concentrations at stations along a river might be correlated

because water flows downhill. While there certainly must be other processes

occurring, such as chemical reactions, binding of particles to the sediment, and

so forth, these other (which I would consider internal) factors of the overall

process contribute uncertainty and would be difficult to give mathematical

form in a model. The upshot of this discussion is that we will attempt to

model the six month cycle of hydrology through systematic trend, and other

influences through spatial dependence based on the concept that it is transport

that is the underlying cause of dependence.

Definition of Random Field

To define random variables appropriate for use in this problem, let si ≡ (ℓ, t)

where ℓ is station no. (1-7) and t is Julian date, beginning with t = 1 as

24 November, 1981. The si are thus nonrandom variables that indicate the

“location” of each random variable, where location is taken to mean a position

in a random field, not necessarily a physical location. Here, location consists

of a combination of geographic location (station) and a time of observation.

Let

Y ≡ {Y (si) : i = 1, . . . , N}

= {Y (ℓ, t) : ℓ = 1, . . . , 7; t = 1 . . . , T}

Drawing on the fundamental idea that these random variables may fail to be

independent because of a transport process in the river, we can define neigh-
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borhoods by making a standard Markov assumption, but in terms of water

flowing down a river rather than time. That is, we will assume that the dis-

tribution of nitrates at a station, conditional on all stations upstream depends

only on the closest upstream station. The implication of this assumption is

that the neighbors of location si are, for i = 1, . . . , 7,

Ni ≡ {sj : sj ∈ {(ℓ− 1, t), (ℓ+ 1, t)}; i = 1, . . . , N

Then,

[Y (si) | {Y (sj) : j 6= i}] = [Y (si) | Y (Ni)]

Conditional Distributions

To formulate our model we need to specify functional forms for the full con-

ditional distributions [Y (si) | Y (Ni)]. It is, in general, difficult to determine

appropriate data-driven procedures on which to base distributional choice. In

this case, we first fit a regression containing a six month cycle to data from each

station, and then produced conditional histograms of residuals, as presented

in Figure 7.45 for Station 7. The conditioning used was to bin neighboring

residuals into categories. For example, the upper left histogram of Figure 7.45

contains residuals for Station 7 given that its only neighbor, Station 6, had

residual values between −7 and −2. The reamining histograms of Figure 7.45

were similary produced for various (non-mutually exclusive) bins. Overall, the

histograms of Figure 7.45 appear fairly symmetric, although they are not all

centered at zero, which is expected since these are conditional distributions.

The histograms of Figure 7.45 and similar graphs for other stations provides at

least some evidence to support a choice of conditional Gaussian distributions

on which to base a model. Thus, for i = 1, . . . , N let Y (si) have conditional
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Figure 7.45: Conditional histograms of regression residuals
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density

f(y(si) | y(Ni)) = Gau (µi, τ
2)

where

µi = θi +
∑

j∈Ni

ci,j (y(sj) − θj) (7.68)

subject to ci,j = cj,i. The above distributions specify what has been called

a conditional autoregressive model in the portion of Section 7.5.5 on Discrete

Index Random Fields; see, in particular, expressions (7.65) through (7.67). We

will formulate several models having this general form by specifying different

forms for the θi and ci,j.

Joint Distribution

As indicated in Section 7.5.5 this conditional Gaussians model also has a

Gaussian joint distribution which may be written as,

Y ∼ Gau
(

θ ; (I − C)−1 Iτ 2
)

(7.69)

where

θ ≡ (θ1, . . . , θN )T

C ≡ [ci,j]N×N and ci,j = 0 if j 6∈ Ni. Note that the leading constants in

the conditional means of expression (7.68) are also the marginal means. The

conditional means then become an additive combination of the marginal means

and departures of neighboring values from their marginal means. The ci,j in

(7.68) are incorporated in the matrix C of the joint distribution which is,

essentially, the inverse covariance matrix of the distribution. That the joint

distribution for a conditional Gaussians model is available in closed form is,

while not unique to Gaussian conditionals, the exception rather than the rule

in conditionally specified models. Having this joint distribution in closed form



346 CHAPTER 7. MODEL SPECIFICATION

greatly simplifies estimation, and least for the maximum likelihood approach

we will take here.

What remains in model formulation is to give explicit form to the leading θi

and ci,j of (7.68). In doing so we wish to reduce the number of free parameters

in the model and to provide a mathematical conceptualization (i.e., model)

that adheres to the modeling guidelines developed earlier. To accomplish this,

we return to the ideas of factors that are external and internal to the process

under investigation.

Model for External Factors

As mentioned above, it is the leading θi in (7.68) that become marginal ex-

pectations, and thus it is in these model terms that we wish to incorporate

identified external influences. In this application we have identified only one

factor for which sufficient scientific knowledge is available to incorporate into

the systematic model component, that being the six month hydrological cycle.

Therefore, model the θi in (7.68) as,

θi = β0 + β1 sin
(

t π

91

)

+ β2 cos
(

t π

91

)

(7.70)

In (7.70) the terms (tπ/91) determine a six month cycle, and both sine and

cosine functions are included to deal with phase shifts at the beginning of the

data record. The regression conducted to produce residuals for construction

of conditional histograms used (7.70) as the (linear) expectation function.

Models for Dependence Structure

All models fit to the data made use of (7.70) to describe the marginal expecta-

tions over time. Several different models were then formulated through various
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specifications for the dependence terms ci,j in the conditional means of (7.68).

1. Distance Model

ci,j ≡ η

{

min{di,j}
di,j

}k

where di,j is distance (river miles) between si and sj. In the distance

model, dependence is modeled as a function of physical or geographic

distance between monitoring stations. This is a simple formulation cor-

responding to the previous notion that dependence is related to the trans-

port of materials along a river.

2. Flow Model

ci,j ≡ η

{

min{fi,j(t)}
fi,j(t)

}k

where fi,j(t) is time (hours) for water to travel between si and sj (both

downstream and upstream) at time (Julian date) t

The flow model is an extension of the basic concept embodied in the distance

model. That is, if the distance model represents the fact that water flows

downhill, then the flow model represents the fact that water flows downhill

but not always at the same speed.

Calculations of the fi,j(t) in the flow model is a complicated process that

will not be explained in detail here. Suffice it to say that these variables depend

on measurements of river discharge at time t, the cross-sectional profiles of the

river at the different monitoring stations, and reservoir inflow, outflow and

pool elevation, which are also time-dependent factors. Computation of these

flow calcualtions involved three distinct cases:

1. Two river stations

Station 3 to Station 4 and Station 4 to Station 5
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2. Upstream river station, downstream reservoir station Station 1 to Station

2 and Station 5 to Station 6

3. Upstream reservoir station, downstream river station Station 2 to Sta-

tion 3 and Station 6 to Station 7

Straw and Brick Man Models

Recall from our previous discussion of potential model structures the two op-

tions identified as straw man and brick man models. The straw man model

was specified as,

Y ∼ Gau (θ, τ 2I) (7.71)

θi = β0 + β1 sin
(

t π

91

)

+ β2 cos
(

t π

91

)

,

which contains 4 parameters, β0, β1, β2, and τ 2. Note that, while the regres-

sion function parameters have the same interpretation in this model as in the

conditionally specified distance and flow models, τ 2 here is the marginal vari-

ance of each random variable as well as the conditional variance (which are the

same here). To specify the brick man model, let Yt ≡ (Y (l, t) : l = 1, . . . , 7)T

with Yt independent for t = 1, . . . , T . Then take,

Y ∼ Gau (µ,Σ) (7.72)

with µ ≡ (µ1, . . . , µ7)
T , and unconstrained Σ other than the requirement that

it be a legitimate covariance matrix (symmetric, positive definite). The brick

man model contains 35 parameters, the 3 regression coefficients β0, β1 and β2

as in all of the models, and 31 parameters in the covariance matrix Σ.

The names of straw and brick man models are attached to (7.71) and

(7.72) because of the ease with which their abilities to fit the data should be
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surpassed. That is, the straw man model with 4 parameters and assumed in-

dependence should be relatively easy to improve upon (the straw man is easy

to knock over) if there is any dependence exhibited in the data (and we know

there is). On the other hand, the brick man model with 35 parameters should

be difficult to improve upon (the brick man is difficult to knock over). Model

performance will be assessed using the mean squared difference between pre-

dicted (or fitted) values and observed values for each location in the random

field. One might (correctly, as it turns out) assume that the straw man model

will have the worst performance by this measure, and the brick man model

the best performance. An assessment of the spatial distance and flow models

is how close to the brick man model the mean squared error can be “moved”

from the straw man model while adding as few parameters as possible.

Results – 1982 to 1985 Data

N = 938

Maximum likelihood estimates for parameters in the straw man, distance, and

flow models are presented in the table below.

Estimated Value

Model β0 β1 β2 τ 2 η k

Straw Man 6.83 1.40 2.15 6.68

Distance 6.77 1.69 2.81 2.49 0.42 0.25

Flow 6.75 1.70 2.78 2.50 0.40 0.01

Notice that the parameters of the systematic model component (7.70) are

quite similar for all three models. While this is “proof” of nothing, and our
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models have not overcome the problem of non-unique decomposition into trend

and dependence that all models share, this is reassuring for our modeling

concept. That is, the systematic model component (7.70) which we developed

by considering external influences that are reasonably understood does seem to

represent effects that can be consistently estimated from the data, even under

different structures for dependence. This is not necessarily the case in many

situations, particularly with models that attempt to model as much structure

as possible through the expectation. Maximized log likelihood values for these

models are given in the following table.

Model No. Parameters Log Likelihood

Straw Man 4 −2022.8035

Distance 5 −1730.7696

Flow 5 −1730.6467

While we should hesitate to think of any type of likelihood ratio test in this sit-

uation, these values seem to indicate a substantial improvement of the distance

and flow models over the independence (straw man) model, as expected.

We turn now to our assessment based on mean squared errors for the var-

ious models. Note that dates of observation containing missing values had

to be eliminated from the available data to allow the brick man model to be

estimated. This is why that model was not included in the previous model

comparisons, but average square error should be at least roughly comparable.
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Station Straw Man Distance Flow Brick Man∗

1 9.37 6.59 5.67 3.86

2 6.35 2.23 1.79 0.12

3 8.10 2.41 1.36 0.14

4 7.32 3.19 1.37 0.85

5 6.54 2.78 2.03 1.61

6 3.08 0.88 0.95 0.35

7 4.94 1.83 1.51 0.36

TOTAL 6.53 2.90 2.10 1.04

* Only 623 observations used

If we use mean squared errors as a scalar quantification of model performance,

we can determine the “distance” between the straw man and brick man models

as 6.53 − 1.04 = 5.49. For the distance and flow models, the percentages of

this distance “moved” with the addition of only one parameter to the model

were:

Percent of Added

Model Distance Moved Parameters

Distance 66.1 1

Flow 80.7 1

Plots of predicted versus actual data for two monitoring stations for both

the independence and flow models are presented in Figure 4.46. Station 2 is

located near the dam of Saylorville Reservoir, while station 4 has two neighbors

that are both riverine locations (see Figure 7.42). The most noticeable feature

of these plots is that the spatial flow model has managed to pick up a great

deal more detail in the series than the straw man model.
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Figure 7.46: Fitted values for straw man and flow models for Station 2 and

Station 4 using the reduced data set.
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Results – 1982 to 1996 Data

The straw man model and the two spatial models (distance and flow) were

also fit to the entire record of 2, 954 available data values. Maximum likeli-

hood estimates of model parameters are given in the table below.

Estimated Value

Model β0 β1 β2 τ 2 η k

Straw Man 6.20 1.20 1.26 8.71

Distance 6.16 1.23 1.36 4.38 0.35 0.05

Flow 6.24 1.23 1.37 4.00 0.48 -0.04

The same consistency in estimation of expectation function parameters ob-

served in the reduced data set is also exhibited here, although the values have

changed somewhat between the two data sets, most notably the values esti-

mated for β2. The values of the dependence parameter η are remarkably simlar

for the two data sets, although note that the fixed “tuning parameter” k, which

influences interpretation of η differs. We have not said anything about this k

parameter, and will delay discussion of how these values were chosen until

Chapter 8 (one form of profile likelihood).

The maximized log likelihood values that resulted from the model fits are

given in the table below.

Model No. Parameters Log Likelihood

Straw Man 4 −6756.10

Distance 5 −6010.94

Flow 5 −5936.71

Here, in contrast to results for the reduced data set, the flow model appears to

have increased the log likelihood substantially over the distance model as well
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as both spatial models over the straw man model (we are not yet prepared to

consider what might be meant by a “substantial” increase at this point in the

course).

Finally, plots of fitted values for straw man and flow models for Station 3 are

presented in Figure 7.47, similar to those of Figure 7.46 using the reduced data

set. The traces for Station 3 were chosen because this station exhibited what

would appear to be an “intervention”, resulting in a major dramatic shock

to the series of values at about Julian date 3000. The dependence contained

in the flow model was able to pick up this event, without a need to include

an arbitrary shift parameter in an expectation function (arbitrary because the

cause is unknown).
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Figure 7.47: Fitted values from the flow model for Station 3 over the entire

data record
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Chapter 8

Methods for Estimation and

Inference

We have discussed (at some length) basic methods of specifying statistical

models, and a variety of implications of these methods for statistical abstrac-

tion. We now turn our attention to methods used in estimation of parameters

of various models, along with procedures for quantification and estimation of

uncertainty in those estimates, as well as the issue of model selection. Per-

tinent introductory comments include the manner in which we will approach

exact or small sample theory versus approximate or large sample theory, and

the basic modes used for making inferential statements about parameters or

models.

First, let us recognize that, in parametric modeling, inferential statements

can only be made on the basis of properties of statistical quantities, often

the estimators of parameters, although sometimes the likelihood function it-

self. In small sample theory the primary properties of interest are bias (or

the lack thereof), efficiency or minimum variance, and distributional form. In

357



358 CHAPTER 8. ESTIMATION AND INFERENCE

large sample theory we have consistency, asymptotic bias (or lack thereof),

asymptotic efficiency, and asymptotic distribution. Other properties that are

less frequently considered include equivariance and general minimum risk (e.g.,

Lehmann 1983). Small sample properties are extremely desirable as they dic-

tate statistical behavior of estimators for any sample size. The availability of

small sample properties is also the exception, rather than the rule, for statis-

tical estimators (despite the fact that we often spend a great deal of time on

such properties in theory courses). Thus, while we will point out situations in

which the methods presented in this section possess small sample properties,

we will not dwell on such properties. You have already seen in previous courses

most of the situations under which small sample properties are available, which

consist primarily of linear models with constant variance additive errors and

iid samples from exponential families.

Secondly, our approach to inference will consist primarily of two modes, in-

terval estimation of parameters and model selection procedures. Thus, we will

deal little with traditional formulations of “hypothesis” tests or “significance”

tests, although we may revisit both of these in Part 4 of the course which will

deal with issues in inference. Thus, we are by design (although not necessarily

choice – we simply cannot cover everything in one course) largely excluding an

entire body of statistical theory called decision theory from consideration, at

least as relevant to issues of statistical testing. Bits and pieces of this theory

may, however, find their way into our discussion.

8.1 Estimators Based on Sample Moments

In our discussion of Sampling and Survey Methodology in Part 1 of the course

we defined population quantities (for physically existing populations of discrete
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units) as averages over population units of functions of attributes. In defin-

ing basic estimators under this approach we then simply replaced averages

over population units with averages over sample units. Estimation based on

sample moments embodies this same basic concept. The population average

and variance have, in particular, been replaced with expectation and variance

for theoretical distributions, but these quantities turn out to be functions of

model parameters. It is natural, then, to consider estimating such functions

of parameters using sample moments and, sometimes, solving the resultant

expressions for the individual parameter values themselves.

Estimators based on sample moments are used in (at least) the following

circumstances:

1. To obtain initial “guesses” for estimators that will be adjusted to pro-

duce small sample properties (primarily unbiasedness and/or minimum

variance).

2. To obtain estimators of model parameters in situations for which effi-

ciency is not a crucial concern.

3. To obtain starting values for iterative estimation procedures that produce

maximum likelihood estimates.

4. To obtain consistent estimators of variance parameters for use with as-

ymptotic properties of parameters involved in expectation functions.

Note that these uses of estimators based on sample moments are not mutually

exclusive and that the third and fourth of these circumstances are actually

contained in the second. We will thus deal separately with the situation of

item 1 above, and the remaining situations.
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8.1.1 Sample Moments as Launching Pads for Optimal

Estimators

You either are, or will soon become through other courses, aware of the deriva-

tion of estimators possessing some type of optimality property. Although not

exhaustive of the possibilities, by far the most common criterion for a definition

of “optimal” is minimization of expected squared error loss. For a parameter

θ, collection of random variables Y having a distribution that depends on θ,

and estimator of θ δ(Y ), we define the loss function L{θ, δ(Y )}. It is im-

portant for deriving optimal properties of estimators that this loss function is

restricted to have the two properties that,

L{θ, δ(y)} ≥ 0 for all θ and possible values δ(y)

L{θ, θ} = 0 for all θ.

The squared error loss function is,

L{θ, δ(Y )} = {θ − δ(Y )}2,

and the corresponding expected loss or risk becomes,

E[L{θ, δ(Y )}] = E[{θ − δ(Y )}2]. (8.1)

A fair amount of statistical theory is devoted to finding estimators δ(Y )

that minimize (8.1) for all possible values of θ, so-called minimum risk estima-

tors. The usual progression is to point out that such uniform minimum risk

estimators do not, in general, exist unless we restrict attention to particular

classes of estimators. The usual class considered is that of unbiased estimators

for which

E{δ(Y )} = θ,
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in which case minimization of (8.1) becomes the same as minimization of the

variance of δ(Y ). If such estimators exist for a given model they are then called

uniform minimum variance unbiased (UMVU) estimators. Other situations

in which minimum risk estimators may sometimes exist include the class of

equivariant estimators and we sometimes refer to minimum risk equivaraint

(MRE) estimators (see, e.g., Lehmann 1983).

Among the most important messages from consideration of optimal esti-

mators for statistical modeling are the following:

1. Restricting the classes of estimators considered (e.g., to unbiased esti-

mators) is typically not sufficient to guarantee that a uniform minimum

risk, or minimum variance, estimator exists, yet alone indicate how we

might find one if it does.

2. In situations for which both unbiased estimators and sufficient statistics

are available for a parameter, the Rao-Blackwell theorem (e.g., Lehmann

1983, p.50) provides the key for determination of an optimal estimator.

Under the additional restriction that the model under consideration pro-

vides a complete sufficient statistic, an application of the Rao-Blackwell

theorem provides the unique UMVU estimator (this is actually true un-

der any strictly convex loss, not just squared error).

3. The set of situations under which we have parameters for which unbiased

estimators exist and such that the model provides complete sufficient

statistics are relatively limited. Complete sufficient statistics are mostly

constrained to exponential family distributions (at least if we include

“curved” exponential families).

4. Given that a UMVU or MRE estimator can be shown to exist and can
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be found (i.e., derived) we must still face the problem of determining

what its variance or risk is if it is to be useful in inferential procedures.

It seems to be the case that the calculation of exact variances is often

quite complex, if it can even be achieved (e.g., Lehmann 1983, p. 106).

5. Given the historical emphasis in statistical modeling on additive error

models, the connection of such models with location scale families of

distributions, the fact that the normal distribution is one of only two

location families (i.e., normal with known variance) that are also expo-

nential families (the other being the distribution of the log of a gamma

random variable), the fact that the normal may also be written as an

exponential dispersion family, and the fact that the variance of normal

theory estimators may often be expressed in explicit formulae, all of the

above go a long way toward explaining why the normal distribution has

achieved its high status in both statistical theory and methods.

6. Two caveats to the above indication that optimal small sample theory

is often applicable to models based on normal distributions are that this

also usually requires constant variance, and that functions of UMVU

estimators are not, in general, UMVU for the same function of para-

meters. Linear transformations of UMVU estimators are UMVU since

the expected value of a linear function of random variables is the same

linear function of the expectations, but this does not hold for nonlinear

transformations (Jensen’s Inequality).

Before moving on we give two simple examples based on models with normal

error distributions and constant variance to illustrate the use of sample mo-

ments in developing estimators with optimal small sample properties.
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Example 8.1

Consider the simple one-sample normal model,

Yi = µ+ σ ǫi,

where, for i = 1, . . . , n, ǫi ∼ iidN(0, 1). Consider estimation of µ and σ2

using the sample moments Ȳ = (1/n)
∑

Yi and S2
∗ = (1/n)

∑

(Yi − Ȳ )2 In this

model Yi follows a two parameter exponential family with complete sufficient

statistic (Yi, Y
2
i )T . Using the property of exponential families that the joint

distribution of a sample is an exponential family with the same natural para-

meters and complete sufficient statistics given by sums of the corresponding

statistics for individual random variables (see Section 6.1.4), the joint distri-

bution of Y = (Y1, . . . , Yn)
T is also normal with complete sufficient statis-

tic (
∑

Yi,
∑

Y 2
i )T . Now, as we well know, the sample mean Ȳ is unbiased

for µ. Since this estimator is unbiased and a function of the complete suffi-

cient statistic, it is UMVU for µ. The second (central) sample moment S2
∗ is

not unbiased for σ2, but a simple correction yields the usual sample variance

S2 = (1/(n− 1))
∑

(Yi − Ȳ )2 which is unbiased for σ2 and is a function of the

complete sufficient statistic and, hence, is also UMVU. As an illustration of

the point that functions of UMVU estimators are not generally also UMVU,

note that S = {S2}1/2 is not UMVU for σ = {σ2}1/2.

Example 8.2

Consider now a linear regression model with constant variance,

Yi = xTi β + σ ǫi,
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where the ǫi ∼ iidN(0, 1) for i = 1, . . . , n, and xTi = (x1,i, . . . , xp,i). The

distribution of the response variables {Yi : i = 1, . . . , n} in this model, Yi ∼
indepN(xTi β, σ

2) may be written in exponential family form with complete

sufficient statistics
∑

Y 2
i and, for k = 1, . . . , p,

∑

Yixk,i. The ordinary least

squares estimators for β are unbiased and functions of the complete sufficient

statistics and are thus UMVU. Similarly, S2 =
∑{(Yi − xTi β̂)2}/(n − p) is

unbiased for σ2 and thus also UMVU. This example perhaps extends a bit

beyond the use of sample moments as initial estimators from which to develop

optimal properties, although least squares estimators are sometimes referred

to as moment-based estimators (e.g., Lindsey 1996, p. 123).

8.1.2 Method of Moments Estimators

What is called the method of moments, usually attributed to Pearson (1948), is

often presented as a “preliminary” or “crude” method for the derivation of es-

timators. This is because, as a method of estimation per se, method of moment

estimators are not efficient in either exact or asymptotic senses. Nevertheless,

we still employ the fundamental concept of method of moments estimation

to obtain either starting values for iterative numerical methods for maximum

likelihood estimation or, perhaps more importantly, to obtain consistent esti-

mators of variances in a model as discussed in the previous subsection.

The basic concept behind the method of moments is that, in a situa-

tion involving iid random variables, estimators of a set of model parameters

{θk : k = 1, . . . , s} may be obtained by equating the theoretical moments with

the first s sample moments (1/n)
∑

(Y k
i ); k = 1, . . . , s, and solving the re-

sultant set of equations for the parameter values. This concept is most easily

grasped through an example.
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Example 8.3 A One Sample Gamma Model

Suppose that we have a gamma model for a set of iid random variables. That

is, for i = 1, . . . , n, the density of Yi is,

f(yi|α, β) =
βα

Γ(α)
yα−1
i exp{−β yi}; 0 < yi.

From this model, we know that the first two moments of each Yi are

E(Yi) =
α

β
,

E(Y 2
i ) =

α(α+ 1)

β2
.

Let the first two sample moments be denoted as,

a1 =
1

n

n
∑

i=1

Yi,

a2 =
1

n

n
∑

i=1

Y 2
i .

Then method of moment estimators for α and β are values that solve,

a1 =
α

β
,

a2 =
α(α + 1)

β2
,

which results in,

α̂ =
a2

1

a2 − a1
,

β̂ =
a1

a2 − a1
.

Now, we could make use of asymptotic results for sample moments under iid

conditions (e.g., Serfling 1980, p. 67) to derive consistent estimators for the
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variances of α̂ and β̂ from the result that,

var(ak) =
1

n
[E(Y 2k

i ) − {E(Y k
i )}2],

and an application of what is often called the Mann-Wald theorem, but there

is little cause for doing so, since these moment estimators have greater vari-

ance than do maximum likelihood estimators which are no longer prohibitive

to compute. Nevertheless, iterative algorithms for numerically approximat-

ing maximum likelihood estimates are often sensitive to starting values, and

moment estimators may provide good starting values since they do constitute

consistent estimators in their own right.

Estimators that make use of the basic idea of method of moments esti-

mators, but for which we have no pretense of deriving variances or expected

squared errors are usually not called method of moments estimators. Nev-

ertheless, I include them in this category because the concept of “matching”

sample and theoretical moments seems the basic justification for their devel-

opment. Situations to which moment estimation is applied in this context

are often those of estimating parameters involved in the variance of response

variables in a model. Often, but not always (as we will illustrate below) these

are variances of additive error models. We will again illustrate this type of

estimation through several examples.

Example 8.4 Linear Regression Revisited

Consider again the linear regression model of Example 8.2,

Yi = xTi β + σ ǫi,

with ǫi ∼ iidN(0, 1) and xTi = (x1,i, . . . , xp,i). Suppose that consistent estima-

tors are available for the expectation function parameters β, but we are given
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nothing else. Directly from this model, we have that

σ ǫi = Yi − xTi β,

so that the random variablesWi = Yi−xTi β are iid withN(0, σ2) distributions.

The second sample moment of the Wi is then,

a2 =
1

n

n
∑

i=1

w2
i ,

=
1

n

n
∑

i=1

{yi − xTi β}2. (8.2)

The sample moment a2 in (8.2) is consistent for E(σ2 ǫ2) = σ2, from basic

properties of sample moments (e.g., Serfling 1980, p. 67).

Now, we were given in this problem that an estimator β̂ was available such

that

β̂
p→ β.

If we define (8.2) as a function of β, we may write a2(β) on the left hand side

of (8.2). Then, given a β̂
p→ β, and understanding that a2(·) is continuous, a

portion of the Mann-Wald theorem (e.g., Serfling 1980, p. 24) gives that

a2(β̂)
p→ a2(β)

p→ σ2,

or

σ̃2 =
1

n

n
∑

i=1

{yi − xTi β̂}2, (8.3)

is consistent for σ2. It is not true that E(σ̃2) = σ2 and it is typical to adjust

(8.3) as σ̂2 = (n/(n − p))σ̃2 to produce an unbiased estimator. Note, how-

ever, that the production of unbiasedness through this adjustment depends on

having a linear model with variance that does not depend on the mean.

As we have seen in Section 8.1.1, in this normal-based linear model a much

stronger result is available for the estimator σ̂2. In many other situations,
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however, we may retain the argument immediately above for consistency even

though the conditions needed for the stronger result will not be met.

Example 8.5 Constant Variance Nonlinear Regression

Consider a model in the form of expression (7.1) in Chapter 7.2,

Yi = g(xi, β) + σ ǫi,

where g(·) is a specified function, β = (β1, . . . , βp) and, for i = 1, . . . , n, we

take ǫi ∼ iidN(0, 1). This model implies that

Wi = Yi − g(xi, β),

are iid random variables with expectation 0 and variance σ2. Suppose that

consistent estimators β̂ are a available for β. Proceeding in a manner directly

analogous to that of Example 8.4, we can develop the consistent estimator of

σ2,

σ̂2 =
1

n− p

n
∑

i=1

{yi − g(xi, β̂)}2. (8.4)

Here, although it is typically the case that the denominator n− p is used

in (8.4), there is really no justification other than analogy with producing un-

biasedness in normal linear models. That is, although n− p is typically used,

n provides the same results (consistency), and there is no formal justification

for adjusting the “degrees of freedom” in this case.

Example 8.6 Nonlinear Regression with Known Variance Parameters

The argument we have developed in Examples 8.4 and 8.5 also applies to
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models of the form (7.4), in which the resultant estimator of σ2 becomes,

σ̂2 =
1

n− p

n
∑

i=1

(

yi − g1(xi, β̂)

g2(xi, β̂, θ)

)2

.

Recall that for this type of model we are assuming the parameter θ is known

or selected as a part of model specification and, again, there is no theoretical

justification for the choice of n− p over n in the denominator.

Example 8.7 Nonlinear Regression with Unknown Variance Parameters

If we use the same form of model as in Example 8.6, but now considering

the parameter θ of the variance model unknown, can the same development

be used to estimate σ2? The answer is no, it generally cannot. Why is this?

Recall that the consistency of our estimators σ̂2 in the above examples (8.4,

8.5, 8.6) depended on the availability of a consistent estimator of parameters β

in the expectation function. When the variance model depends on additional

unknown parameters, such as for the model in expression (7.9), the develop-

ment of estimators for β and θ cannot be undertaken in a separate manner.

That is, there is no consistent estimator of β available without the same for θ,

and vice versa. Thus, we must consider estimation of the entire parameter set

{β, θ} in a simultaneous manner.

Example 8.8 Dispersion Parameters in Generalized Linear Models

Consider now, estimating the dispersion parameter φ in a generalized linear

model as given by expressions (7.19), (7.20) and (7.21) in Section 7.3.2. Sup-

pose that the link function g(·) is continuous and that consistent estimators of

β are available for the systematic model component g(µi) = xTi β. Then, an
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initial application of the Mann-Wald theorem gives that

µ̂i = g−1(xTi β̂)
p→ µi. (8.5)

From (7.19) we have that E(Yi) = µi = g−1(xTi β) and var(Yi) = (1/φ)V (µi).

Thus, the random variables

Wi =
Yi − µi

{V (µi)}1/2

are independent with distributions that have expectation 0 and variance 1/φ, a

constant. While we may have no idea what these distributions actually are, we

do have that the Wi are independent with E(W 2
i ) = (1/φ). A basic moment

estimator for (1/φ) is then,

1

n

n
∑

i=1

W 2
i =

1

n

n
∑

i=1

{yi − µi}2

V (µi)
.

An additional application of the Mann-Wald theorem then results in

1

n

n
∑

i=1

{yi − µ̂i}2

V (µ̂i)

p→ 1

φ
.

Since we are concerned with asymptotic behavior rather than expectation, we

also have that

φ̂ =

[

1

n

n
∑

i=1

{yi − µ̂i}2

V (µ̂i)

]−1
p→ φ.

Example 8.9 Empirical Variograms

As a final example, consider estimation of the function defined as a variogram

in our discussion of continuous index random fields; see expression (7.60).

Suppose that E{Y (s)} = µ for all s ∈ D. Then we would have that,

2γ(si − sj) = E[Y (si) − Y (sj)]
2; ∀si, sj ∈ D.
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The above expression suggests using the average of the squared differences for

pairs of data values to estimate 2γ(·). Suppose that, for a given displacement

h, we have a number of pairs of locations such that si − sj = h. In a set of

data from locations {si : i = 1, . . . , n} we might then form the set n(h) ≡
{(si, sj) : si − sj = h; i, j = 1, . . . , n} and estimate 2γ(·) as,

2γ̂(h) =
1

|N(h)|
∑

N(h)

{Y (si) − Y (sj)}2; h ∈ ℜd, (8.6)

where |N(h)| is the number of pairs of locations in the set N(h). The estimator

(8.6) is called “Matheron’s estimator” and is generally considered as a moment-

based estimator for obvious reasons. Note that we typically do not have mul-

tiple pairs of locations with the same displacements so that N(h) is replaced

with a “tolerance class” N(h(l)) ≡ {(si, sj) : si−sj ∈ T (h(l))}; l = 1, . . . , k,

where T (h(l)) is defined as some region around the displacement h. In fact,

it is not infrequent to make an (at least initial) assumption that the process is

isotropic in which displacement h in ℜd is replaced with distance h in ℜ+.

A fundamental point to be gained through the above examples is that,

although we typically do not resort to the “method of moments” as a self-

contained estimation procedure in its own right, many of the estimators that we

typically employ, particularly for estimation of variances, make use of the basic

intuition of the method of moments which is that estimators may sometimes

be developed by equating theoretical expectations with sample averages of the

corresponding quantities.

8.2 Least Squares Estimation

Notice that most of the examples of moment-based estimation discussed in

Section 8.1 made no use of distributional assumptions. In the case of estimat-
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ing all model parameters by matching theoretical and sample moments, as in

Example 8.3, we made use of explicit distributional assumptions (i.e., gamma).

In Example 8.8 on estimation of dispersion parameters in glms we made use

of general distributional structure for exponential dispersion families, but not

specific distributional form. Other than these cases we made no use of distri-

butional information, dealing only with basic definitions of moments in terms

of the expectation operator (and, in particular, variances). The least squares

approach to estimation shares this characteristic of avoiding specific distrib-

utional assumptions, and this is often mentioned as a “robustness” property

of the method. On the other hand, it is also true that, when it comes time

to consider inferential quantities such as interval estimates for parameters, we

usually revert to an assumption of normality. As a final introductory com-

ment note that we have also had an indication that least squares estimators

are sometimes considered to be moment-based estimators (e.g., Lindsey 1996,

p. 123). While this may be a legitimate connotation for least squares, I believe

it is not quite true to the origins of the method and prefer to think of least

squares estimators as distinct from moment estimators.

8.2.1 The Concept of Least Squares

One way to approach least squares is to view the method as the solution of

a geometric minimization problem. To formulate the problem in this manner

consider a set of real numbers y ≡ {yi : i = 1, . . . , n} as a point in ℜn. Define

the inner product of two vectors u and v, both in ℜn, relative to an n × n

positive definite matrix A as,

〈u, v〉A = uTAv,
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or,
n
∑

i=1

n
∑

j=1

ui vj ai,j,

where ai,j is the ijth element of the matrix A. Now, let ML denote a linear

manifold of ℜn, and m ≡ (m1, . . . , mn) an element of ML. Further, define the

metric ||u||A ≡< u, u >
1/2
A . Now, consider minimizing the squared distance

(metric) between y and m,

min
m∈ML

||y −m||2A,

or,

min
m∈ML

(y −m)TA (y −m).

As a final step to get this in familiar form, let X be an n × p matrix whose

columns span the linear manifold ML as Xβ = ML. The problem then be-

comes

min
β∈ℜp

(y −Xβ)TA (y −X β). (8.7)

As a side note, we have restricted the general problem from y being in a

Hilbert space and 〈 〉 a generic inner product to the particular instance of this

problem that is usually the one of statistical interest. Now, what is known as

the Projection Theorem gives the solution of (8.7) as that value β∗ such that

〈(y −Xβ∗), (X β∗)〉A = 0,

or

(y −Xβ∗)TAXβ∗ = 0

⇒ β∗TXTAy − β∗TXTAXβ∗ = 0

⇒XTAXβ∗ = XTAy

⇒ (XTAX)−1XTAy = β∗.

(8.8)



374 CHAPTER 8. ESTIMATION AND INFERENCE

To express the least squares problem (8.7) and its solution (8.8) in a form that

is statistically familiar, we made use of the restriction that ML constituted a

linear manifold spanned by the columns of a known matrix X. If we replace

ML with a nonlinear manifold MN what changes? Suppose we replace the

n × 1 vector Xβ with an n × 1 vector g(X,β) for some known nonlinear

function g(·). Continuing to write X as a matrix implies nothing in particular

to do with a linear vector space; X here is simply a convenient notation for a

collection of vectors {xi : i = 1, . . . , n} where xi ≡ (x1,i, . . . ,xp,i)
T . The least

squares minimization problem analogous to (8.7) then becomes,

min
β∈ℜp

(y − g(X, β))TA(y − g(X, β)). (8.9)

The projection theorem continues to give a solution to this problem as,

〈(y − g(X, β)), g(X, β)〉A = 0,

although this solution cannot be determined in closed form similar to (8.8) for

the case of a linear manifold ML.

What should we take away from this discussion of the concept of least

squares?

1. There is nothing fundamentally statistical about the concept of least

squares – least squares is the solution to a minimization problem in

vector spaces.

2. In problems that are fundamentally linear, the least squares problem

allows an explicit solution.

3. The least squares problem is defined with respect to a known, positive

definite, “weight” matrix (the matrix A). This will be critical in terms

of whether an exact or only approximate solution to the minimization
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problem can be determined, and whether even an approximate solution

is unique, even in the case of a linear problem.

One additional point that will become crucial in determining for which

types of statistical models estimation by least squares might be appropriate

comes from a more carefully examination of what was called the projection

theorem, which offers a (unique, as it turns out, for a known weight matrix A)

solution to the basic least squares problem.

The projection theorem may be stated as:

Theorem: Let y be in a Hilbert space V and let M be a subspace of V such

that y 6∈ M . Further, let A be a known positive definite matrix. Then y can

be uniquely represented in the form y = m+ v for some m ∈M and v ⊥M

such that, for any w ∈M

||y −w||2A ≥ ||y −m||2A,

with equality if and only if w = m.

As already indicated, the subspace M corresponds to either a linear mani-

fold ML or a nonlinear manifold MN as described by the vector of expectation

functions {E(Y1), . . . , E(Yn)}. The essence of the projection theorem is to de-

compose y into two parts, one that lies within this manifold, and the other

additive component that is orthogonal to M . This points directly to the use of

least squares for estimation of parameters involved in the expectation function

of additive error models.

8.2.2 Least Squares as Statistical Estimation

So far we have attached no statistical properties to either the formulation of

the least squares problem, or to the solution of this problem given by the pro-
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jection theorem. As hinted at in the comments at the end of Section 8.2.1,

there are some differences that arise depending on whether an additive error

model to which least squares is applied contains a linear or nonlinear expec-

tation function, and whether the appropriate “weight matrix” A is considered

known or unknown. In fact, we have left the exact identity of this matrix

somewhat vague. Consider that solution of a least squares problem leads to

estimators of the expectation function parameters β. In the same spirit of

developing properties for moment estimators in Section 8.1, we wish to deter-

mine properties of these least squares estimators. It turns out that whether

such properties exist and, if so, what they are, depends on the choice made in

definition of the weight matrix A that helps define the least squares problem.

We will consider the issues of choosing an appropriate matrix A to for-

mulate the least squares problem, finding numerical solutions to that problem

for particular data sets, and attaching statistical properties to the resultant

estimators for a number of general cases.

Ordinary Least Squares

Suppose that we have a linear additive error model with constant variance,

Yi = xTi β + σ ǫi; i = 1, . . . , n, (8.10)

where ǫi ∼ iid F such that E(ǫi) = 0 and var(ǫi) = 1; usually, F is taken

as normal but (as you already know) that is not required to attach statistical

properties to the ols estimators of β.

Here, it is beneficial to write the model in matrix form as,

Y = Xβ + σ ǫ,

in which we have cov(ǫ) = σ2In, where In is the n × n identity matrix. Take

the weight matrix A in the least squares problem (8.7) to be A = I−1
n = In;
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the reason for the initial inverse will become clear shortly. Then by (8.8) the

values of β that solve the least squares problem are given by

β̂ = (XTX)−1XTY , (8.11)

which are the usual ordinary least squares estimators. Statistical properties

are attached to β̂ in (8.11) by means of the standard Gauss-Markov theorem,

which states that β̂ is UMVU among all estimators that are linear functions

of the random vector Y .

To derive the variance of the ols estimator β̂ we make critical use of the fact

that the estimator is a linear function of the response vector Y . Combining

this with the Gauss-Markov result of unbiasedness, and the fact that the model

gives cov(Y ) = E(Y Y T ) = σ2In we have,

cov(β̂) = E
[

{(XTX)−1XT}Y Y T{(XTX)−1XT}T
]

= {(XTX)−1XT}E(Y Y T ){(XTX)−1XT}T

= (XTX)−1XT InX(XTX−1)Tσ2

= (XTX)−1σ2.

For estimation of this covariance we replace σ2 with an unbiased estimator,

S2 =
1

n− p

n
∑

i=1

(Yi − xTi β̂)2,

which is UMVU if the error terms are normally distributed, see Example 8.2.

For inference, we generally strengthen model assumptions in (8.10) to include

that the error distribution F is normal, which then leads to a joint normal

distribution for the elements of β, the concomitant normal marginal distribu-

tions as normal, and the standardized elements of β̂ using estimated variances

as t−distributions from which intervals are formed. Take note of the fact that,
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the exact theory results in this case lead to t−distributions as results so that

it is entirely appropriate and correct to use quantiles of these distributions for

interval estimation.

Weighted Least Squares

Now consider a model of the form of expression (7.3) with g(xi, β) = xTi β,

namely,

Yi = xTi β + (σ/
√
wi) ǫi; i = 1, . . . , n, (8.12)

where the {wi : i = 1, . . . , n} are assumed to be known constants, and the same

assumptions are made about the additive errors ǫi as for model (8.10). The

only difference in estimation and inference for this model from the constant

variance model of (8.10) is that the covariance matrix for the vector Y becomes

cov(Y ) = σ2W−1 where W−1 is a diagonal n× n matrix with elements 1/wi.

It turns out that the implication is that the appropriate weight matrix A in

the least squares problem (8.7) and solution (8.8) is A = W . Least squares

estimators of the elements of β are then given as,

β̂ = (XTWX)−1XTWY . (8.13)

The Gauss-Markov theorem continues to hold, and the derivation of the co-

variance for β̂ in a manner similar to that presented for ordinary least squares

results in

cov(β̂) = (XTWX)−1σ2.

To estimate this covariance we now use as an estimator of σ2 the estimator

S2
w =

1

n− p

n
∑

i=1

wi(Yi − xTi β)2,

which is developed as a bias corrected moment estimator in exactly the same

way as S2 for the constant variance model, is still a function of the complete
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sufficient statistic for a normal model (and thus is UMVU) and may be used

in a standardization of elements of β̂ that results in t−distributions.

Take note that, in the models considered for estimation with ordinary or

weighted least squares, we have considered only linear models for which there

was no dependence between the mean and variance models and for which

the variance model has included no additional unknown parameters. In other

words, first of all linear models, and secondly models for which the only un-

known quantity involved in the variances of responses is a constant σ2. Both

of these restrictions turn out to be critical for application of the Gauss-Markov

theorem that gives exact (or small sample) results for least squares estimators.

Generalized Least Squares

We have discussed in Chapter 7 a number of additive error models that do not

fall into the categories described above for which the Gauss-Markov theorem

provides small sample properties for estimators. There are several of these

for which Gauss-Markov does not apply but for which we may, however, still

consider the basic concept of least squares estimation. First are linear models

with variances that may depend on the mean but not additional unknown

parameters (i.e., models of the form of expression (7.5) of Section 7.2.3, for

which we assume θ is known and µi(β) is linear in covariates xi). Second

are nonlinear models with constant variance (i.e., models of the form (7.1) in

which g is a nonlinear function and the variance of error terms ǫi are constant).

Finally, are nonlinear models of the form of model (7.5) in which variances may

depend on the mean but not other unknown parameters.

There are two modifications to solution of the least squares problems in

these situations that both result in iterative computational algorithms to solve
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a least squares problem. Estimates that result from any algorithm depending

on one or both of these modifications are typically called generalized least

squares estimates.

Consider first an additive error model such as (7.5) in which we take the

expectation function to be linear,

Yi = xTi β + σg(xTi β, θ)ǫi, (8.14)

with the usual additive error model assumptions on the ǫi and where θ is

considered known (e.g., chosen prior to estimation as a part of model selection).

Now, model (8.14) is quite similar to model (8.12) if we write

√

wi(β) =
1

g(xTi β, θ)
,

the distinction being that here we have written the “weights” as functions of

β whereas in (8.12) they were assumed to be known constants.

Consider taking preliminary estimates of β, say β(0) for use as fixed values

in the weights but not the expectation function. Then our model could be

written as,

Yi = xTi β +
σ

√

wi(β
(0))

ǫi,

and, in analogy with (8.12) and (8.13) this suggests a weighted least squares

solution of the form

β̂
(1)

= (XTW (β(0))X)−1XTW (β(0))Y , (8.15)

where W (β(0)) is an n× n diagonal matrix with elements

wi(β
(0)) = g2(xTi β

(0), θ). (8.16)

As suggested by the notation of (8.15) and (8.16), we might then iterate this

process, taking new weights calculated as wi(β
(1)) from (8.16), then solving
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(8.15) with these weights to produce β̂
(2)

and so forth until β(j+1) = β(j)

at which time we say the iterative procedure has “converged”. Just to keep

everything straight, note that the least squares minimization problem we are

attempting to solve here is,

min
β

n
∑

i=1

wi(β){yi − xTi β)}2. (8.17)

Now consider an additive error model such as (7.5) in which the expectation

function is nonlinear but in which the variance model g(µi(β), θ) ≡ 1 for all

i = 1, . . . , n,

Yi = g(xi,β) + σ ǫi, (8.18)

where ǫi ∼ iid F with E(ǫi) = 0 and var(ǫi) = 1. Suppose here we also have a

preliminary estimate β(0) and we approximate the expectation function with

a first-order Taylor expansion,

E(Yi) = g(xi,β) ≈ g(xi,β
(0)) +

p
∑

k=1

V
(0)
i,k (βk − β

(0)
k ),

where, for k = 1, . . . , p,

V
(0)
i,k =

∂

∂βk
g(xi,β)

∣

∣

∣

∣

∣

β=β
(0)
. (8.19)

This approximation then allows us to write,

Yi − g(xi,β
(0)) ≈

n
∑

i=1

V
(0)
i,k (βk − β

(0)
k ) + σ ǫi, (8.20)

which is in the form of a linear regression model with the “usual Yi” replaced

by Yi−g(xi,β), the “usual xi,k” replaced by V
(0)
i,k , and the “usual βk” replaced

by (βk − β
(0)
k ).

Equation (8.20) suggests the use of ordinary least squares to obtain an

estimate of

δ(0) ≡ (β − β(0))T
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as,

δ(0) = (V (0)TV (0))−1V (0)T Ỹ
(0)
,

where V (0) is an n × p matrix with ikth element V
(0)
i,k and Ỹ

(0)
is a vector of

length n with elements Yi − g(xi,β
(0). An updated estimate of β may then

be obtained as

β(1) = β(0) + δ(0). (8.21)

Replacing β(0) with β(1) in (8.19) and (8.20) allows expression of an updated

model form in terms of V (1) and Ỹ
(1)

, and (8.21) allows this to be updated to

β(2) and so on in an iterative manner. As before, when β(j+1) = β(j) we would

say the iterative procedure has converged. The least squares minimization

problem we are attempting to solve with this model is

min
β

n
∑

i=1

{yi − f(xi,β)}2. (8.22)

Finally, consider a combination of the two models discussed above, namely

model of the form (7.4),

Yi = g1(xi,β) + σg2(xi,β, θ) ǫi,

where we are still considering θ as known. Here, a combination of the thinking

that resulted in (8.15) and (8.16) for linear models and (8.19) through (8.21)

for nonlinear models results in a full-blown generalized least squares algorithm

of the following form.

Generalized Least Squares Algorithm

1. Calculate initial estimates β(0).

For j = 0, . . . ,
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2. Calculate the W (j) matrix as an n× n diagonal matrix with elements

wi(β
(j)) = g2

2(x
T
i β

(j), θ).

3. Calculate the V (j)− matrix as an n× p matrix with ikth element

V
(j)
i,k =

∂

∂βk
g1(xi,β)

∣

∣

∣

∣

∣

β=β
(j)
.

4. Calculate elements of Ỹ
(j)

, the vector of “j−step response variables”

as,

Ỹ
(j)
i = Yi − g1(xi,β

(j)).

5. Calculate the “step” δ(j) as,

δ(j) =
(

V (j)TW (j)V (j)
)−1

V (j)TW (j)Ỹ
(j)
.

6. Update estimates of the expectation function parameters β as,

β(j+1) = β(j) + δ(j).

7. Update j = j + 1 and return to step 2.

The least squares minimization problem this algorithm finds a solution to

is

min
β

n
∑

i=1

wi(β){yi − f(xi,β)}2, (8.23)

where wi(β) is now defined as (c.f. expression (8.16)),

wi(β) = g2
2(xi,β, θ).

Although for linear models with constant variance or linear models with

variances that are functions of known weights we usually employ the much
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simplified algorithms of ordinary least squares or weighted least squares, the

minimization problems attached to those models fit the general form of (8.23).

Thus, if the generalized least squares algorithm is, in fact, solving (8.23) it

should work with any of the additive error models considered thus far (i.e.,

linear or nonlinear models with constant variance, variances that are functions

of known weights, or variances that are functions of expectations with any

additional parameters known).

As a fairly meaningless exercise relative to estimation, but to demonstrate

that the generalized least squares algorithm is not out of concert with the

“direct” (i.e., non-iterative) least squares algorithms, consider estimating ex-

pectation function parameters β for a constant variance linear model using the

ordinary least squares estimates as starting values, β(0) = (XTX)−1XTY ; if

we did this we would already be done, which is why this is meaningless for

actual estimation. The linear model form, however, would result in V (j) = X

for all j, and the constant variance specification would give W (j) = In for all

j. Then on the first iteration of the generalized least squares algorithm we

would have, in steps 4, 5 and 6,

Step 4

Ỹ
(1)
i = Yi −X(XTX)−1XTY .

Step 5

δ(0) = (XTX)−1XT{Y −X(XTX)−1XTY }.

Step 6

β(1) = (XTX)−1XTY

+ (XTX)−1XT{Y −X(XTX)−1XTY }
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= (XTX)−1XTY + (XTX)−1XTY

− (XTX)−1XTX(XTX)−1XTY

= (XTX)−1XTY + (XTX)−1XTY

− (XTX)−1XTY ,

= β(0).

Thus, the generalized least squares algorithm does not “contradict” ordinary

least squares. A similar demonstration is possible for a linear model with vari-

ances that depend on known weights. Beginning with weighted least squares

estimates as starting values, the generalized least squares algorithm returns

those same values after any number of iterations.

The reason we separate ordinary and weighted least squares from gen-

eralized least squares in discussing methods of estimation is that, while the

Gauss-Markov theorem provides exact theory results for the former cases, this

is no longer true for the more complex situations in which generalized least

squares is applicable. That is, when we have an additive error model for which

either the expectation function is nonlinear or the variances depend on the

parameters of that expectation function (but no other unknown parameters)

or both, then the Gauss-Markov theorem no longer applies. Rather, we attach

statistical properties to generalized least squares estimators through what has

been called the Fundamental Theorem of Generalized Least Squares which may

be stated as follows:
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Fundamental Theorem of Generalized Least Squares

Consider any model of the form of expression (7.4),

Yi = g1(xi, β) + σg2(xi,β, θ) ǫi,

in which the value of θ is known and, for i = 1, . . . , n, ǫi ∼ iid F such that

E(ǫi) = 0 and var(ǫi) = c for a known constant c (usually c ≡ 1). Then, under

mild smoothness conditions on g1(·) and g2(·), for any starting estimate β(0)

such that β(0) is n1/2−consistent, and for any j in the generalized least squares

algorithm (i.e., any number of iterations),

β(j) is AN

(

β,
σ2

n
Σ−1
β

)

, (8.24)

where

Σβ =
1

n

n
∑

i=1

v(xi,β)v(xi,β)T/g2
2(xi,β, θ). (8.25)

In (8.25), v(xi,β) is a p× 1 column vector with kth element

vk(xi,β) =
∂

∂βk
g1(xi,β).

Note that this vk(xi,β) is essentially the same quantity given as V
(j)
i,k in Step

3 of the generalized least squares algorithm except that here we are not (yet)

evaluating these derivatives at estimated values of η since Σβ in (8.25) gives the

variance of the asymptotic normal distribution (up to the scale factor σ2/n),

not the estimated variance.

Before we discuss estimating the variance parameters σ2 and Σβ we should

say a few words about the “for any number of iterations” part of the fundamen-

tal theorem of generalized least squares, since this is not an intuitive portion

of the result. Does this mean, for example, that if we take a starting value
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β(0) and conduct j = 0 iterations of the algorithm we end up with the same

asymptotic normality as if we iterate until β(j+1) = β(j)? The answer is yes, it

does. How can this be? Recall one of the other conditions of this theorem, that

β(0) constitute a “root n consistent” estimator for β. Given this, the stated

asymptotic normality holds for estimators that result from any number of it-

erations of the algorithm, and there are proponents for various choices. Some

references, taken from the discussion by Carroll and Rupert (1988, Section 2.3)

are given in the table below:

Iterations Proponents

1 Goldberger (1964)

Matloff, Rose and Tai (1984)

2 Williams (1959)

Seber (1977)

2 or 3 Carroll and Ruppert (1988)

∞ McCullagh and Nelder (1989)

In this table, ∞ means iteration until convergence which is technically β(j+1) =

β(j) but in practice means β(j+1) − β(j) < δ for some suitably small δ such as

10−6 or 10−8. For further discussion of generalized least squares and connected

asymptotic results, see also Jobson and Fuller (1980) and Carroll and Rupert

(1982).

Estimation of σ2 is generally accomplished through the use of a moment

estimator. Let β̂ denote a generalized least squares estimator of β.

σ̂2 =
1

n− p

n
∑

i=1

{

Yi − g1(xi, β̂)

g2(xi, β̂, θ)

}2

. (8.26)

Note that this estimator no longer possesses any small sample properties (de-

spite what is suggested by the divisor of n − p). It is, however, consistent as
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long as β̂ is consistent which was a starting point in the theorem (actually,

root n consistency is stronger than consistency alone).

For inference connected with generalized least squares estimators then, we

make use of the result of the fundamental theorem of generalized least squares

given in (8.24), with estimated variances produced by plug-in use of σ̂2 from

(8.26) and β̂ from the generalized least squares algorithm, giving

ˆcov(β̂) =
σ̂2

n

[

1

n

n
∑

i=1

v(xi, β̂)v(xi, β̂)T/g2
2(xi, β̂, θ)

]−1

. (8.27)

Interval estimates are then computed in the usual way. For an individual

element βk of β this is

β̂k ± t1−α/2;n−p
{

ˆcov(β̂)k,k
}1/2

or

β̂k ± z1−α/2
{

ˆcov(β̂)k,k
}1/2

(8.28)

where ˆcov(β̂)k,k is the kth diagonal element of the estimated covariance matrix

given in (8.27), t1−α/2;n−p is the 1−α/2 quantile of a t−distribution with n−p
degrees of freedom and z1−α/2 is the 1 − α/2 quantile of a standard normal

distribution.

For inference concerning tests of hypotheses about parameter values (i.e.,

model selection) and the development of joint confidence regions for sets of

the elements of β there are a number of approaches, none of which depend

explicitly on the fact that β̂ is a generalized least squares estimator. These in-

ferential methods can be based on what is called “Wald theory”, which applies

to any asymptotically normal estimator, likelihood theory which we will cover

in the next section, approximate likelihood theory which we will cover after

that, or sample reuse (specifically, either nonparametric or parametric boot-

strap) which we cover after the other methods. While we have, in fact, used a
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portion of Wald theory in the intervals of expression (8.28), we will delay full

discussion of this topic until we encounter it again in likelihood estimation.

8.2.3 Summary of Least Squares Estimation

We conclude our consideration of least squares as a method of estimation by

summarizing most of the key points:

1. Least squares is used nearly exclusively with additive error models.

2. Least squares is, fundamentally, not a statistical estimation procedure.

It is motivated by solving a general minimization problem.

3. For linear models with either constant variance or variances that are

proportional to known weights, least squares estimators have exact the-

ory properties. In particular, they are UMVU estimators, and may be

used in conjunction with UMVU estimators of the variance parameter

σ2. Inferential procedures in these situations are typically developed un-

der the additional assumption of normally distributed errors to result in

the types of intervals and tests you are familiar with from Stat 500 and

Stat 511.

4. For nonlinear models with constant variance, or for either linear or non-

linear models with variances that depend on parameters of the expecta-

tion function but no additional unknown parameters, generalized least

squares estimators are asymptotically normal as given by the funda-

mental theorem of generalized least squares. Generalized least squares

estimators are typically used in conjunction with consistent estimators

of σ2 developed from a moment based approach. Intervals for individual

parameter elements may be based on this asymptotic normality (which
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can be considered a part of Wald theory). Note that, in all of the cases

considered under generalized least squares estimation, the development

of intervals depending on normal distributions does not depend on the

additional model assumption of normally distributed errors (as it does in

the ordinary and weighted least squares cases). It does, however, require

reliance on an asymptotic result.

5. Putting together the information in items 3 and 4 immediately above, we

arrive at the “no free lunch” conclusion for estimation by least squares

methods. Avoiding strong distributional assumptions on model terms is

often considered a “good” thing. Being able to develop exact properties

for estimators that do not depend on asymptotic arguments is often con-

sidered a “good” thing. Under models for which we can apply ordinary

or weighted least squares we can accomplish both for point estimation,

but then must rely on strong distributional assumptions for inference.

Under models for which we turn to generalized least squares we can

avoid strong distributional assumptions on the model entirely, but must

rely on asymptotic results for both properties of point estimators and

inferential procedures.

6. The ability to develop properties for least squares estimators, either ex-

act theory for point estimation or asymptotic theory for both point es-

timation and inference, without assuming a specific parametric form for

model distributions is often considered a “robustness” property or aspect

of least squares, and this is true insomuch as robustness refers to small

departures from an assumed distributional form. This concept of robust-

ness is different than what is properly called resistance, which refers to

the degree to which an estimator is affected by extreme observations. It
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is well known that, while least squares estimators have a certain amount

of robustness, they are extremely sensitive to the effect of extreme and

high leverage observations.

8.3 Basic Likelihood Estimation and Inference

We turn now to what, aside from the Bayesian approach to estimation and

inference discussed in Part III of the course, is probably the most generally

applicable estimation method for statistical models. This method, called max-

imum likelihood estimation, depends on having a specified parametric distri-

bution of random variables connected with observable quantities. Although

properties of maximum likelihood have been examined and any number of

results are available for cases involving dependent random variables, we will

focus here on situations involving independent response variables.

8.3.1 Maximum Likelihood for Independent Random Vari-

ables

Let Y ≡ (Y1, . . . , Yn)
T be a vector of independent random variables with pos-

sible values in the sets Ω1 . . . ,Ωn and assume that the set of possible values for

Y is Ω ≡ Ω1×Ω2× . . .×Ωn, which is sometimes called the positivity condition.

Like independence, the positivity condition is not necessarily needed for the

types of results we will present, but it does simplify the general treatment (i.e.,

without the positivity condition we must usually approach the proof of various

properties of maximum likelihood estimates on a case-by-case basis for indi-
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vidual models). Further, let θ ≡ (θ1, . . . , θp)
T denote a vector of parameters

such that θ ∈ Θ ⊂ ℜp with p < n.

We will also assume that the random variables contained in Y have prob-

ability density or probability mass functions fi(yi|θ); i = 1, . . . , n, such that,

Pr(Yi = yi|θ) = fi(yi|θ) if Yi is discrete,

P r(a < Yi < b|θ) =
∫ b

a
fi(yi|θ) if Yi is continuous.

Maximum likelihood is very much a “data dependent” method of estimation.

Any observation or measurement process has a finite precision. If observation

of a given quantity results in a value yi we will take this to mean that the

associated random variable Yi has a value in the range yi − ∆i < Yi < yi + ∆i

for some ∆i. If Yi is continuous for i = 1, . . . , n and we assume independence,

then for a set of observations y ≡ (y1, . . . , yn)
T , define

Pr(y|θ) =
n
∏

i=1

{Fi(yi + ∆i|θ) − Fi(yi − ∆i|θ)} ,

where Fi(·) is the distribution function corresponding to fi(·). If Yi has density

fi(·), the intermediate value theorem of calculus gives that,

Fi(yi + ∆i|θ) − Fi(yi − ∆i|θ) =
∫ yi+∆i

yi−∆i

fi(t|θ)dt ≈ 2∆ifi(yi|θ),

and then

Pr(y|θ) ∝
n
∏

i=1

fi(yi|θ).

For discrete situations we will assume that ∆i = 0 for all i and

Pr(y|θ) =
n
∏

i=1

fi(yi|θ),
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In many, if not most, cases involving continuous random variables we assume

that all ∆i are small enough to be ignored, but there are numerous examples

of where this is not the case (e.g., Lindsey 1996) and it can be advantageous

(even necessary) to write the likelihood function in terms of the above integrals

rather than densities. For our purposes here, however, we will assume that the

“density approximation” is adequate. We then define the likelihood function

for a set of observations y as,

ℓn(θ) =
n
∏

i=1

fi(yi|θ). (8.29)

The important point, which you have heard before but is worth emphasizing

again, is that (8.29) is considered a function of an argument θ for a fixed,

known set of observations y.

Quite simply, then, the maximum likelihood estimator of θ is that value

θ̂ ∈ Θ such that

ℓn(θ̂) ≥ ℓn(θ); for any θ ∈ Θ.

Now, given the preceeding material we have that ℓ(θ) ∝ Pr(y|θ), which leads

to the intuitive interpretation and justification of a maximum likelihood esti-

mate as that value of the parameter that “makes the probability of the data

as great as it can be under the assumed model”. This is actually very nice as

both an intuitive understanding and justification for maximum likelihood, but

it leaves us a little short of what we might desire as a statistical justification.

That is, having the value of the parameter that maximizes the probability of

seeing what we saw certainly justifies the maximum likelihood estimate (mle)

as a summarization of the available data, but it does not necessarily indicate

that the mle is a good estimate of the parameter of interest θ. This is pro-

vided by the following result at least for the iid case with scalar parameter θ,

adapted here from Lehmann (1983, section 6.2, Theorem 2.1).



394 CHAPTER 8. ESTIMATION AND INFERENCE

Result

Let Pθ represent the distribution (probability measure) of a random variable

indexed by the parameter θ. Suppose that, for θ ∈ Θ,

(i) the distributions Pθ have common support Ω

(ii) the random variables Yi are iid with common density or mass function

f(yi|θ)

(iii) the true value of θ, say θ0 lies in the interior of Θ

Then, as n→ ∞

Pθ0 {f(Y1|θ0) . . . f(Yn|θ0) > f(Y1|θ) . . . f(Yn|θ)} → 1,

for any fixed θ 6= θ0. In other words,

Pr{f(Y n|θ0) > f(Y n|θ)} → 1,

as n→ ∞. This indicates that, for large samples (at least large iid samples) the

density of Y at the true parameter value exceeds the density of Y for any other

parameter value. This provides a connection between a maximum likelihood

estimate and the “true” parameter value in a model. That is, as the sample

size increases, the parameter value that maximizes the joint distribution not

only provides a good value for describing the observations at hand, but also

must become close to the true value under a given model.

8.3.2 Notation and Settings

In the development leading to expression (8.29) independence was used only

to allow the derivation of a joint density or mass function for Y1, . . . , Yn by
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multiplication of the individual density or mass functions. Importantly, how-

ever, these functions were assumed to depend on a common parameter θ of

finite dimension. We can, in a completely general setting, define a maximum

likelihood estimator in the following way.

Suppose that Y1, . . . , Yn are random variables with possible values y ∈ ΩY ,

and that, for θ ∈ Θ ⊂ ℜp, these variables have joint probability density or

mass function f(y|θ). Then the likelihood is,

ℓn(θ) ≡ f(y|θ), (8.30)

and a maximum likelihood estimator of θ is any value θ̂ such that

ℓn(θ̂) ≥ ℓn(θ) for any θ ∈ Θ. (8.31)

Maximum likelihood estimators are often found by maximizing the log likeli-

hood function,

Ln(θ) = log{f(y|θ)}, (8.32)

since the logarithmic function is monotone. If a value θ̂ ∈ Θ maximizes the

likelihood (8.30) as in (8.31) then it also maximizes the log likelihood (8.32)

and vice versa.

Still in a completely general setting, define what is often called the score

function as the p−vector Un(θ) = (Un,1(θ), . . . , Un,p(θ)
T , where,

Un,k(θ) ≡
∂

∂θk
Ln(θ); k = 1, . . . , p. (8.33)

The expected or Fisher information plays an important role in likelihood esti-

mation. Define the expected information as the p× p matrix,

In(θ) ≡ E{UT
n (θ)Un(θ)}. (8.34)
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Now while (8.30) through (8.34) apply in any situation for which a joint

distribution depends on a fixed parameter vector of lower dimension, the cor-

nerstone property of maximum likelihood estimation is asymptotic efficiency.

Efficiency depends, through the information inequality or Cramer-Rao Inequal-

ity, on the expected information. And, asymptotically, a crucial aspect of like-

lihood theory is that the total information in a sample of size n tends to ∞ as

n tends to ∞. It can be extremely difficult to work out the way this might (or

might not) take place in a model with dependent random variables; this is not

to say that likelihood theory cannot provide results in dependent cases, only

that it becomes more involved. We will thus restrict attention to situations

for which Y1, . . . , Yn are independent which are also the cases for which the

expected information in (8.34) can be written as a sum.

In the case that Y1, . . . , Yn are iid the likelihood, log likelihood, and ele-

ments of the score function and expected information matrix may be written

as,

ℓn(θ) =
n
∏

i=1

f(yi|θ),

Ln(θ) =
n
∑

i=1

log{f(yi|θ)},

Un,k(θ) =
n
∑

i=1

1

f(yi|θ)

{

∂

∂θk
f(yi|θ)

}

,

In,j,k(θ) = nE

[

∂

∂θk
log{f(yi|θ)}

∂

∂θj
log{f(yi|θ)}

]

.

(8.35)

If Y1, . . . , Yn are independent but not iid,

ℓn(θ) =
n
∏

i=1

fi(yi|θ),



8.3. BASIC LIKELIHOOD 397

Ln(θ) =
n
∑

i=1

log{fi(yi|θ)},

Un,k(θ) =
n
∑

i=1

1

fi(yi|θ)

{

∂

∂θk
fi(yi|θ)

}

,

In,j,k(θ) =
n
∑

i=1

E

[

∂

∂θk
log{fi(yi|θ)}

∂

∂θj
log{fi(yi|θ)}

]

.

(8.36)

Note that (8.36) is very similar to (8.35), but the change in form for the el-

ements of the expected information matrix In(θ) is important. Also note here

that we are writing the expected information with the index n to emphasize

that what we have is the total information for a sample. It is not unusual for

authors to write the expected information I(θ) in terms of a single random

variable (and then, since nearly everyone presents the iid case, In(θ) = nI(θ)).

Terms depending on n then just appear or disappear in the stated asymptotic

results relative to the information, which I have always found a source of con-

fusion in moving from material that presents proofs of asymptotic properties

to making use of those results in practice. To clarify, focus on the total infor-

mation in a sample from the outset, and make note of the fact that for the iid

case this turns out to be n times a finite constant while, in the independent

but not iid case this must be represented as a sum over n terms. Now, what

is necessary for the variance matrix of an asymptotic distribution to be given

by the inverse (total) information matrix is that, for some function of n that

tends to infinity with n, h(n) say, for j, k = 1, . . . , p, and for some constant

Ĩj,k(θ),
1

h(n)
In,j,k(θ)

p→ Ĩj,k(θ),

as n → ∞ and such that the p × p matrix Ĩ(θ) with j, kth element Ĩj,k(θ) is

a covariance matrix. Note that, since h(n) → ∞, this implies that In,j,k → ∞
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for j, k = 1, . . . , p. That is, the total information in a sequence of increasing

sample sizes tends to infinity. In proving theoretical results, such as asymptotic

normality of maximum likelihood estimators, the sequence of values h(n) then

typically appears as part of the “normalizing constant” or “standardization

term” and the fixed matrix Ĩ(θ) as the covariance of the limiting distribution,

for example,
θ̂n − θ
√

h(n)

d→ N(0, Ĩ−1(θ)).

In the iid case, and often for independent but not iid situations, the appro-

priate function is h(n) = n. This is not always the case, however, as shown in

Example 6.5 of Lehmann (1983).

For inference, the covariance matrix we would like to use is then I−1
n (θ) =

[1/h(n)]Ĩ−1(θ), but this must itself usually be estimated. An appropriate

estimator is generally determined by a combination of two factors.

1. Whether the random variables Y1, . . . , Yn are iid or are independent but

not identically distributed.

2. Whether or not a closed form is available for terms in the total informa-

tion. That is, whether or not a functional expression, depending only on

a variable yi, is available for the contribution of the ith random variable

to the total information, namely,

Ii,j,k(θ) = E

[

∂

∂θj
log{fi(yi|θ)}

∂

∂θk
log{fi(yi|θ)}

]

,

for j, k = 1, . . . , p. In what follows we will assume that In,j,k(θ) =
∑

i Ii,j,k(θ), and that In(θ) is the p×p matrix with j, kth element In,j,k(θ).

Depending on the resolution of these two factors (i.e., what is available), the

following possible estimators for In(θ) may be used in application.
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1. Random variables iid and closed form available for Ij,k = Ii,j,k.

Here, Ii,j,k(θ) does not depend on i, h(n) = n, and Ĩ(θ) = I(θ), where

I(θ) is the expected information for a single random variable. In this

situation one would typically estimate In(θ) = nI(θ) with nI(θ̂n).

2. Random variables are independent but not identically distributed and a

closed form is available for Ii,j,k.

Here, h(n) is often n, although this need not always be the case, and the

existence of Ĩ(θ) is needed for theoretical results, but is typically never

determined in application. Here, a common estimator of In(θ) would be

In(θ̂), the p× p matrix with j, kth element In,j,k(θ̂n) =
∑

i Ii,j,k(θ̂).

3. Random variables iid but closed form unavailable for Ii,j,k(θ).

Here, a common estimator of In(θ) is the so-called observed information

Iobn (θ̂n), in which

Iobi,j,k(θ̂n) =
∂

∂θj
log{f(yi|θ)}

∂

∂θk
log{f(yi|θ)}

∣

∣

∣

∣

∣

θ=
ˆθn

,

Iobn,j,k(θ̂n) =
∑

i I
ob
i,j,k(θ̂n), and Iobn (θ̂n) is the p × p matrix with j, kth ele-

ment Iobn,j,k(θ̂n).

4. Random variables are independent but not identically distributed and

no closed form is available for Ii,j,k.

In this case, a typical estimator of In(θ) is the observed information

matrix defined as in item 3 immediately above, except that,

Iobi,j,k(θ̂n) =
∂

∂θj
log{fi(yi|θ)}

∂

∂θk
log{fi(yi|θ)}

∣

∣

∣

∣

∣

θ=
ˆθn

.

Finally, also note that we have been using θ as a generic fixed parameter

in this sub-section, while we have also used it as the natural parameter for
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exponential and exponential dispersion families in previous portions of these

notes. To avoid confusion, consider an exponential dispersion family

f(yi|θi) = exp [φ{yiθi − b(θi)} + c(yi, φ)] ,

from which we have formed a generalized linear model with link function

g(µi) = xTi β. For this model, the θ of the current section would be β and

the notation fi(·) would incorporate the function of β that gives the exponen-

tial family θi as θi = b′−1(xTi β).

8.3.3 Properties of Maximum Likelihood Estimators

Properties of maximum likelihood estimators are developed under sets of tech-

nical conditions called “regularity conditions”. There are a wide variety of

regularity conditions that have been developed, and different sets of conditions

are needed to prove different results about maximum likelihood estimators un-

der various models. It is not our intention to catalog all of these here. But

from the standpoint of modeling there are several of these conditions that are

important because they are directly connected to the properties dictated by

model structure. We will break these into two sets. The first are conditions

that are sufficient to allow us to find a maximum likelihood estimator and

guarantee that this estimator is consistent for θ. The second set of conditions

are additional restrictions that allow us to derive asymptotic results for either

a sequence of consistent estimators, or for the random version of the likelihood

or loglikelihood functions themselves. In particular, the regularity conditions

given are sufficient to demonstrate normal limit distributions for a consistent

sequence of estimators, thus providing inferential quantities.
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Regularity Conditions Set 1:

1. The distributions of Y1, . . . , Yn are distinct in that different values of the

parameter θ necessarily lead to different distributions. This can be im-

portant, for example in the mixture distributions of Section 7.4.2. There,

it is important that different values of λ in the mixing distributions g(θ|λ)

lead to different mixture distributions h(y|λ). This general issue is called

identifiability of parameters in a model formulation.

2. The distributions of Y1, . . . , Yn have common support independent of

θ. Note that, under independence, this implies the positivity condition

mentioned earlier.

3. The true value of the parameter, θ0 lies in the interior of an open interval

contained in the parameter space Θ. Note that this does not necessarily

imply that Θ is an open interval, only that it contains an open interval

for which θ0 is an interior point.

4. For almost all y the density or mass function f(y|θ) is differentiable with

respect to all elements of θ. As an advanced note, our statement of this

condition is overly restrictive for the following results to apply to at least

some of the elements of θ.

We may now present a result, which is somewhat of a conglomeration of vari-

ous theorems and corollaries from Lehmann (1983, Chapter 6).

Likelihood Theorem 1

If Y1, . . . , Yn are independent random variables for which the four conditions
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listed above hold, then a sequence of values {θ̂n} exists which solve the likeli-

hood equations,

∂

∂θk
ℓn(θ) = 0; k = 1, . . . , p, (8.37)

or, equivalently,

∂

∂θk
Ln(θ) = 0; k = 1, . . . , p, (8.38)

and is a consistent sequence of estimators for θ.

This result is essentially that of Theorem 2.2 in Chapter 6 of Lehmann

(1983, p. 413) which is presented for the iid case with a scalar parameter. No-

tice that this theorem provides for a consistent set of solutions to the likelihood

equations only. It does not indicate that such solutions are either unique or

are a maximum likelihood estimator. We give two corollaries, the first of which

is really a modification of the basic result, to demonstrate the complexity of

relating specific regularity conditions with specific results.

Corollary 1: (cf. Lehmann, 1983, Corollary 2.1, p. 410)

Under conditions 1 through 2, if the parameter space Θ is finite (meaning

that θ can take on only a finite number of values), then a sequence of unique

maximum likelihood estimates exists and is consistent for θ.

Notice here that we have not said these estimates are solutions to the like-

lihood equations, and have used the rather strong restriction that Θ is finite. I

have included this result to indicate the role of smoothness conditions such as

4, and potential difficulties caused by “parameters on the boundary of the pa-

rameter space”, which are eliminated from consideration by condition 3. The

assumption of a finite parameter space in Corollary 1 means neither condition

3 nor condition 4 are needed for the result.
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Corollary 2: (cf. Lehmann, 1983, Corollary 2.2, p. 414)

Under conditions 1 through 4, if the likelihood equation has a unique root

for each n, then that sequence of estimators is consistent. If, in addition, the

parameter space Θ is an open interval (rather than only containing an open

interval) then that sequence of roots is the sequence of maximum likelihood

estimators (i.e., the sequence maximizes the likelihood).

Note here that we have assumed uniqueness rather than giving it as a

consequence. For models with open parameter spaces, when the likelihood

equations have a unique root, then that root provides the unique maximum

likelihood estimator which is consistent. When the likelihood equations have

multiple roots, the game becomes to determine which sequence of roots is

consistent and efficient (and this may not always be the sequence of maximum

likelihood estimators, even if they exist). In practice, when there are multiple

solutions to the likelihood equations (implying local maxima and, hence also

local minima) it is often time to examine the behavior of the likelihood or

log likelihood in more detail. Note however, that a result analogous to the

fundamental theorem of generalized least squares (Section 8.2.2) is available

(e.g., Lehmann 1983, Chapter 6.3; Kendall and Stuart 1960, Chapter 18.21)

given a
√
n consistent starting value. Since situations in which the likelihood

equations contain multiple roots are typically complex models for which even

consistent starting values are difficult to determine, I have found this of little

practical use.

To try and provide some order to this array of conditions and results,

consider that there are four distinct issues involved:

1. The existence of a maximum likelihood estimator (or sequence of esti-

mators).
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2. The existence of roots of the likelihood equations (or sequence of roots).

3. Uniqueness of estimators (or sequences of estimators).

4. Consistency of sequences of estimators.

Now, none of these necessarily implies any of the others, except under var-

ious conditions. Kraft and Lecam (1956) provide an example of a multinomial

with certain specification for the parameters for which a unique maximum like-

lihood estimator exists but is not consistent, but also for which a consistent

root of the likelihood equations does exist. In short, the happy situation is

provided by Corollary 2 in which unique roots correspond to unique maximum

likelihood estimators which are consistent.

We turn now to a summarization of the conditions that lead to inference

based on properties of the mle, which is a form of what is known as Wald The-

ory. The number of particular technical conditions for particular situations

(iid single parameter, iid multiple parameters, indep. but not iid, etc.) can

become quite confusing. We will give appropriate conditions only for the iid

case with multiple parameters here, to communicate what needs to be achieved

by such conditions.

Regularity Conditions Set 2:

For Y1, . . . , Yn iid with density or mass functions fi(yi|θ), and θ ≡ (θ1, . . . , θp)
T ,

1.

E

[

∂

∂θk
log{f(Y |θ)}

]

= 0; k = 1, . . . , p.
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2.

Ij,k(θ) ≡ E

[

∂

∂θk
log{f(Y |θ)} ∂

∂θj
log{f(Y |θ)}

]

= −E
[

∂2

∂θk∂θj
log{f(Y |θ)}

]

.

3. The p× p matrix I(θ) with kjth element Ij,k is positive definite.

4. There exist functions Mk,j,s(·) such that
∣

∣

∣

∣

∣

∂3

∂θk∂θj∂θs
log{f(y|θ)}

∣

∣

∣

∣

∣

≤Mk,j,s(y) for all θ ∈ Θ,

and

E [Mk,j,s(Y )] <∞.

Now, conditions 1, 2, and 3 above will often be written in terms of other

conditions that lead to these as results, generally expressed in terms of the first

two derivatives of log{f(Y |θ)} in a way similar to the expression of condition

4 in the above list. For example, in the iid case with a single scalar parameter,

conditions 1 and 2 above are often replaced with,
∣

∣

∣

∣

∣

∂f(y|θ)
∂θ

∣

∣

∣

∣

∣

≤ g(y)

∣

∣

∣

∣

∣

∂2f(y|θ)
∂θ2

∣

∣

∣

∣

∣

≤ h(y)

such that
∫

g(y) dy < ∞ and
∫

h(y) dy < ∞. Then, in this case, conditions

1 and 2 follow as a result of being able to differentiate under the integral.

Conditions 3 and 4 in the above list ensure that the derivatives of the log like-

lihood, considered as functions of the random variables Y1, . . . , Yn, have finite

but positive variances.
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Likelihood Theorem 2

Let Y1, . . . , Yn be iid with densities f(yi|θ) such that the conditions given

in Regularity Conditions Sets 1 and 2 all hold. Then there exists a sequence

of solutions to the likelihood equations {θ̂n} such that

(i) θ̂n is consistent for θ.

(ii)
√
n(θ̂n−θ) is asymptotically normal with mean 0 and covariance n{I(θ)}−1.

(iii) For k = 1, . . . , p, θ̂n,k is asymptotically efficient in that,

√

n{I(θ)}−1
k,k(θ̂n,k − θk)

L→ N(0, 1),

where {I(θ)}−1
k,k is the k, kth element of the matrix I(θ)−1.

This result then provides an immediate means for constructing approxi-

mate intervals for individual elements of θ. A generalization that allows tests

of hypotheses and the construction of confidence regions will be provided in

Section 8.3.4 where we discuss Wald theory.

An example will serve to illustrate some of what can “go wrong” in asymp-

totic normality for maximum likelihood estimators. First, consider random

variables Y1, . . . , Yn such that Yi ∼ iid U(0, θ). Here, f(yi|θ) = (1/θ)I(0 <

yi < θ), where I(·) is the indicator function, not information. The log likeli-

hood and its derivatives are then,

Ln(θ) = −n log{θ},
∂

∂θ
Ln(θ) =

−n
θ
,

∂2

∂θ2
Ln(θ) =

n

θ2
.
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Now, the likelihood equation (first derivative of Ln) clearly has no root.

Thus, the maximum likelihood estimator, if it exists, cannot be obtained as

a solution to the likelihood equation. That a maximum likelihood estimator

does indeed exist is immediate from ℓ(θ) = 1/θn, which gives

ℓ(max{y1, . . . , yn}) ≥ ℓ(θ); any θ ∈ (0, ∞).

The asymptotics of our Likelihood Theorem 2 certainly do not apply in this

case. That does not mean, however, that asymptotics are not available. Only

that they are not available from theorems on “regular” problems. To see what

can be done, note first that, if Y[n] denotes the largest order statistic from a

U(0, θ) distribution, then

Pr(Y[n] ≤ y) = Pr(Y1, . . . , Yn ≤ y) =
yn

θn
.

Thus,

Pr
[

n{θ − Y[n]} ≤ y
]

= Pr
[

Y[n] > θ − y/n
]

= 1 − Pr
[

Y[n] ≤ θ − y/n
]

= 1 −
(

θ − y/n

θ

)n

.

Taking the limit as n→ ∞,

lim
n→∞

1 −
(

θ − y/n

θ

)n

= 1 − lim
n→∞

(

θ − y/n

θ

)n

= 1 − lim
n→∞

(

1 − y

nθ

)n

= 1 − lim
n→∞

(

1 +
−y/θ
n

)n

= 1 − exp{−y/θ},
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the last line following from lim{1 + (x/n)}n = exp(x) for all x.

Thus, the maximum likelihood estimator for this problem is θ̂n = Y[n] and

this estimator has an asymptotic distribution given as,

n{θ − θ̂n} L→ E(0, θ),

where E(0, θ) denotes a exponential (0, θ) distribution. The regular theory

did not apply in this case because of condition 2 in Regularity Conditions Set

1 of Section 8.3.3.

Two additional properties of maximum likelihood estimators are worthy of

mention to close out our discussion of this subsection.

1. If a given scalar parameter θ (which may be an element of the parameter

vector θ) has a single sufficient statistic T (y) say, then the maximum

likelihood estimator must be a function of that sufficient statistic. If that

sufficient statistic is minimal and complete, the the maximum likelihood

estimator is unique. If the maximum likelihood estimator is unbiased

then it is the UMVU (e.g., Kendall and Stuart 1960, Chapters 18.4-

18.7). This property could have implications, for example, in mean value

parameterization 2 for exponential families (e.g., Lindsey 1996, p. 307).

2. Maximum likelihood estimators possess a property called invariance that

is very useful but is not, in general, a property of UMVU estimators (un-

less, of course, they happen to also be maximum likelihood estimators).

The invariance property of maximum likelihood estimators can be stated

as, if θ̂n is an mle of θ ≡ (θ1, . . . , θp)
T , and g(·) is a real-valued function

of θ, then

g(θ̂n) is an mle of g(θ).
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Invariance is often combined with what we will present as the delta

method in the next subsection to derive the limit distribution of asymp-

totically normal estimators.

8.3.4 Wald Theory Inference

What we will present here in terms of inference from properties (essentially

the asymptotic normality) of maximum likelihood estimators applies equally

well to other asymptotically normal estimators, such as the generalized least

squares estimators of Section 8.2.2. To make the results in what follows here

applicable to generalized least squares estimators, simply replace the inverse

information matrix with with the quantity (σ2/n)Σ−1
β from the Fundamental

Theorem of Generalized Least Squares.

Wald Theory Main Result

If {θ̂n} is a sequence of maximum likelihood estimators of θ ≡ (θ1, . . . , θp)
T

for which the conditions of Likelihood Theorem 2 apply, then,

(θ̂n − θ)T In(θ̂n)(θ̂n − θ) L→ χ2
p, (8.39)

where χ2
p is a Chi-squared random variable with p degrees of freedom. For

proof of this result see, e.g., Serfling (1980, Chapter 4.4), but note that it is

often (usually) written with In(θ̂n) = nI(θ̂n) which is appropriate in the iid

setting.

We are interested in using this result to obtain tests and interval esti-

mates for sets of elements of θ. We first will consider hypotheses about the

p−dimensional parameter vector θ. To formulate a hypothesis about θ we
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specify a set of r ≤ p restrictions of the form

Rj(θ) = 0; j = 1, . . . , r.

Example 8.10

1. Let θ ≡ (θ1, θ2, θ3)
T . Specify the hypothesis, H0 : θ1 = θ0

1, θ2 = θ0
2, θ3 =

θ0
3 for particular values θ0

1, θ
0
2, θ

0
3. This hypothesis corresponds to the

restrictions,

R1(θ) = θ1 − θ0
1 = 0

R2(θ) = θ2 − θ0
2 = 0

R3(θ) = θ3 − θ0
3 = 0.

2. Let θ ≡ (θ1, θ2, θ3)
T . Specify the hypothesis, H0 : θ1 = θ0

1. This corre-

sponds to the single restriction,

R1(θ) = θ1 − θ0
1 = 0,

with unrestricted parameters θ2 and θ3.

3. Let θ ≡ (θ1, θ2, θ3, θ4)
T . Specify the hypothesis H0 : θ1 = θ2, θ3 = θ4.

This corresponds to the restrictions,

R1(θ) = θ1 − θ2 = 0

R2(θ) = θ3 − θ4 = 0.

In these examples, 1 would be called a simple hypothesis while 2 and 3 would

be called composite hypotheses (the distinction rests on whether the number

of restrictions is r = p or r < p).
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The Wald Theory Main Result combined with results for quadratic trans-

formations of normally distributed random variables (e.g., Serfling 1980, Chap-

ter 3.5) leads to the following result for forming a test statistic. This result

will also be used to form joint confidence regions for subsets of the parameter

vector θ.

Wald Theory Tests

Let

b(θ) ≡ (R1(θ), . . . , Rr(θ))
T ,

be an r × 1 vector of defined restrictions on model parameters. Let C(θ) be

an r × p matrix with jkth element

Ck,j =
∂

∂θk
Rj(θ).

Then, under R1(θ) = . . . , Rr(θ) = 0 (i.e., under H0),

Wn = bT (θ̂n)
[

C(θ̂n)I
−1
n (θ̂n)C

T (θ̂n)
]−1

b(θ̂n)
L→ χ2

r , (8.40)

Revisiting the cases given in Example 8.10, this result plays out as follows. In

these examples, let

I−1
n (θ̂n) =





























i11 i12 . . . i1p

.

.

.

ip1 ip2 . . . ipp





























,

but note that this will be a symmetric matrix so that ikj = ijk.
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1. Here,

C(θ) =















1 0 0

0 1 0

0 0 1















so that

C(θ̂n)I
−1(θ̂n)C

T (θ̂n) = I−1(θ̂n).

Then, also using the fact that I−1(θ̂n) is symmetric,

Wn = (θ̂n,1 − θ0
1)

2In,11 + (θ̂n,2 − θ0
2)In,22

+ (θ̂n,3 − θ0
3)In,33

+ 2(θ̂n,1 − θ0
1)(θ̂n,2 − θ0

2)In,12

+ 2(θ̂n,1 − θ0
1)(θ̂n,3 − θ0

3)In,13

+ 2(θ̂n,2 − θ0
2)(θ̂n,3 − θ0

3)In,23

2. Here, C(θ) = (1, 0, 0) so that,

C(θ̂n)I
−1(θ̂n)C

T (θ̂n) = i11,

and,

Wn = (θ̂n,1 − θ0
1)

2 1

i11
.

Note: Compare this to the square of a normal-theory test statistic.

3. Here,

C(θ) =







1 −1 0 0

0 0 1 −1





 ,

and,

Wn = (θ̂n,1 − θ̂n,2)
2
(

i11 + i22 − 2i12
)

+ 2(θ̂n,1 − θ̂n,2)(θ̂n,3 − θ̂n,4)(i
13 − i23 − i14 + i24)

+ (θ̂n,3 − θ̂n,4)
2
(

i33 + i44 − 2i34
)

.
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Wald Theory Intervals

To develop intervals along the same lines as tests, let θ0 denote the true para-

meter value, and take

R1(θ) = θ1 − θ0
1 = 0

.

.

.

Rr(θ) = θr − θ0
r = 0,

for r ≤ p.

Then b(θ) from the test result is a subset of θ − θ0, and an approximate

100(1 − α)% confidence region (for θ0) is given by
{

θ0 : bT (θ̂n)
[

C(θ̂n)I
−1
n (θ̂n)C

T (θ̂n)
]−1

b(θ̂n) ≤ χ2
r,1−α

}

. (8.41)

What happens if r = 1 and, for example, R1(θ) = θ1 − θ0
1 = 0? Then,

[

C(θ̂n)I
−1
n (θ̂n)C

T (θ̂n)
]−1

=
1

i11
,

and the confidence region becomes,

{θ0 : (θ̂n,1 − θ0
1)

1

i11
(θ̂n,1 − θ0

1) ≤ χ2
1,1−α},

or, taking square roots on both sides of the inequality in this set,

(θ̂n,1 − θ0
1)√

i11
≤ z1−α/2

(θ̂n,1 − θ0
1)√

i11
≥ −z1−α/2

which implies that

θ0
1 ≥ θ̂n,1 − z1−α/2

√
i11

θ0
1 ≤ θ̂n,1 + z1−α/2

√
i11
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The Delta Method

As we have seen, Wald theory is based on asymptotic normality of (in par-

ticular) maximum likelihood estimators. Now, likelihoods are invariant to

parameter transformation. What was introduced in Chapter 8.3.3 as the in-

variance property indicates that functions of maximum likelihood estimates

are also maximum likelihood estimates of the same functions of parameters,

and are also asymptotically normal. But derivatives of likelihood functions

(or log likelihood functions) are clearly not invariant to parameter transforma-

tion, and plugging a function of parameter values into the inverse information

matrix does not provide the covariance matrix of the limit distribution of a

transformed sequence of maximum likelihood estimators. That is, if θ̂n is a

maximum likelihood estimate of a parameter θ with inverse information matrix

I−1(θ) and ψ = g(θ) a real-valued function of θ, then ψ̂n = g(θ̂n) is a maxi-

mum likelihood estimate of ψ and is asymptotically normal, but I−1(g−1(ψ))

is not the asymptotic variance of ψ̂.

What is often called the delta method provides a method by which the

asymptotic covariance matrix of a function of an asymptotically normal quan-

tity can be eaisly obtained. Note that the delta method applies more generally

than only in the case of maximum likelihood estimation and could be used, for

example, in conjunction with a generalized least squares estimator or any esti-

mator shown to be asymptotically normal. It fits so nicely with the invariance

property of maximum likelihood esitmates, however, that it seems natural to

present it in that context. We now state the result in a manner similar to a

combination of what is given in Serfling (1980, page 122) and Lehmann (1983,

page 344).

Let θ̂n be a sequence of asymptotically normal estimators of a parameter
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θ ≡ (θ1, . . . , θp) with mean θ and “covariance” matrix c2nΣ (i.e., (θ̂n − θ)/cn

converges in law to the multivariate normal distribution with mean 0 and co-

variance Σ). Let g1(θ), . . . , gr(θ) be a set of real-valued functions of θ with

r ≤ p and such that each function gk; k = 1, . . . , r is continuously differen-

tiable in a neighborhood of θ. Let D be an r × p matrix with k, jth element

∂gk/∂θj . Then the vector g1(θ̂), . . . , gr(θ̂) is asymptotically normal with mean

g1(θ), . . . , gr(θ) and “covariance” matrix c2nDΣDT .

In likelihood estimation and inference, c2nΣ is typically I−1
n (θ), and in prac-

tice this is estimated using one of the forms described in Chapter 8.3.2. Simi-

larly, the matrix D is estimated using θ̂n as a plug-in estimator of θ. Consis-

tency of these estimators allows the asymptotic result to be applied without

modification.

8.3.5 Likelihood Inference

The name of this subsection is perhaps something of a misnomer, since every-

thing that has been discussed in Chapter 8.3 could be considered a part of

likelihood estimation and inference. The title is given, however, to distinguish

inference based on the asymptotic normality of maximum likelihood estimates

(i.e., Wald Theory) from the topic of this subsection, which is inference based

on asymptotic properties of the log likelihood function itself. The basis of this

type of inference is the asymptotic distribution of the likelihood ratio statistic.

To set the stage, consider two models of the same form (i.e., the same

random component) but of differing parameter spaces. Specifically, suppose

we have a “full model” of the form

Ln(θ) = log{f(y|θ); θ ∈ Θ,
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and a “reduced model” of the form,

Ln(θ0) = log{f(y|θ0); θ0 ∈ Θ0,

where Θ0 ⊂ Θ. This last condition is crucial, and is called the condition of

“nested parameter spaces”. For example, if we have two independent groups

of random variables {Y1,i : i = 1, . . . , n1} and {Y2,i : i = 1, . . . , n2} such that

within each group we assume an iid normal distribution, then we might have

the following possible model structures.

1. Model 1.

Y1,i ∼ iidN(µ1, σ
2
1) and Y2,i ∼ iidN(µ2, σ

2
2)

2. Model 2.

Y1,i ∼ iidN(µ1, σ
2) and Y2,i ∼ iidN(µ2, σ

2)

3. Model 3.

Y1,i ∼ iidN(µ, σ2
1) and Y2,i ∼ iidN(µ, σ2

2)

4. Model 4.

Y1,i ∼ iidN(µ, σ2) and Y2,i ∼ iidN(µ, σ2)

Here, all other models would be “nested” within Model 1. Model 4 would be

nested within either Model 2 or Model 3. But Model 2 would not be nested

within Model 3, nor vice versa. The procedure we are about to discuss only

applies to the comparison of nested models. What results in nested parameter

spaces is not simply Θ0 ⊂ Θ, but that the parameter θ is the same for both full

and reduced models. In particular, models with different random components

or response distributions are not amenable to comparison using the procedures

of this subsection.
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Assume regularity conditions similar to those given previously in Section

8.3.3. Given models for independent random variables that differ only through

nested parameter spaces Θ0 ⊂ Θ, we have a result that will form the basis for

both tests and intervals, in a manner similar to the Wald Theory Main Result

for the inference of Section 8.3.4.

Likelihood Ratio Main Result

Let dim{Θ} = p and dim{Θ0} = r, and,

θ̂n = sup
θ∈Θ

Ln(θ) θ̃n = sup
θ∈Θ0

Ln(θ).

Then, assuming that θ ∈ Θ0 (the reduced model),

Tn ≡ −2
{

Ln(θ̃n) − Ln(θ̂n)
} L→ χ2

p−r. (8.42)

It is worthy of note here that, while this result is closely related to what were

given as Likelihood Theorem 2 and the Main Wald Theory result, it is a dis-

tinct result that is not a direct consequence of those previous theorems. The

proof the Main Likelihood Ratio Result depends on the ability to expand the

log likelihood function itself as a Taylor series, while the proof of asymptotic

normality of maximum likelihood estimators (Likelihood Theorem 2) and re-

sulting Chi-squared limiting distribution for quadratic forms of asymptotically

normal estimators (the Wald Theory Main Result) depend on expanding the

score function, that is, the derivative of the log likelihood.

Given the Main Likelihood Ratio Result, we have an immediate test sta-

tistic for the comparison of full, θ ∈ Θ, and reduced, θ ∈ Θ0 ⊂ Θ, models.
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Example 8.11

Consider a situation in which we have two groups of iid random variables.

These may be of any given distributional form. Suppose that we have a beta-

binomial model such as used in Example 7.12 for the number of live young

born to Gambusia from the San Luis Drain and Volta regions in the Central

Valley of California. Consider, for this example, the two groups designated

as SLDR − 10 and V oltaR − 16 from that example. Within each group,

our model results in a log likelihood function of the form of expression (7.37).

Now, denote the parameters for these groups as (αs, βs) and αv, βv) for the

San Luis Drain and Volta areas, respectively.

The full model consists of separate beta mixing distributions for the two

groups, so that θ = (αs, βs, αv, βv)
T and Θ ≡ ℜ+ × ℜ+ × ℜ+ × ℜ+. The

reduced model consists of a single beta mixing distribution that applies to

both groups with parameters αc and βc, say; the subscript c is for “combined”.

Here, Θ0 ≡ ℜ+ × ℜ+ and we have the necessary nested parameter spaces.

We could also set restrictions of the type used in case 3 of Example 8.10 and

formulate the comparison of full and reduced models as a hypothesis test, but

it seems preferable to approach the entire issue as one of model comparison.

That is, we are comparing the full and reduced models, but are allowing no

other possibilities.

Given independence among observations from the San Luis Drain and Volta

areas, the log likelihood for the full model may be written as,

Ln,f(αn,s, βn,s, αn,v, βn,v) = Ln,s(αn,s, βn,s)

+ Ln,v(αn,v, βn,v),

where Ln,s is the log likelihood for the San Luis Drain area, and Ln,v is that
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for the Volta area. Given maximum likelihood estimates of these parameters,

the maximized log likelihood for the full model becomes,

Ln,f(α̂n,s, β̂n,s, α̂n,v, β̂n,v) = Ls(α̂n,s, β̂n,s)

+ Lv(α̂n,v, β̂n,v),

The log likelihood for the reduced model may be written as Ln,r(αn,c, βn,c),

with maximized value, Ln,r(α̂n,c, β̂n,c). In practice, we obtain α̂n,c and β̂n,c by

combining data across groups, and fitting the same model to these combined

data that we did to each group separately. The test statistic of expression

(8.42) then becomes,

Tn = −2 {Ln,r − Ln,f} ,

which, in this example, is compared to a χ2 random variable with p − r =

4 − 2 = 2 degrees of freedom.

The Main Likelihood Ratio Result also provides a method for forming con-

fidence regions, which is sometimes referred to as “inverting” the likelihood

ratio test statistic (e.g., Hahn and Meeker 1991, pp.240-241). The concept is

straightforward and based on the relation between tests and intervals. Let θ0

be any value of θ such that a likelihood ratio test of the form (8.42) would not

reject θ0 at the α level. That is, θ0 is any value of θ such that,

−2
{

Ln(θ0) − Ln(θ̂n)
}

≤ χ2
p,1−α.

The reason for p degrees of freedom in this expression is as follows. In the main

result, we took p as the dimension of the full model parameter space Θ and r

as the dimension of the reduced model parameter space Θ0 and the likelihood

ratio statistic was asymptotically χ2 with p− r degrees of freedom. Here, we

have a completely specified parameter θ0. Now, while θ0 is a p−dimensional

vector, it consists of only one point in p−dimensional space. In other words,
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the dimension of Θ0 is zero. Thus, the degrees of freedom above are p − r =

p− 0 = p, entirely in agreement with the main result of expression (8.42).

The set of all θ0 such that a likelihood ratio test would not reject this

value (or reduced model) at the α level of significance is then a 100(1 − α)%

confidence region for θ,

{

θ0 : −2
[

Ln(θ0) − Ln(θ̂n
]

≤ χ2
p,1−α

}

. (8.43)

As a final comment, we will point out that the likelihood region (8.43) is

invariant to parameter transformation, while the Wald theory region of (8.41)

is not. This is because the likelihood and log likelihood functions are invariant

to parameter transformation. That is, if h(θ) is a transformation of θ for

some continuous function h(·), then Ln(h(θ)) = Ln(θ). Thus, any θ0 that

is contained in the set (8.43) corresponds to an h(θ0) that is also within the

set. On the other hand this same property does not hold for variances, so

that (8.41) is not invariant under parameter transformation. Any number of

simulation studies have been conducted that indicate the likelihood region of

is superior to the Wald region in maintaining nominal coverage when the two

differ. When will they differ? When the likelihood surface near its maximum

is not well approximated by a quadratic surface. It is also true, however, that

the likelihood region of (8.43) tends to be more difficult to compute than the

Wald region of (8.41), even in two dimensions.

8.3.6 Example - Generalized Linear Models

As we have discussed in lab, one typical approach for finding maximum likeli-

hood estimates in specific problems is to form the likelihood or log likelihood,

derive the likelihood equations (i.e., set the score function equal to zero) and

use numerical algorithms for solving these equations. The most commonly
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used algorithms are probably those we categorized as being “Newton-type”

algorithms such as the Newton-Raphson and Fisher Scoring algorithms. In a

few instances, some unification is possible in this procedure for an entire class

of models, and we illustrate this situation with the generalized linear mod-

els introduced in Section 7.3.2. Here, we have independent random variables

Y1, . . . , Yn with probability mass or density functions that may be written as

exponential dispersion families as,

f(yi|θi, φ) = exp [φ{yiθi − b(θi)} + c(yi, φ)] .

This constitutes the random model component. The systematic model com-

ponent is specified as,

g(µi) = ηi = xTi β,

for a known smooth function g(·).
From the above model, given independence of the response variables Y1, . . . , Yn,

the log likelihood is,

L(β, φ) =
n
∑

i=1

Li(β, φ), (8.44)

where Li is the contribution of the ith random variable,

Li(β, φ) = φ{yiθi − b(θi)} + c(yi, φ). (8.45)

Expression (8.45) makes sense as a function of β since E(Yi) = µi = b′(θi)

from the random component, and g(µi) = ηi = xTi β from the systematic model

component. That is, we have a “cascade” of simple functions connecting θi

to µi to β. This suggests that the standard chain rule of elementary calculus

should be useful in deriving the derivatives of Li(β, φ) and thus also those of

L(β, φ) since the latter is just a sum over the former by (8.44). In particular,

consider estimation of the components of β by deriving first the likelihood
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equations. We have that

∂Li(β, φ)

∂βj
=
∂Li(β, φ)

∂θi

dθi
dµi

dµi
dηi

∂ηi
∂βj

. (8.46)

Now, given the random component as an exponential dispersion family, and

the properties of such families, we have that,

∂Li(β, φ)

∂θi
= φ{yi − b′(θi)} = φ{yi − µi},

dθi
dµi

=
1

V (µi)
,

∂ηi
∂βj

= xi,j (8.47)

The second line of expression (8.47) follows because µi = b′(θi) so that dµi/dθi =

b′′(θi) = V (µi), and the third line follows from the linear form of ηi = xTi β.

Substituting (8.47) into (8.46) results in,

∂Li(β, φ)

∂βj
= φ{yi − µi}

1

V (µi)

dµi
dηi

xi,j,

or, summing over observations,

∂L(β, φ)

∂βj
=

n
∑

i=1

[

φ{yi − µi}
1

V (µi)

dµi
dηi

xi,j

]

. (8.48)

At this point, although there is no clear reason to do so in the above derivations,

let

Wi ≡






(

dηi
dµi

)2

V (µi)







−1

,

and substitute into expression (8.48) to arrive at,

∂L(β, φ)

∂βj
=

n
∑

i=1

[

φ{yi − µi}Wi
dηi
dµi

xi,j

]

. (8.49)

The set of likelihood equations are then given by setting (8.49) equal to zero

for j = 1, . . . , p.
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To derive expressions for the second derivatives, make additional use of the

chain rule applied to (8.46), which results in,

∂2Li(β, φ)

∂βj∂βk
=

∂

∂βk

[

∂Li(β, φ)

∂θi

dθi
dµi

dµi
dηi

∂ηi
∂βj

]

=
∂2Li(β, φ)

∂θ2
i

(

dθi
dµi

)2 (
dµi
dηi

)2
∂ηi
∂βj

∂ηi
∂βk

+
∂Li(β, φ)

∂θi

d2θi
dµ2

i

(

dµi
dηi

)2
∂ηi
∂βj

∂ηi
∂βk

+
∂Li(β, φ)

∂θi

dθi
dµi

d2µi
dη2

i

∂ηi
∂βj

∂ηi
∂βk

. (8.50)

In (8.50) we would have

∂Li(β, φ)

∂θi
= φ{yi − b′(θi)},

∂2Li(β, φ)

∂θ2
i

=
∂

∂θi
[φ{yi − b′(θi)}]

= −φ b′′(θi) = −φ V (µi).

(8.51)

Substituting (8.51) into (8.50) we can see that the only terms in (8.50) that

depend on the response value yi are those that involve

∂Li(β, φ)

∂θi
,

and, since E(Yi) = b′(θi), the expected value of the random version of this first

derivative is 0.

Now, recall for what purpose we are finding second derivatives – for use in

an iterative numerical algorithm (such as Newton-Raphson) for approximation

of maximum likelihood estimates of the elements of β. As we have seen, one of
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the family of Newton-like algorithms is Fisher Scoring, in which the matrix of

second derivatives (i.e., the Hessian matrix) is replaced by its negative expected

value. This suggests that we write (8.50) as,

∂2Li(β, φ)

∂βj∂βk
= −φV (µi)

(

d θi
d µi

)2 (
d µi
d ηi

)2
∂ηi
∂βj

∂ηi
∂βk

+ φ{yi − b′(θi) { terms without yi}

(8.52)

As a result, taking the negative expectation of the random version of (8.52)

results in,

−E
{

∂2Li(β, φ)

∂βj∂βk

}

= φV (µi)

(

d θi
d µi

)2 (
d µi
d ηi

)2
∂ηi
∂βj

∂ηi
∂βk

(8.53)

Now, use the definition of Wi given just before expression (8.49) as,

Wi ≡






(

dηi
dµi

)2

V (µi)







−1

,

and,
∂ηi
∂βj

= xi,j ; and
d θi
d µi

=
1

V (µi)
.

Using these in expression (8.53) results in,

−E
{

∂2Li(β, φ)

∂βj∂βk

}

= φV (µi)
1

{V (µi)}2

(

d µi
d ηi

)2

xi,jxi,k

= φWi xi,jxi,k. (8.54)

Summing (8.54) across observations (i) gives the total expected informa-

tion. That is, let In(β) be a p× p matrix with jkth element

Ij,k(β) = φ
n
∑

i=1

Wi xi,j xi,k. (8.55)

Then, at iteration m of a Fisher Scoring algorithm, and using the notation

β(m) = (β
(m)
1 , . . . , β(m)

p )T
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and,

∇Ln(β(m)) =

(

∂Ln(β, φ)

∂β1
, . . . ,

∂Ln(β, φ)

∂βp

)T
∣

∣

∣

∣

∣

∣

β=β
(m)

,

we can write the parameter update as,

β(m+1) = β(m) + I−1
n (β(m))∇Ln(β(m)). (8.56)

Now, expression (8.56) is entirely sufficient to program a Fisher Scoring

algorithm for generalized linear models. From the standpoint of computation,

however, additional simplifications are possible. In particular, pre-multiply

expression (8.56) by In(β
(m)) to obtain,

In(β
(m))β(m+1) = In(β

(m))β(m) + ∇Ln(β(m)),

or, using δβ ≡ β(m+1) − β(m),

In(β
(m)) δβ = ∇Ln(β(m)). (8.57)

Note: expression (8.57) is what McCullagh and Nelder (1989) give on page 42

as Aδb = u.

Now, recall from expression (8.49) that,

∂L(β, φ)

∂βj
=

n
∑

i=1

[

φ{yi − µi}Wi
dηi
dµi

xi,j

]

.

Then, with y = (y1, . . . , yn)
T , µ = (µ1, . . . , µn)

T , η = (η1, . . . , ηn)
T , and W a

diagonal n× n matrix with elements Wi,

∇Ln(β, φ) = XTWφ

(

(y − µ)
dη

dµ

)

,

or, by writing z = (z1, . . . , zn)
T where

zi = (yi − µi)
d ηi
d µi

,
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we can express the gradient as,

∇Ln(β, φ) = φXTWz. (8.58)

Similarly, inspection of (8.55) shows that the total expected information may

be written in matrix form as,

In(β) = φXTWX. (8.59)

Then, substitution of (8.58) and (8.59) into (8.57) gives the following equivalent

statements (the first of these is just (8.57) repeated for ease of development):

In(β
(m)) δβ = ∇Ln(β(m)),

(

XTWX
)∣

∣

∣

β=β
(m) δβ =

(

XTWz
)∣

∣

∣

β=β
(m) ,

δβ =
[

(

XTWX
)−1

XTWz

]∣

∣

∣

∣

β=β
(m)

. (8.60)

The right hand side of this last expression is in the form of a weighted least

squares equation. The left hand side is the change in estimates at iteration

m, δβ = β(m+1) − β(m). Thus, at iteration m of a Fisher Scoring algorithm

for numerical computation of maximum likelihood estimates of β we could

compute δβ as in (8.60) and updated estimates as,

β(m+1) = β(m) + δβ. (8.61)

It is possible to make one further step, as in McCullagh and Nelder (1989; p.

43) to arrive at,

β(m+1) =
[

(

XTWX
)−1

XTWz̃

]∣

∣

∣

∣

β=β
(m)

, (8.62)

where,

z̃ = Xβ + z.
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The use of (8.60) and (8.61) or (8.62) are entirely equivalent, and I don’t really

see much computational benefit one way or the other.

Comments

1. Although this derivation sees like a long haul (and perhaps it is) what

we have arrived at is a simple algorithm for maximum likelihood estima-

tion of the regression parameters (β) in any standard generalized linear

model. This is rather remarkable.

2. The dispersion parameter φ cancels in the progression leading to expres-

sion (8.60). Thus, just as for normal linear regression models (which

are actually a particular type of generalized linear model), parameters

of the systematic model component can be estimated independently of

additional parameters involved in the variances.

3. It is possible to develop maximum likelihood estimates of the dispersion

parameter φ, although there is no longer a general algorithm, and such

estimation must be developed on a case-by-case basis for each particular

model. As discussed in example 8.8, a common method of estimation for

φ is to use a moment estimator, which is consistent

4. It is important in practice to realize that, while β can be estimated with-

out knowledge of φ, an estimate of φ is needed for inference. That is, both

the expected information matrix with components given by expression

(8.55) and the log likelihood given in expression (8.44) and (8.45) involve

φ. Thus, inference from either Wald theory or more general likelihood-

based procedures will require that an estimate of φ be available.
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8.4 Inference from Modified Likelihood Func-

tions

We approach in this section a rather daunting set of topics on which there have

been written a vast number of papers from a huge number of perspectives.

Our goal is to provide an indication of the major lines of thought that have

emerged from these works; true unification does not seem possible at this

point. We will divide the topic of modified likelihood functions into three

parts, profile likelihoods, marginal likelihoods and conditional likelihoods. The

second two of these, in particular, have strong connections with the concepts

of sufficiency and ancillarity, and so we include a subsection on these topics

prior to discussion of marginal and conditional likelihoods as distinct topics.

What we are calling here modified likelihoods come into play in practice

primarily in situations in which dealing with the full likelihood function is diffi-

cult. For example, simultaneous maximization, in all parameter values, of the

log likelihood formed from the joint distribution implied by a conditional au-

toregressive model is computationally difficult. In other cases, we may be able

to maximize the likelihood using, for example, gradient or direct search meth-

ods, but unable to compute the information for purposes of forming inferential

quantities.

8.4.1 Profile Likelihoods

Profile likelihoods are discussed by a number of authors (e.g., Lindsey 1996,

Meeker and Escobar 1998) primarily as a way to assess uncertainty in a portion

of the parameter (i.e., some elements of a parameter vector) while essentially

ignoring others. This type of profile likelihood extends the basic idea of what
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is sometimes called a “normed likelihood” from the case of a scalar parameter,

in which it is easily interpreted, to a multi-parameter situation. Normed like-

lihoods are closely related to the approximate likelihood confidence region of

expression (8.43) and, in the case of a scalar parameter, intervals formed from

a normed likelihood are identical to likelihood intervals; in this case, normed

likelihood is also called “relative likelihood”, and the interval result is simply

a re-statement of (8.43) (e.g., Meeker and Escobar 1998, Appendix B.6.6).

Normed likelihoods can also be interpreted from the viewpoint of likelihoods

as proportional to the probability of the data, rather than from the stand-

point of asymptotic distribution theory (e.g., Lindsey 1996). In this context,

a normed likelihood represents the “strength of evidence” offered by the data

for any θ ∈ Θ, relative to that offered for the most likely θ (i.e., the maximum

likelihood estimate). Normed profile likelihoods, also called “maximized rela-

tive likelihoods” make use of a partition of the parameter vector, maximizing

a normed likelihood over the portion of the parameter that is of lesser interest.

Interpretation again can be based on either asymptotic results or strength of

evidence concepts, as we will discuss presently.

Other authors (e.g., Barndorff-Nielsen and Cox 1994) present profile likeli-

hoods from the perspective of partitioning the parameter vector and focusing

on a likelihood that is considered a function of only the portion of the parame-

ter that is of “interest”. These profile likelihoods often have “likelihood-like”

behavior, at least up to first-order approximation. We should note that, al-

though we are separating this form of profile likelihood from those discussed

above, they are really the same thing, being simply the numerator of a normed

profile likelihood or maximized relative likelihood. It sometimes helps, how-

ever, to recognize these as a different “type” of profile likelihood because they

typically are used in point estimation as well as forming intervals.



430 CHAPTER 8. ESTIMATION AND INFERENCE

Normed Likelihoods and Normed Profile Likelihoods

We presented what was called the Likelihood Ratio Main Result using the

difference in log likelihoods for “full” and “reduced” models. The factor −2

in expression (8.42) was the appropriate scaling factor to give the limiting

distribution of this difference. Consider now the exponentiation of this expres-

sion, which is where the name “likelihood ratio” comes from. We will consider

this ratio at present, not in the context of models with different parameter

dimensions, but rather for a single model with parameter θ ∈ Θ. The normed

likelihood is defined as,

Rn(θ) ≡ ℓn(θ)

ℓn(θ̂n)
, (8.63)

where θ̂n is the maximum likelihood estimate of θ for a given set of observed

data.

Interpretation of Rn(θ) is not restricted to the case of a scalar parameter,

but is certainly the most useful in this situation (or, at most, a two-dimensional

parameter). This is true for either the asymptotic theory interpretation or the

strength of evidence interpretation. As regards asymptotic theory, if dim(Θ) =

1, the normed likelihood is just

Rn(θ) = exp{Ln(θ) − Ln(θ̂n)}.

For interval estimation, note that, if

−2{Ln(θ) − Ln(θ̂n)} < χ2
1,1−α,

where χ2
1,1−α is the (1−α) quantile of a Chi-squared distribution with 1 degree

of freedom, then

Rn(θ) > exp{−χ2
1,1−α/2}.

The strength of evidence interpretation of Rn(θ) is based on the first result

presented in Section 8.3.2 that the likelihood is equal to (in the discrete case)
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or proportional to (in the continuous case) the probability of the observed data

given the value of θ. Interpreting the maximum likelihood estimate θ̂n as the

parameter value that “maximizes the probability of the data”, the normed

likelihood gives the ratio of probability of the data for any θ ∈ Θ to the prob-

ability of the data for the “most likely” value of θ. The normed likelihood

Rn(θ) is bounded above by 1 by virtue of definition of the maximum likeli-

hood estimate. Thus, if a given parameter value θ∗ results in Rn(θ
∗) = 0.5, we

would say that the data are twice as likely under θ̂n as under θ∗. Note that

for this interpretation to be useful, we must have a given model form with a

parameter of fixed dimension; the above illustration for dim(Θ) = 1 certainly

meets this stipulation.

Example 8.12

To make the notion of a normed likelihood clear, consider a situation with

a set of iid random variables and a scalar parameter θ. Suppose Y1, . . . , Yn ∼
iid Po(θ). The likelihood function for a set of observations y1, . . . , yn is,

ℓn(θ) =
n
∏

i=1

f(yi|θ) =
1

{∏n
i=1 yi!}

θ
∑n

i=1
yi exp{−nθ}.

The normed likelihood function for any value θ > 0 is then,

Rn(θ) =

{

θ

θ̂n

}

∑n

i=1
yi

exp{−n(θ − θ̂n)},

where θ̂n = (1/n)
∑n
i=1 yi, the maximum likelihood estimate of θ.

A set of 25 observations were generated from a Poisson distribution with

θ = 6, giving values:

6 3 5 7 5 7 6 0 3 4 3 6 5

8 9 4 2 4 8 4 2 3 5 10 11
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Figure 8.1: Normed likelihood for a random sample of size 25 from a Po(6)

distribution.

A graph of the normed likelihood function Rn(θ) is shown for these data in

Figure 8.1. The horizontal line in this plot is drawn at a value of exp{−χ2
1,0.90/2} =

0.2585, and this line intersects the normed likelihood at values of 4.49 and 5.98,

giving in this case an exact likelihood interval for θ. The above likelihood in-

terval for θ may be compared to a Wald theory 90% interval, and what might

be called a “0.2 likelihood region”, which could be depicted as a horizontal line

at a value of 0.20 for the normed likelihood in Figure 8.1.
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Interval Type Lower Point Upper Point

Likelihood 4.49 5.98

Wald 4.48 5.92

0.2 Likelihood 4.43 6.06

Interpretation of the Likelihood and Wald intervals is exactly what you are

used to. The interval labeled 0.2 Likelihood is that the given data are less than

1/5 as likely under any parameter value outside the interval as they are for the

maximum likelihood estimate. In this example, likelihood and Wald theory

intervals are very similar, indicating that the likelihood surface (here curve) is

well approximated by a quadratic near the maximum likelihood estimate.

Using Wald theory, confidence intervals for individual parameters (i.e.,

components of the parameter vector) may be constructed using the square

root of the appropriate diagonal element of the inverse information matrix

(expected or observed). We have given no analogous method of interval con-

struction for portions of a parameter vector using basic likelihood intervals.

Such a method is provided by normed profile likelihoods, also known as max-

imized relative likelihoods (e.g., Kalbfleisch and Sprott 1970). Suppose that a

parameter may be partitioned into two parts as θ = (θ1, θ2)
T . Generally, the

dimension of θ1 is small (e.g., 1 or 2). We will consider the case in which θ1 is

a scalar θ and θ = (θ1, θ2)
T . Then, if the dimension of θ is p, the dimension

of θ2 is p− 1. The normed profile likelihood for θ1 is defined as,

Rp
n(θ1) ≡ max

θ2

[

ℓn(θ1, θ2)

ℓn(θ̂n)

]

. (8.64)

An approximate (1 − α)100% interval for θ1 may be formed in the same way

as for a normed likelihood function with a scalar parameter, namely,

{θ1 : Rp
n(θ1) > exp{−χ2

1,1−α/2}. (8.65)
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Example 8.13

Consider again the situation of Example 7.12, concerning the potential effect

of selenium on reproductive success in Gambusia. Earlier, we looked at fitting

beta-binomial mixture models to sets of fish that were held in water of varying

ionic strength after being removed from their habitat. Here, we will consider

the same model form for groups of fish held in the same water from which they

were collected. That is, the holding water was from the same source as the

fish, either the Volta or San Luis Drain areas, not water reconstituted to have

the same ionic strength but without any contaminants. The actual data are

given below for completeness.

The beta-binomial model with marginal log likelihood given in expression

(7.37) could certainly be fit to these data. In fact, doing so results in maxi-

mized log likelihood values of Ln(α̂v, β̂v) = −53.4091 for the Volta area and

Ln(α̂s, β̂s) = −136.8254 for the San Luis Drain area. For the combined data,

Ln(α̂c, β̂c) = −195.9984 which leads to the likelihood ratio test,

Tn = −2{−195.9984 − (−53.4091 + −136.8254)}

= 11.5277,

which has an associated p−value of 0.00314 when compared to a Chi-squared

distribution with 2 degrees of freedom. We would conclude that the full model

with parameters αv, βv, αs, βs is to be preferred to the reduced model with

parameters αc, βc. If we look at the estimated expectations of the beta mixing

distributions, however, we find that for the Volta area, α̂v/(α̂v + β̂v) = 0.89,

while for the San Luis Drain area, α̂s/(α̂s + β̂s) = 0.82. These values, which
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are maximum likelihood estimates of the expected values, do not appear much

different. We might wonder then whether the significant difference detected

by the likelihood ratio test was due to something other than mean values.

Data For Study on Teratogenic Effect of Selenium in Gambusia

Volta Area San Luis Drain

No. Live Total No. Live Total

28 28 36 40

31 31 33 34

9 11 27 28

68 68 4 18

32 32 13 18

37 37 22 26

19 19 20 24

17 17 20 22

26 26 38 41

52 52 21 21

30 30 20 25

46 46 26 27

0 9 7 16

47 51 18 18

22 22 23 25

18 19

62 64

4 5
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To investigate this question formally (i.e., by more than just visual assess-

ment of graphs of density functions) we may proceed as follows. First, recall

the log likelihood given in expression (7.37),

L(α, β) ∝
m
∑

i=1





yi−1
∑

j=0

log(α + j) +
ni−yi−1
∑

j=0

log(β + j) −
ni−1
∑

j=0

log(α + β + j)



 .

Now, let

µ ≡ α

α + β
; θ ≡ 1

α+ β
.

Then α = µ/θ and β = (1 − µ)/θ. Substituting these values into the log

likelihood results in,

L(µ, θ) ∝
m
∑

i=1





yi−1
∑

j=0

log(µ/θ + j) +
ni−yi−1
∑

j=0

log((1 − µ)/θ + j) −
ni−1
∑

j=0

log(1/θ + j)



 .

=
m
∑

i=1





yi−1
∑

j=0

log(µ+ θj) +
ni−yi−1
∑

j=0

log((1 − µ) + θj) −
ni−1
∑

j=0

log(1 + θj)



 .

(8.66)

Maximization of (8.66) in µ and θ for Volta and San Luis Drain data values

separately gives the following table, where the column labeled 90% Interval

contains values from a Wald theory approach, and the subscripts v and s

denote Volta and San Luis Drain, respectively.

Parameter Estimate Variance 90%Interval

µs 0.822 0.00229 (0.744, 0.901)

θs 0.244 0.01404 (0.049, 0.439)

µv 0.889 0.00349 (0.792, 0.986)

θv 1.341 0.90867 (−0.227, 2.91)

There is, of course, no need to give values for maximized likelihoods since these

remain the same under the new parameterization as they were previously.
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Now, notice that the Wald interval for θv extends outside of the parameter

space. Clearly, this parameter is not estimated as well as the others, having

an (estimated) variance that is an order of magnitude greater than that for θ̂s

and two orders of magnitude greater than either of the mean parameters. We

might well question whether the quadratic approximation to the log likelihood

on which the Wald interval is based is entirely appropriate for these data. It

could be that a likelihood region might be preferable to the Wald interval in

this case, and a one-dimensional (i.e., interval) form of such regions are the

normed profile likelihood intervals presented in this section. For the parameter

θv this profile likelihood is,

Rp
n(θv) = max

µv

[

ℓn(µv, θv, )

ℓn(µ̂v, θ̂v)

]

= exp
{

max
µv

L(µv, θv) − L(µ̂v, θ̂v)
}

,

(8.67)

where L(µ, θ) is given in (8.66). Computing Rp
n(θv) for values of θv between

0 and 6, results in the normed profile likelihood shown in Figure 8.2, in which

the horizontal line is drawn at exp(−χ2
0.90,1/2) = 0.2585227. An approximate

90% profile likelihood interval for θv is then,

{θv : Rp
n(θv) < exp(−χ2

0.90,1/2)},

which in this case is the interval (0.423, 4.370). This interval differs substan-

tially from the Wald interval computed earlier. Repeating this procedure for

the parameter µv results in the normed profile likelihood

Rp
n(µv) = max

θv

[

ℓn(µv, θv, )

ℓn(µ̂v, θ̂v)

]

= exp
{

max
θv

L(µv, θv) − L(µ̂v, θ̂v)
}

, (8.68)
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Figure 8.2: Normed profile likelihood for θv in analysis of Gambusia reproduc-

tive data.

which is shown graphically in Figure 8.3. The corresponding 90% approximate

profile likelihood interval is (0.755, 0.960), which is somewhat different than

the Wald interval, but not nearly so dissimilar as was the case for θv.

Now, although not strictly a part of the main topic of this subsection,

we will use this same example to illustrate a likelihood ratio test of a full

model with parameters µv, θv, µs, θs against a reduced model with parame-

ters µ, θv, θs that is, a model in mixing distributions for both groups have a

common mean, but are allowed to otherwise differ. The log likelihood for the

full model may be written in the same way as previously,

Ln(µv, θv, µs, θs) = Ln(µv, θv) + Ln(µs, θs),

while the log likelihood for the reduced model may be written as,

Ln(µ, θv, θs) = Ln(µ, θv) + L(µ, θs).
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Figure 8.3: Normed profile likelihood for µv in analysis of Gambusia reproduc-

tive data.

maximizing the reduced model log likelihood results in Ln(µ̂, θ̂v, θ̂s) = −190.5655,

while the full model maximized log likelihood remains as before Ln(µ̂v, θ̂v, µ̂s, θ̂s) =

−53.4091 − 136.8254 = −190.2345, leading to the likelihood ratio test,

Tn = −2{−190.5655 + 190.2345} = 0.6619.

Comparing to a Chi-squared distribution with 1 degree of freedom results in a

p−value of 0.4159. Thus, we would not reject the reduced model in this case

in favor of the full model.

Unscaled Profile Likelihoods

We now consider another function that is often called a profile likelihood. Al-

though these profile likelihoods are not truly distinct from normed profile like-

lihoods, their use is typically that of an objective function for point estimation
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(i.e., an alternative to the full likelihood) as well as a vehicle by which to ob-

tain intervals which is the primary use for normed profile likelihoods. That is,

normed profile likelihoods require that the full maximum likelihood estimate

of a parameter θ is available for use in the denominator of expression (8.64).

Unscaled profile likelihoods, on the other hand, are often useful in finding

maximum likelihood estimates of certain elements of the parameter vector in

the first place and, like regular likelihoods, are often expressed in logarithmic

form. There are two situations in which unscaled profile likelihoods appear to

be the most useful, both of which operate from a partition of the parameter θ

as θ = (θT1 , θ
T
2 )T .

Situation 1.

The maximum likelihood estimates of one portion of the partition, say θ̂1 can

be expressed as a function of any fixed value of the other as θ̂1 = θ̂1(θ2).

Example 8.14

Consider a situation in which a small-scale disease epidemic has been observed,

with individuals exposed to the disease agent (e.g., virus) at a common place

and time. We assume that a time interval is known for exposure, but not the ex-

act time. For example, passengers of a cruise ship come down with salmonella,

possibly due to exposure at some port visited, or due to contamination in food

supplies used on the ship (the difference is economically important to a cruise

line). The available data consist of time to onset of disease for individuals,

with time 0 defined as the start of the known interval in which exposure oc-

curred. This might be, for example, the last resupply time of food stores on

the vessel, or the last port of call the vessel made. Connect these observations
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with random variables Y1, . . . , Yn, which will be assumed to be iid following

some distribution. Assume that the time from the point of common exposure

to the onset of disease (symptoms) follows a log-normal distribution across in-

dividuals (this is not an unreasonable assumption given what is known about

the incubation time for many diseases). One model that has been used in such

situations is to take the random variables Yi; i = 1, . . . , n to be iid follow-

ing a “three-parameter log-normal” distribution which has density function,

f(yi|α, µ, σ) =


























1
(yi−α)σ

√
2π

exp
[

− 1
2σ2 (log(yi − α) − µ)2

]

; α < yi

0 ; o.w.

Here, the parameter α represents the time that exposure took place (measured

from 0 as defined by the start of the known interval of exposure). The log

likelihood formed from n observations under this model is,

Ln(α, µ, σ
2) = −N

2
log(2πσ2) −

n
∑

i=1

log(yi − α)

− 1

2σ2

n
∑

i=1

{log(yi − α) − µ}2 ,

if yi > α for i = 1, . . . , n. Now, suppose α is fixed. Then,

∂Ln
∂µ

=
1

σ2

n
∑

i=1

{log(yi − α) − µ} ,

∂Ln
∂σ2

= − n

2σ2
+

1

2σ4

n
∑

i=1

{log(yi − α) − µ}2 ,

and we can write

µ̂(α) =
1

n

n
∑

i=1

log(yi − α)

σ̂2(α) =
1

n

n
∑

i=1

{log(yi − α) − µ̂(α)}2 .
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In this situation, we can write the log likelihood Ln(α, µ, σ
2) as a function of

α alone, and this is one form of a profile log likelihood. Here, we would have,

Lpn(α) ∝ −n
2

[

log{σ̂2(α)} + 2µ̂(α)
]

.

Advanced Note: this is a situation in which the log likelihood becomes un-

bounded as the parameter α approaches a finite bound (minimum yi) as dis-

cussed in lab, and the density form of the likelihood may become unbounded as

the parameter approaches that bound.

Situation 2.

The likelihood or log likelihood can be maximized over one portion of the par-

tition θ = (θT1 , θ
T
2 )T , say θ1 for any fixed value of the other, say θ2, although

that maximizing value cannot be expressed as an explicit function. This is

probably the most common situation for application of unscaled profile likeli-

hoods.

Example 8.15

Consider a general power of the mean model,

Yi = µi(β) + σ{µi(β)}θǫi,

in which we assume ǫi ∼ iidN(0, 1) for i = 1, . . . , n, but for which we wish to

follow the prescription of Section 7.2.4 in assuming that θ is not known prior

to estimation. In this case, for a fixed value of θ, the log likelihood could be

maximized in β using any Newton-type algorithm such as Newton-Raphson

or Gauss-Newton.
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In either of the two situations discussed above, we may define a profile

likelihood as,

ℓpn(θ2) ≡ max
θ1

ℓn(θ1, θ2), (8.69)

for any fixed value of θ2 ∈ Θ. The logarithm of this profile likelihood is,

Lpn(θ2) = max
θ1

log{ℓpn(θ1, θ2)}. (8.70)

Notice that the profile likelihood is simply the numerator of the normed profile

likelihood of expression (8.64). In the first situation, in which θ̂1 = θ̂1(θ2) we

could write (8.69) and (8.70) as,

ℓpn(θ2) = ℓn{θ̂1(θ2), θ2},

Lpn(θ2) = log[ℓpn{θ̂1(θ2), θ2}],

since θ̂1(θ2) gives the maximized value over θ1. This is, in fact, the form of

the log profile likelihood given for the three parameter log-normal model.

The value of the profile likelihood (8.69) and log profile likelihood (8.70)

functions is that they behave in many ways like true likelihood functions. In

particular (see, e.g., Barndorff-Nielsen and Cox 1994, p.90):

1. The estimate of θ2 found by maximizing the profile likelihood (8.69) is

the maximum likelihood estimate of θ2. This should be clear because

max
θ2

ℓpn(θ2) = max
θ2

max
θ1

ℓn(θ1, θ2)

= max
θ1,θ2

ℓn(θ1, θ2).

2. A likelihood ratio test statistic formed from the profile log likelihood

(8.70) has a limiting Chi-squared distribution. That is, with dim(θ2) =



444 CHAPTER 8. ESTIMATION AND INFERENCE

p− r and dim(θ1) = r,

Tn(θ2) = −2[Lpn(θ
0
2) − Lpn(θ̂2)]

L→ χ2
p−r,

for any fixed value θ0
2 ∈ Θ2. Compare this with expression (8.42).

3. A profile likelihood confidence region,

{θ0
2 : −2[Lpn(θ

0
2) − Lpn(θ̂2)] ≤ χ2

p−r,1−α},

is a valid approximate confidence region for θ2. This follows from item

2, just as the likelihood region (8.43) follows from (8.42).

Despite these properties it should be noted that unscaled profile likelihoods

or log likelihoods are not, in general, full likelihood functions. Although ℓpn(·)
and Lpn(·) behave asymptotically in the same way as ℓn(·) and Ln(·), which is

what leads to the above properties, their derivatives do not necessarily behave

in the same way as those of the full likelihood functions. In particular, the

expected value of the first derivative of Lpn(θ2) is not necessarily equal to zero.

If the portion of the parameter vector θ1 being excluded from consideration

in a profile likelihood is a “substantial fraction of n” (McCullagh and Nelder

1989, p. 255) then the difference of this expectation from zero is not negligible

in asymptotics. The end result is that Wald theory can be difficult to adapt

for unscaled profile likelihoods.

On the other hand, it is apparently true that the (negative) inverse sec-

ond derivative matrix of the log profile likelihood is equal to the corresponding

portion of the observed information matrix from the full likelihood (Barndorff-

Nielsen and Cox 1994, p. 90). The apparent contradiction of this with the

above assertion about Wald theory can be resolved at an intuitive level by

examination of the log profile likelihood given in expression (8.70). In essence,
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the log profile likelihood is simply considering θ1 to be fixed, although the

value at which it is fixed can depend of the value of θ2 at which the log profile

likelihood is being evaluated (that is, θ1 is fixed at its maximum for the given

value of θ2). As a result, any effects of uncertainty about θ1 are being ignored

in quantification of uncertainty about an estimate of θ2. To the degree to

which uncertainty about θ1 influences uncertainty about θ2 (and our ability

to estimate that uncertainty), inference based on profile likelihoods will be un-

reliable. If that degree of influence is small or negligible, then profile likelihood

inference will be a good approximation to full likelihood inference.

Example 8.16

A model for which both situations that motivate unscaled profile likelihood

are in force is the conditional autoregressive model (or conditionally specified

Gaussian model) used in the analysis of nitrates in the Des Moines River pre-

sented in Section 7.5.6. Recall that this model resulted in a joint Gaussian

distribution of the form,

Y ∼ Gau(θ, (In − C)−1M).

Consider what was called the “distance model” in that example. Then, for

θ = (θ1, . . . , θn)
T ,

θi = β0 + β1 sin
(

tπ

91

)

+ β2 cos
(

tπ

91

)

,

which can be written as a linear model, θ = Xβ. The matrix C was formed

with elements ci,j given by

ci,j ≡ η

{

min{di,j}
di,j

}k

,
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where di,j is the distance (river miles) between si and sj . This model then

gives a joint Gaussian density function which may be written as,

Y ∼ Gau(Xβ, (I − C)−1τ 2I),

with I the n × n identity matrix. The parameters to be estimated from this

model are β, τ 2, the dependence parameter η, and k. From the joint density,

the log likelihood function becomes,

Ln(β, τ
2, η, k) = −(n/2) log(2πτ 2) + (1/2) log(|(I − C)|)

−(1/2τ 2)(y −Xβ)T (I − C)(y −Xβ).

(8.71)

Maximization of (8.71) in β and τ 2 gives,

β̂ = {XT (I − C)X}−1XT (I − C)y

τ̂ 2 = (1/n)(y −Xβ̂)T (I − C)(y −Xβ̂),

which are both functions of the parameters η and k involved in the matrix C.

Thus, we have a situation that falls into the type given previously as Situation

1 in which the maximum likelihood estimate of a portion of the parameter

vector can be expressed as a function of the other portion.

If we then substitute the solutions for β̂ and τ̂ 2 back into the log likelihood

(8.71) we have the profile log likelihood function,

Lpn(η, k) = −(n/2){log(2π) + 1} + (1/2) log(|I − C|)

−(n/2) log
[

yT (I − C){I −X(XT (I − C)X)−1

XT (I − C)}y
]

. (8.72)
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Now, the profile log likelihood (8.72) can be maximized in η by any number of

algorithms, but maximization in k proves difficult. This then fits the second

situation in which profile likelihoods are useful. For any fixed value of k,

maximization of (8.72) in η leads to estimates of η, β, and τ 2, and we can then

write another profile log likelihood in the form of expression (8.70) as,

Lpn(k) = max
η

{Lpn(η, k)} = max
η,β,τ2

{L(β, τ 2, η, k}. (8.73)

The maximum likelihood estimate of k then results from the first property of

unscaled profile likelihoods given immediately following expression (8.70) as,

k̂ = max
k
Lpn(k),

with Lpn(k) as given in (8.73).

This procedure was in fact what was used to produce the parameter es-

timates given in the tables of example of Section 7.5.6. This example also

involves several issues relative to the estimation of uncertainty in parameter

estimates.

1. Although is is possible, as shown above, to obtain a maximum likelihood

estimate of k, should this value be considered as a part of the overall

model parameter to be estimated, or a part of model selection? The

value of k “scales” the distance measures used to construct the model

matrix C. This scaling is important as it determines the the appropriate

relation between ratios of distances and ratios of spatial dependence; if

the distance from a location is cut in 1/2 will the spatial dependence

also be cut by 1/2 (k = 1), or should a change in distance of 1/4 give

a change in dependence of 1/2 (k = 2). But, should uncertainty in k

be allowed to affect uncertainty in other parameter estimates any more

than a change from ci,j ∝ {1/di,j} to ci,j ∝ {1/ log(di,j)}?
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2. Computation of any type of information matrix (observed or expected)

would be difficult in this model. This may be somewhat less detrimental

than it at first seems, since the lack of independence in the model makes

justification of asymptotic likelihood inference less than a trivial matter,

if it would even be possible or desirable. That is, even if computation of

the information were possible, or even if normed profile likelihoods were

computed, the application of normal and/or Chi-squared limit results

would be questionable (at least without additional theoretical justifica-

tion). A parametric bootstrap procedure, to be discussed in a future

section, may provide a reasonable alternative.

8.4.2 Sufficiency and Ancillarity

Recall a typical formulation of sufficiency and ancillarity. We suppose a set

of random variables Y with a possible value y, but will now write the like-

lihood for a parameter θ as ℓ(θ;y) to make explicit the dependence on the

observations y, but momentarily dropping the subscript n that has been used

previously to emphasize the role of sample size in asymptotic arguments. A

statistic T ≡ T (Y ) is sufficient for θ1 if,

ℓ(θ;y) = ℓ1(θ; t) ℓ2(y|t), (8.74)

where t ≡ T (y), the “observed” value of T . Similarly, a statistic U ≡ U(Y )

is ancillary for θ if,

ℓ(θ;y) = ℓ1(θ;y|u) ℓ(u). (8.75)

If estimation is to be based on the likelihood function, then ℓ(θ;y) contains

everything the data y can tell us about the value of the parameter θ. Exami-

nation of (8.74) indicates why we say that, if a sufficient statistics is available,



8.4. MODIFIED LIKELIHOOD FUNCTIONS 449

we can “reduce” the information content of y about θ to consideration of t

alone. In this case, maximization of ℓ(θ;y) is the same as maximization of

ℓ1(θ; t). We also sometimes say that sufficiency implies marginalization (to

the marginal distribution of t). Examination of (8.75) likewise indicates why

ancillarity implies conditioning, since maximization of ℓ(θ;y) is equivalent to

maximization of ℓ1(θ;y|u).

Throughout the remainder of this subsection we will again consider a par-

titioned parameter vector θ ≡ (θT1 , θ
T
2 )T . We will use the terms “parameter

of interest” and “nuisance parameter”. These terms are in the context of a

particular portion of the estimation procedure, and we may consider θ1 and

θ2 to both be nuisance parameters in turn as we consider estimation of the

other. For example, in an additive error model with variance that depends

on an unknown parameter θ and an expectation function that depends on a

set of parameters β, we might consider θ a nuisance parameter for estimation

of β, but then turn around and consider β a nuisance parameter for estima-

tion of θ. There are many situations in which simultaneous maximization of

a likelihood in all elements of the parameter vector is difficult, and we make

use of this type of multi-stage estimation, some of which we have already seen.

Such estimation appears to be the most effective when we have some type of

sufficiency or ancillarity to draw on; what we mean by “some type” here is the

topic of this subsection.

Likelihood Orthogonality

To help understand the effects of sufficiency and ancillarity on estimation, note

first that we have two general goals regarding either or both of the portions

of θ, considered as consisting of two components θ1 and θ2. For ease of
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presentation, we will consider θ1 to be the parameter of interest and θ2 to be

a nuisance parameter, but keep in mind that the roles can be interchanged for

parameters that have particular identities in a given model. The first goal is to

use the maximal amount of “information” in the observation y for estimation

of θ1; look again at (9.74) and think sufficiency. The second goal, largely

ignored in our discussion of normed profile likelihoods, is to take into account

the effect of the nuisance parameter θ2 on the quantification of uncertainty

in estimation of θ1. A rare but ideal situation is one in which there are two

statistics T 1 ≡ T1(Y ) and T 2 ≡ T2(Y ) such that the likelihood may be written

as,

ℓ(θ;y) = ℓ1(θ1; t1) ℓ2(θ2; t2). (8.76)

If, in addition to (8.76) the parameter components θ1 and θ2 are variation

independent, we can estimate and make inferences about θ1 and θ2 totally

independently of the other. The condition (8.76), along with variation inde-

pendent parameters, is called likelihood orthogonality or sometimes likelihood

independence (e.g., Lindsey 1996, p. 239).

Example 8.17

We have had a number of examples of beta-binomial models in which we have

always considered the binomial sample sizes n1, . . . , nm to be fixed quanti-

ties. But clearly, in any of these examples, we could take the binomial sample

sizes to be “observed” values of random variables N1, . . . , Nm. Two models

immediately suggest themselves:

1. Let Y1, . . . , Ym, conditional on the values N1 = n1, . . . , Nm = nm and

θ1, . . . , θm have conditionally independent distributions that follow bino-
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mial probability mass functions, bin(ni, θi). Let N1, . . . , Nm iid random

variables following a common Poisson probability mass function Po(λ).

Let θ1, . . . , θm be iid random variables following a common beta proba-

bility density function Be(α, β).

2. Let Y1, . . . , Ym, conditional on the values N1 = n1, . . . , Nm = nm and

θ1, . . . , θm have conditionally independent distributions that follow bi-

nomial probability mass functions, bin(ni, θi). Let N1, . . . , Nm given

λ1, . . . , λm be conditionally independent random variables following Pois-

son probability mass functions Po(λi). Let θ1, . . . , θm be iid random

variables following a common beta probability density function Be(α, β),

and let λ1, . . . , λm be iid random variables following a common gamma

probability density function Ga(γ, ν).

For either of these models, the likelihood has the property (8.76), for the

first model with θ1 = (α, β)T and θ2 = λ, and for the second model with

θ1 = (α, β)T and θ2 = (γ, ν)T .

Partial Sufficiency and Ancillarity

The happy occurrence of likelihood orthogonality is rare. In many other cases,

however, we can come close to the complete factorization of expression (8.76).

A statistic T ≡ T (Y ) is said to be partially sufficient for θ1 if,

ℓ(θ;y) = ℓ1(θ1; t) ℓ2(θ;y|t), (8.77)

and ℓ2(θ;y|t) is “noninformative” about θ1. What is meant by “noninforma-

tive” will be discussed shortly. A statistic U ≡ U(Y ) is said to be partially

ancillary for θ1 if,

ℓ(θ;y) = ℓ1(θ1;y|u) ℓ2(θ;u), (8.78)
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and ℓ2(θ;u) is “noninformative” about θ1. In comparing (8.77) and (8.78)

to the ordinary definitions of sufficiency and ancillarity, notice that the terms

ℓ1(·) in (8.77) and (8.78) are analogous to (8.74) and (8.75) with θ1 replacing

the full parameter θ. But the terms ℓ2(·) in (8.77) and (8.78) are now markedly

different from those in (8.74) and (8.75), being allowed to depend not only on

θ2 but even θ1.

The definitions of partial sufficiency and ancillarity, however, contained

the qualifier that these ℓ2(·) terms be “noninformative” about the value of θ1.

We now must make this concept more explicit. Barndorff-Nielson and Cox

(1994, p. 38) give three conditions under which the ℓ2(·) terms in (8.77) or

(8.78) can be considered noninformative about the parameter of interest θ1

Their presentation is in the context of a partially ancillary statistic, but we

generalize the first two of their conditions to either of the ℓ2(·) terms; we also

change the order of presentation.

1. The term ℓ2(θ;y|t) = ℓ2(θ2;y|t) in (8.77) or ℓ2(θ;u) = ℓ2(θ2;u) in

(8.78). Notice that either of these “collapse” the conditions. That is, if

T is a statistic such that (8.77) holds as,

ℓ(θ;y) = ℓ1(θ1; t) ℓ2(θ2;y|t),

then (8.78) also holds. Then T is partially sufficient for θ1 and partially

ancillary for θ2. Similarly, if (8.78) holds as,

ℓ(θ;y) = ℓ1(θ1;y|u) ℓ2(θ2;u),

then (8.77) also holds, and U is partially ancillary for θ1 and partially

sufficient for θ2.

2. The condition given in (1) does not always hold, but does hold for a

particular value θ1 = θ0
1 .
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3. The observation of U alone in (8.78) would render estimation of θ1 dif-

ficult or impossible without knowledge of θ2. While certainly a much

more vague “condition” than (1) or (2), this situation seems to occur if,

for example, dim(U) ≤ dim(θ2) or E(U) = θ2. In a colloquial sense, U

is “used up” estimating θ2, and has little or nothing left to contribute

to the estimation of θ1.

As a word of caution, do not start to believe that the expressions (8.77)

and (8.78) will always apply to the same model. That is, they are separate

conditions, not a pair of conditions that go together. It is true, however, that

in any number of cases they do seem to both hold for different statistics T and

U .

8.4.3 Marginal and Conditional Likelihoods

Finding functions such as ℓ1(·) and ℓ2(·) in (8.77) or (8.78) is not necessarily

an easy matter. First, in order to define marginal or conditional likelihoods,

we need these functions to be proportional to probability mass or density func-

tions. This is necessary so that the component functions ℓ1(·) in either (8.77)

or (8.78) correspond to actual likelihood functions. Secondly, while we may be

able to show relations such as (8.77) or (8.78) for probabilities or distributions

in the general sense, these may not always be easily written in terms of density

functions, which is also something we would like in practice (i.e., so we can

write computer programs to compute these functions). Thus, to apply (8.77)

or (8.78) in a given problem, we must be able to find component functions ℓ1(·)
and ℓ2(·) that are proportional to density (or mass) functions which we can

compute directly. It is not enough to show that these factorizations exist for

given statistics T (Y ) or U(Y ) without being able to explicitly give the forms
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of component functions.

A fundamental difficulty, which occurs in the case of continuous random

variables Y1, . . . , Yn, is that the sigma fields generated by T ≡ T (Y ) and by

Y ≡ (Y1, . . . , Yn)
T are, in general, different. That is, the sigma field generated

by the transformation T is a subfield of that generated by Y . If the probability

space of Y is (ΩY , B) and T is a mapping into (ΩT , A), then the sigma field

induced by T is,

B0 = T−1(A) = {T−1(A) : A ∈ A}.

This is typically not a problem for defining probabilities, since integrals of

real-valued measurable functions with respect to the probability measure µ

defined over (ΩY , B) and the measure µ∗ = µ[T−1(A)]; A ∈ A that is sub-

sequently induced over (ΩT , A) can be related via T−1(A) as (e.g., Lehmann

1986, Lemma 2, p. 43),

∫

T−1(A)
g[T (y)]dµ(y) =

∫

A
g(t)dµ∗(t).

Dissimilarity in the sigma fields generated by Y and T (Y ) does, however,

cause problems for the derivation of a conditional density for Y given T using

the simple method of dividing a joint density by a conditional density; the

problem lies in defining a joint density.

There appear to be two avenues by which this difficult can be approached

in application. The first is to find a statistic T (Y ) and verify two conditions

which can be given as,

1. The sigma field generated by T (Y ) is contained in (usually equivalent

to) that generated by the (either normed or unscaled) profile likelihood

for θ1,

ℓpn(θ1) = max
θ2

ℓn(θ1, θ2).
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2. The marginal distribution of T (Y ) depends on θ only through θ1.

This is the approach adopted by Lindsey (1996), who presents these condi-

tions as one way to define what are sometimes called L-sufficient statistics.

If T (Y ) meets these conditions and its marginal density is available (which

would probably be true from verification of the second condition above), and

the factorization (8.77) holds by making ℓ1(θ1; t) proportional to the marginal

density of T (Y ), then what is left must necessarily correspond to ℓ2(θ;y|t).
In this case, we can define the marginal likelihood as

ℓM(θ1) ≡ ℓ1(θ1; t), (8.79)

where ℓ1(θ1; t) is the first term in expression (8.77). This assumes that the sec-

ond term in (8.77), ℓ2(θ;y|t) can be shown to provide “essentially” no informa-

tion about θ1, according to one of the three conditions given on pages 680-681.

Application of this approach appears to be more problematic to derive, directly

from density representations, a conditional likelihood as ℓC(θ1) ≡ ℓ2(θ1;y|u)

from (8.78).

It is instructive for understanding marginal and conditional likelihoods to

consider simple examples where we may not necessarily apply these concepts,

but which will indicate the underlying concepts. We introduce the simplest of

such examples here to illustrate marginal likelihood.

Example 8.18

Let Y1, . . . , Yn ∼ iidN(µ, σ2). Suppose that our interest focuses on estimation

of σ2; µ is then, for this estimation, considered the nuisance parameter. In

the context of our presentation of partial sufficiency, θ = (µ, σ2), θ1 = σ2 and

θ2 = µ. The full likelihood function may be written as,
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ℓn(µ, σ
2) =

=

(

1√
2πσ2

)n

exp

[

− 1

2σ2

n
∑

i=1

(yi − µ)2

]

=

(

1√
2πσ2

)n

exp

[

− 1

2σ2

n
∑

i=1

(yi − ȳ)2− n

2σ2
(ȳ − µ)2

]

=

(

1√
2πσ2

)n−1

exp

[

− 1

2σ2

n
∑

i=1

(yi − ȳ)2

]

1√
2πσ2

exp
[

− n

2σ2
(ȳ − µ)2

]

,

which we have written in the form of (8.77) if we take,

ℓ1(θ1; t) ∝
(

1√
2πσ2

)n−1

exp

[

− 1

2σ2

n
∑

i=1

(yi − ȳ)2

]

ℓ2(θ;y|t) ∝ 1√
2πσ2

exp
[

− n

2σ2
(ȳ − µ)2

]

,

where in these expressions we have taken T ≡ T (Y ) =
∑

(yi − ȳ)2.

We know (from previous courses) that T /σ2 ∼ χ2
n−1, which has density,

g1

(

t

σ2

)

=
1

2(n−1)/2Γ((n− 1)/2)

(

t

σ2

){(n−1)/2}−1

exp
{

− t

2σ2

}

∝
(

t

σ2

){(n−1)/2}−1

exp
{

− t

2σ2

}

.

This then implies that the density of T is,

g2(t) ∝
(

1

σ2

)(n−1)/2

exp
{

− 1

2σ2
t

}

,

from a straightforward transformation of random variables (the Jacobian is

σ−2). The proposal for ℓ1(θ1; t) = ℓ1(σ
2; t) is thus verified as proportional to
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the marginal density of T (Y ). Now, the profile likelihood of σ2 in this model

is,

ℓpn(σ
2) = max

µ
ℓn(µ, σ

2)

=

(

1√
2πσ2

)n

exp

[

− 1

2σ2

n
∑

i=1

(yi − ȳ)2

]

,

the random version of which clearly generates the same sigma algebra as

T (Y ) =
∑

(Yi − Ȳ )2. It remains then only to verify that the proposed expres-

sion for ℓ2(θ;y|t) is essentially noninformative about σ2. The first condition

is not fulfilled, since the proposed ℓ2(θ;y|t) involves both θ1 = σ2 and θ2 = µ.

The second condition is certainly met for any σ2 ∝ ∑

(yi − ȳ)2. The third

condition would be met if, by defining U(y) ≡ Ȳ , the factorization of (8.78)

holds (this is, in fact, true for this example). Thus, we have justified, to the

extent possible under this “less than exact” theory, the use of the marginal

likelihood ℓM(σ2) for estimation of σ2. Here, ℓM(σ2) is given equivalently as,

ℓ1(θ1; t) = ℓ1(σ
2; t) =

(

1

σ2

)(n−1)/2

exp
{

− 1

2σ2
t

}

.

The maximum marginal likelihood estimate of σ2 is then,

σ̂2 = max
σ2

ℓM(σ2) = max
σ2

ℓ1(σ
2; t)

= max
σ2

{

log
[

ℓ1(σ
2; t)

]}

= max
σ2

L1(σ
2; t)

= max
σ2

{

−n− 1

2
log(σ2) − 1

2σ2
t

}

⇒ σ̂2 =
1

n− 1
t

=
1

n− 1

n
∑

i=1

(yi − ȳ)2,
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which we recognize as the unbiased (in fact, UMVU) estimator of σ2 in this

problem. The use of this marginal likelihood is one way to motivate what

is called Restricted or Residual maximum likelihood (REML) which you saw

in Stat 511 connected with the estimation of variance terms in linear mixed

models. For a relatively detailed derivation of REML as a marginal likelihood

estimator for use with linear mixed models see McCullagh and Nelder (1989),

Exercises 7.10-7.13.

The second manner in which researchers have dealt with the difficulty of

defining a density for the numerator of ℓ2(θ;y|t) in (8.77) or ℓ1(θ1;y|t) in

(8.78) is to make use of one-to-one transformations of Y to variables (Z,V ),

say (e.g., Pawitan 2001, Chapter 10.3; Kalbfleisch and Sprott 1970). The idea

is that one of Z or V corresponds to one of T or U in (8.77) or (8.78). This

then allows the usual methods of transformations to derive the appropriate

densities. We will first re-consider Example 8.18 from a different viewpoint

that makes use of this technique.

Example 8.18 (cont.)

Consider again the one-sample normal problem of Example 8.18, but now

define V ≡ ∑

Yi and, for i = 1, . . . , n − 1, Zi ≡ Yi. Then V is dimension

1, Z is dimension n − 1, the transformation from Y to (V,Z) is one-to-one,

and Yn = V −∑n−1
i=1 Zi so that the Jacobian of the transformation is 1. Then,

g(z, v|µ, σ2) = f(y|µ, σ2), the marginal of V is N(nµ, nσ2), and in (8.78)

(dropping constants of proportionality) ℓ1(θ1;y|u) becomes,

ℓ1(σ
2; z|v) = exp



− 1

2σ2







n−1
∑

i=1

z2
i +

(

v −
n−1
∑

i=1

zi

)2






− n− 1

2
log(σ2)



 .

We then use ℓ1(σ
2; z|v) as a conditional likelihood for estimation of σ2, that
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is, ℓC(σ2) ≡ ℓ1(σ
2; z|v). Notice that this conditional likelihood, if written

in terms of the original y, is identical to ℓM(σ2) given in the first portion of

Example 8.18. We have left ℓC(σ2) in terms of the transformed variables V and

Z because one cannot always count on the transformation from the original

Y to (Z,V ) to be linear.

To summarize this approach for derivation of marginal and conditional

likelihoods, let there exist a one-to-one transformation of Y to (Z,V ) such

that,

ℓ(θ; z,v) = ℓ1(θ1;v)ℓ2(θ; z|v)

or

ell(θ; z,v) = ℓ1(θ1;v|z)ℓ2(θ; z).

Then we take a marginal likelihood to be ℓM(θ1) = ℓ1(θ1;v) in the first in-

stance or a conditional likelihood to be ℓC(θ1) = ℓ1(θ1;v|z) in the second

instance. The provision about the other terms in these likelihood factoriza-

tions being essentially noninformative about θ1 continue to be needed for such

marginal or conditional likelihoods to be useful. If Z and V in this progres-

sion are independent, then marginal and conditional likelihoods coincide, as in

example 8.18, for which
∑

Yi and
∑

(Yi − Ȳ )2 are known to be independent.

We will give one additional example to illustrate the potential uses of

marginal and conditional likelihoods. This example, introduced originally

by Neyman and Scott (1948), illustrates the use of marginal and conditional

likelihoods (they will again be the same in this example) in a situation for

which the number of nuisance parameters increases as a proportion of the

sample size. This is a classic setting for marginal and/or conditional likeli-

hood, and discussion of these likelihoods is often contained in sections of texts

that discuss dealing with large numbers of nuisance parameters (e.g., Pawitan
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2001). This example is used in Lindsey (1996), Pawitan (2001), and the entry

by Kalbfleisch in the Encyclopedia of Statistical Science under the entry on

“Pseudo-Likelihood”.

Example 8.19

Consider a study designed to investigate the precision of an measurement

instrument across a range of possible values of the quantity being measured.

Suppose that observations are gathered in pairs corresponding to random vari-

ables {(Yi,1, Yi,2) : i = 1, . . . , n} for which the model is

Yi,1, Yi,2 ∼ iidN(µi, σ
2),

where we also assume independence across i. The intention of the study is

measurement precision so the parameter of interest is σ2. The values of the

means, {µi : i = 1, . . . , n} are considered nuisance parameters, and the num-

ber of these nuisance parameters present would increase as n increases; in fact,

for any fixed sample size, the model contains n + 1 parameters and 2n ob-

servations. Let θ ≡ (µ1, . . . , µn, σ
2)T , θ1 ≡ σ2 the parameter of interest, and

θ2 ≡ (µ1, . . . , µn)
T the nuisance parameters. Then the full likelihood can be

written as,

ℓ(θ;y) =
(

1

σ2

)n/2

exp



− 1

2σ2

n
∑

i=1

2
∑

j=1

(yi,j − µi)
2





=
(

1

σ2

)n/2

exp



− 1

2σ2

n
∑

i=1





2
∑

j=1

y2
i,j



− 2µi
2
∑

j=1

yi,j + µ2
i



 .

Now, let

zi =
yi,1 − yi,2√

2
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vi =
yi,1 + yi,2√

2
.

Then the 2n values in {(Yi,1, Yi,2) : i = 1, . . . , n} can be transformed into the

2n values {Zi, Vi : i = 1, . . . , n} with Jacobian 1, and, in particular,

z2
i + v2

i =
2
∑

j=1

y2
i,j,

√
2 vi =

2
∑

j=1

yi,j.

Then the likelihood becomes,

ℓ(θ; z,v) =
(

1

σ2

)n/2

exp

[

− 1

2σ2

n
∑

i=1

z2
i + v2

i − 2µi
√

2 vi + 2µ2
i

]

=
(

1

σ2

)n/2

exp

[

− 1

2σ2

n
∑

i=1

z2
i

]

exp

[

− 1

2σ2

n
∑

i=1

{

v2
i − 2

√
2µi + 2µ2

i

}

]

,

and the marginal likelihood for θ1 ≡ σ2 based on z would be

ℓM(σ2) = ℓ1(θ1;v) =
(

1

σ2

)n/2

exp

[

− 1

2σ2

n
∑

i=1

z2
i

]

,

because this is, in fact, the marginal distribution of {zi : i = 1, . . . , n}. It is

a simple matter to show that the remaining term in the likelihood (involving

only v) is the conditional density of v given z since zi ∼ iidN(0, σ2) and

vi ∼ iidN(
√

2µi, σ
2). The maximum marginal likelihood estimate of σ2 is

then obtained by, for example, maximizing the log of ℓM(σ2) which gives,

σ̂2
M =

1

n

n
∑

i=1

z2
i

=
1

2n

n
∑

i=1

(yi,1 − yi,2)
2.

This example is generally used to contrast the estimate σ̂2
M with that obtained

by maximizing the profile likelihood ℓpn(σ
2), which gives σ̂2 = (1/4n)

∑

(yi,1 −
yi,2)

2, only one-half the value of σ̂2
M .
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8.4.4 Concluding Remarks

To conclude our discussion of estimation and inference from modified likelihood

functions, the following are pertinent:

1. There is a good deal of overlap among the topics of profile likelihoods,

marginal likelihoods, and conditional likelihoods. In fact, it is not in-

frequent that marginal or conditional likelihoods turn out to also be

profile likelihoods. Pawitan (2001, Chapter 10) gives several examples

for which conditional or marginal likelihoods are profile likelihoods, and

several examples for which this is not true.

2. The problem of Example 8.19 could, of course, be approached through

the use of a mixture (or random parameter) model, in which the µi; i =

1, . . . , n are taken as random variables following some distribution, which

would then be integrated out of the marginal distribution of the (Yi,1, Yi,2)

pairs. The use of marginal (or conditional in this case) likelihood may

be viewed as an attempt to eliminate nuisance parameters without using

random parameter models. This, in fact, is the essential focus of the

discussion paper by Kalbfleisch and Sprott (1970) in which much of the

following discussion centered on this issue. At that time, random para-

meter models were thought to imply a Bayesian approach. As we have

seen, this is in fact not the case, although some statisticians still hold to

this notion.

3. As is probably clear from the examples presented, marginal and condi-

tional likelihoods do not necessarily offer a constructive methodology by

which to develop estimators. Typically, once a “reasonable” approach

for estimation has become the focus of investigation, we may try and
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determine whether that approach corresponds to some type of marginal

or conditional likelihood. But, it is usually difficult to divine the correct

likelihood factorization to produce useful marginal or conditional likeli-

hoods before we already have a pretty good idea of where we are headed

in the development of an estimation strategy.

8.5 Quasi-Likelihood, Estimating Functions, and

Pseudo-Likelihoods

In this section we consider estimation, and the associated inference proce-

dures, based on a number of functions that might be considered as “likelihoods

that aren’t really likelihoods”, or “functions that are sort-of likelihoods”, or

“functions that we might pretend are likelihoods”. While the marginal and

conditional likelihoods of the previous subsection are sometimes lumped with

the types of functions we consider here, I have separated them because, while

marginal and conditional likelihoods may not correspond to full likelihoods for

the entire parameter vector θ, they are proportional to probability mass or

density functions (perhaps marginal or conditional) and, thus, the probability

of at least a portion of the obtained data. That is, they are “true” likelihood

functions. The functions considered here do not share that property, are thus

not “true” likelihoods.

We begin with a consideration of what are called quasi-likelihoods in the

context of response distributions that are (but aren’t really, are sort-of, or we

might pretend are) in exponential dispersion family form. We then briefly in-

dicate that the derivatives of such quasi-likelihoods are a special case of a more

general structure called estimating functions. The term pseudo-likelihood can
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technically apply to almost any function that is treated as if it were a likelihood

function; we give two versions of pseudo-likelihoods that have proven useful

for certain classes of models, nonlinear regressions with unknown parameters

in the variance model, and conditionally specified models.

8.5.1 Quasi-Likelihood

To motivate quasi-likelihoods, consider again maximum likelihood estimation

of generalized linear models as detailed in Section 8.3.6. In deriving derivatives

of the log likelihood for these models we made use first of independence among

response variables to write the likelihood and its derivatives in terms of sums

of contributions from individual variables Yi, and secondly of the chain rule to

arrive at expression (8.49). Consider using these same techniques, but taking

the derivation only to the point of obtaining a derivative of the log likelihood

with respect to the expectation µi,

∂Li(µi, φ)

∂µi
=

∂Li(µi, φ)

∂θi

dθi
dµi

,

∂L(µi, φ)

∂µi
=

n
∑

i=1

∂Li(µi, φ)

∂µi
.

Focusing on an individual response variable, and given an exponential disper-

sion family form for the density or mass functions of the Yi; i = 1, . . . , n, we

have,

∂Li(µi, φ)

∂µi
=
φ{yi − b′(θi)}

V (µi)
=
φ{yi − µi}
V (µi)

. (8.80)

Notice that expression (8.80) (and thus also the sum across i) depends only

on the first two moments of Yi, E(Yi) = µi and var(Yi) = (1/φ)V (µi). We

might then consider trying to “recover” the log likelihood for µi (for fixed φ)
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through integration as,

Qi(µi|φ) =
∫ µi

yi

φ{yi − t}
V (t)

dt,

Q(µ|φ) =
n
∑

i=1

∫ µi

yi

φ{yi − t}
V (t)

dt. (8.81)

Example 8.20

Suppose Y1, . . . , Yn have Poisson distributions with expected values µ1, . . . , µn.

Then φ ≡ 1, V (µi) = µi, and, up to an additive constant depending only on

yi,

Qi(µ) =
∫ µi

yi

yi − t

t
dt = yi log(µi) − µi,

so that,

Q(µ) =
n
∑

i=1

{yi log(µi) − µi},

and, up to an additive constant, Q(µ) = L(µ).

Note that, in general, the additive constant that distinguishes Q(µ) from

L(µ) in this situation (which is Y1, . . . , Yn independent with exponential disper-

sion families of the glm type) depends on both y and φ; this will be important

if the value of φ is to be estimated.

Basic Quasi-Likelihood

The fundamental idea underlying basic quasi-likelihood is that, even in sit-

uations that do not correspond to independent random variables with fully

specified exponential dispersion family distributions, the function Q(µ|φ) in

(8.81) should behave in a manner that resembles a log likelihood function for

µ.
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Consider independent random variables Y1, . . . , Yn that have expectations

µ1, . . . , µn and variances φV1(µ1), . . . , φVn(µn) for set of specified functions

V1(·), . . . , Vn(·), and assume that µi = h(xi,β) for some known function h(·)
and unknown parameters β with dim(β) = p < n, but specify nothing ad-

ditional about the model. Notice that we have allowed the functions Vi(·) to

vary across observations. In the majority of situations it will be reasonable to

take these to be the same function, but that is not necessary. What is neces-

sary, however, is that var(Yi) = φVi(µi) where φ is constant and Vi(·) does not

depend on elements of µ other than µi (McCullagh and Nelder 1989, p. 324).

In this independence situation, define the quasi-likelihood to be as in (8.81),

Qi(µi|φ) =
∫ µi

yi

φ{yi − t}
Vi(t)

dt,

Q(µ|φ) =
n
∑

i=1

∫ µi

yi

φ{yi − t}
Vi(t)

dt.

The quasi-score function is then,

Ui(µi|φ) =
φ{yi − µi}
Vi(µi)

U(µ|φ) =
n
∑

i=1

φ{yi − µi}
Vi(µi)

. (8.82)

It is easy to show that the elements of U(µ|φ), which are first derivatives of

Q(µ|φ), have the following properties:

E{Ui(µi|φ)} = 0,

var{Ui(µi|φ)} =
φ

Vi(µi)

−E
{

∂

∂µi
Ui(µi|φ)

}

=
φ

Vi(µi)
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Notice that, given the first, the second and third of these properties constitute

the analogous condition in regular likelihood problems that the expected infor-

mation is equal to the negative expectation of second derivatives. In addition,

the first property given above implies that

E

{

∂Qi(µi|φ)

∂βk

}

= E

{

∂Qi(µi|φ)

∂µi

∂µi
∂βk

}

= E

{

Ui(µi|φ)
∂µi
∂βk

}

= 0.

(8.83)

Quasi-likelihood functions share the property given in expression (8.83) with

true likelihood functions, and suggest that maximum quasi-likelihood estimates

of β might be found by solving these equations absent the expectation operator

for k = 1, . . . , p (i.e., for the elements of β).

In a similar way, the second and third properties imply that,

E

{

∂Qi(µi|φ)

∂βk

∂Qi(µi|φ)

∂βj

}

= E

{

{Ui(µi|φ)}2 ∂µi
∂βk

∂µi
∂βj

}

= −E
{

∂Ui(µi|φ)

∂µi
∂βk

∂µi
∂βj

}

=
φ

Vi(µi)

∂µi
∂βk

∂µi
∂βj

.

Given these results, we may derive a Fisher scoring algorithm in an en-

tirely analogous manner to that used in Section 8.3.6 for maximum likelihood

estimation of β in standard generalized linear models. Now, however, we are

maximizing the quasi-likelihood function rather than the log likelihood func-

tion. The result is a Fisher scoring algorithm,

β(m+1) = β(m) + δβ,
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where,

δβ =
(

DTV −1D
)−1

DTV −1(y − µ)
∣

∣

∣

∣

β=β
(m)

. (8.84)

In (8.84) V is the n×n diagonal matrix with entries Vi(µi) and D is the n×p
matrix with ikth element ∂µi/∂βk; recall that p is the dimension of β. Notice

that, in this algorithm, the parameter φ has canceled, in the same way that it

did for development of the Fisher scoring algorithm for standard generalized

linear models.

Inference for maximum quasi-likelihood is analogous to Wald theory infer-

ence for maximum likelihood. In particular, we can obtain a result analogous

to a portion of that presented as Likelihood Theorem 2 in Section 8.3.3, namely

that, if β̃ denotes the maximum quasi-likelihood estimator of β, then:

(i) β̃ is consistent for β.

(ii)
√
n(β̃−β) is asymptotically normal with mean 0 and covariance matrix

(n/φ)
(

DTV −1D
)−1

.

Given the asymptotic normality of β̃, Wald theory suggests that inference

for β be based on normal theory forms with the asymptotic covariance matrix

cov(β̃) =
1

φ

(

DTV −1D
)−1

. (8.85)

Use of (8.85) in practice requires and estimate of φ. A common estimator is

the moment-based estimator of Example 8.8 in Section 8.1.2,

φ̂ =

[

1

n− p

n
∑

i=1

{yi − µ̂i}2

V (µ̂i)

]−1

.

When might one consider the use of quasi-likelihood in estimation and

inference? If the variance functions V1(·), . . . , Vn(·) are all the same, and if V (·)
corresponds to the variance function from an exponential dispersion family,

then quasi-likelihood returns likelihood, as in Example 8.20.
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One situation in which quasi-likelihood presents a viable option for esti-

mation and inference is if a standard generalized linear model has been used,

but the resulting fit exhibits a less than totally adequate description of the

observed variances. That is, we formulate a model with Y1, . . . , Yn distributed

according to an exponential dispersion family, which then dictates the vari-

ance function V (µi). Diagnostics, such as described in McCullagh and Nelder

(1989) may reveal that this assumed variance function does not describe the

data in a completely satisfactory manner. We may then choose to envisage

a model with “essentially” the same type of random component only with a

modified variance function.

Example 8.21

McCullagh and Nelder (1989, Chapter 9.2.4) present an example in which

the initial model was a (sort of) binomial random component with logistic

link, and hence variance function V (µi) = µi(1−µi) (the response variables Yi

were taken as proportions rather than counts). Diagnostic plots (McCullagh

and Nelder 1989, p. 331) showed that the variances appeared to decrease too

rapidly (as a function of µi) at the extremes (for µi close to 0 and 1). They

then suggested a variance function V (µi) = µ2
i (1−µi)2 as an alternative. This

variance function does not correspond to any of the standard exponential dis-

persion family distributions and, hence, a fully specified random component is

no longer available. A quasi-likelihood analysis was then conducted of these

data with

E(Yi) = µi; var(Yi) =
1

φ
V (µi) =

1

φ
µ2
i (1 − µi)

2,

and with log{µi/(1 − µi)} = xTi β. This then leads to the quasi-likelihood (in
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µi),

Qi(µi|φ) = (2yi − 1) log

(

µi
1 − µi

)

− yi
µi

− 1 − yi
1 − µi

.

The potential drawbacks to quasi-likelihood are relatively obvious, and

include:

1. The asymptotic result given for maximum quasi-likelihood estimators

in this section was presented as analogous to part of that of Likelihood

Theorem 2. The part that is missing in the quasi-likelihood result is the

statement of asymptotic efficiency (part (iii) of Likelihood Theorem 2).

2. While inferential procedures are available for parameters in the system-

atic model component (represented in this section as β), quasi-likelihood

no longer offers a vehicle by which to make inferences about any other

portion of the model such as quantiles or other functionals of the distri-

bution.

3. Related to item 2, interpretation of results relative to the underlying

scientific phenomenon or mechanism of interest becomes less well-defined.

Consider Example 8.21 given above. By replacing the variance function

of a binomial with something else, we have admitted that we do not

understand the observation process, since we no longer have an actual

model. This should (in my opinion) cast substantial doubt on whether we

have much of a grasp on modeling the scientific phenomenon of interest

through the systematic model component.

Drawing on the third comment above, quasi-likelihood appears in many cases

to be an attempt to account for the additional variance in an observable process

without having to go to the trouble of modeling it in an adequate manner; effort

is diverted to estimation rather than modeling.
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Extended Quasi-Likelihood

It was noted immediately following Example 8.20 that, in exponential disper-

sion family situations, the additive constant that separates a quasi-likelihood

and the true log likelihood will depend on both y and φ, and we have been

careful to write the quasi-likelihood and quasi-score functions as conditional on

the dispersion parameter φ, as in expression (8.82). With this conditioning, the

quasi-likelihood method produces estimates for systematic model component

parameters that behave in a manner similar to that of maximum likelihood

estimates (minus asymptotic efficiency). If, however, we would like a quasi-

likelihood function that is a “sort-of” likelihood in terms of φ as well as in

terms of µi; i = 1, . . . , n, something else is needed than what has been devel-

oped to this point. That development is the intent of what is typically called

extended quasi-likelihood (Nelder and Pregibon 1987).

Extended quasi-likelihood functions are “derived” in McCullagh and Nelder

(1989) by essentially pre-supposing the end product. Barndorff-Nielsen and

Cox (1989) give a more convincing progression in which extended quasi-likelihood

is derived as a “tilted Edgeworth” expansion (also often called a “saddlepoint

approximation”). In either case, what results is the extended quasi-likelihood

of Nelder and Pregibon (1987), written for a single random variable Yi as,

Q+
i (µi, φ) =

∫ µi

yi

φ{yi − t}
V (t)

dt− 1

2
log{2π(1/φ)V (yi)}

= Qi(µi, φ) − 1

2
log{2π(1/φ)V (yi)}.

(8.86)

The only difference between Qi(µi|φ) in (8.81) and what has been written as

Qi(µi, φ) in (8.86) is whether φ is considered a fixed value in the function, or
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part of the argument. As pointed out by McCullagh and Nelder (1989, p. 350)

the justification of extended quasi-likelihood as a saddlepoint approximation

depends on some type of assumption that renders the contribution of higher-

order cumulants to the Edgeworth expansion used negligible. Typically, in

such an expansion for a density, cumulants higher than order 4 are dropped

(e.g., Stuart and Ord 1987); in derivation of extended quasi-likelihood we make

this assumption for cumulants of greater than order 2.

The use of extended quasi-likelihood is perhaps epitomized by models of

the generalized linear model form in which we attempt to model both the

expectation and variance as functions of covariates. Note that this is the

generalized linear model counterpart of additive error models with variance

that depends on unknown parameters (see Section 7.2.4). One way to specify

such models is given in McCullagh and Nelder (1989, Chapter 10.2) as,

E(Yi) = µi; g(µi) = ηi = xTi β;

var(Yi) =
1

φi
V (µi),

and,

φi = E{di(Yi, µi)}; h(φi) = uTi γ;

var{di(Yi, µi)} =
1

τ
φ2.

In the above model formulation, di(Yi, µi) is chosen as a measure of disper-

sion, typically,

di(Yi, µi) =
Yi − µi
V (µi)

,

h(·) is a “dispersion link function” that connects the expected value of di(Yi, µi),

namely φi, with covariates ui (often some or all of xi, just as in the additive

error models of Section 7.2.4), and the relation between φ and var{di(Yi, µi)}
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is dictated if one uses the extended quasi-likelihood (164) for estimation. Mc-

Cullagh and Nelder (1989, Chapter 10.5) give several additional adjustments

to the extended quasi-likelihood procedure that may be desirable.

Dependent Random Variables

Thus far in this subsection our discussion has been entirely in the context of

independent response variables Yi; i = 1, . . . , n. One of the primary areas

of application for quasi-likelihood and similar ideas, however, has certainly

been longitudinal studies in which random variables correspond to repeated

observation of particular sampling units or “individuals” (e.g., Zeger and Liang

1986; Liang and Zeger 1986; Zeger, Liang, and Albert 1988). This type of

situation clearly implies correlated random variables within individuals, as we

have seen for marginal models in Chapter 7.4. A fundamental property of this

setting is that we do, in fact, have independent realizations (across individuals)

of some type of (marginal) model depending on the same parameters.

In the dependence setting, quasi-likelihood blends into what we will call

“Estimating Functions” in Chapter 8.6, because the starting point is really

the quasi-score rather than the quasi-likelihood. In fact, the quasi-likelihood

itself is rarely mentioned or defined (but see McCullagh and Nelder 1989,

Chapter 9.3.2). The term “Generalized Estimating Equations” has also been

used, notably by Zeger and Liang (1986). The fundamental concept follows

from noting two things about what was presented previously as the quasi-score

function, which may be written, for k = 1, . . . , p, as,

n
∑

i=1

Ui(µi|φ)
∂µi
∂βk

=
n
∑

i=1

φ{yi − µi}
Vi(µi)

∂µi
∂βk

.

Almost trivially, note that the roots of these equations in β will not involve

φ. Secondly, note that we could use the same form of these equations with
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yi and µi replaced by vectors yi ≡ (yi,1, . . . , yi,ni
)T and µi ≡ (µi,1, . . . , µi,ni

)T ,

and Vi(µi) replaced by an ni × ni matrix V which gives, up to the scalar

multiple φ, the covariance matrix of Y . Let k now denote the number of

independent vectors y (e.g., number of individuals in a longitudinal study).

The above equations may then be written as what Zeger and Liang (1986)

called generalized estimating equations,

k
∑

i=1

DT
i V

−1
i Si = 0, (8.87)

where Si ≡ (yi − µi) is ni × 1, Di is ni × p with jrth element ∂µi,j/∂βr and

V i is ni × ni with structure to be given directly. For a particular model, an

appropriate structure must be chosen for V i; i = 1, . . . , k. Liang and Zeger

(1986) suggested using a “working correlation matrix” Ri(α) to help define V i

as,

V i = A
1/2
i Ri(α)A

1/2
i , (8.88)

where Ai is diagonal with elements given by what, in the independence case

were the variance functions V (µi) and are now functions w(µi,j) such that

var(Yi,j) ∝ w(µi,j).

Estimates of β = (β1, . . . , βp)
T are then found by solving the estimating

equations (8.87) with the definition of V i as in (8.88). In order to do this, a

value is needed for the correlation matrix parameter α. We will discuss this,

and estimation of φ shortly. But first, it can be helpful to describe the types

of matrices R(α) that might be used in some structures.

1. Independence.

If R(α) = Ini
, then the estimating equations (8.87) reduce to those of

quasi-score functions in the independence case. Nevertheless, this choice

of R(α) is sometimes used to obtain starting values for iterative algo-

rithms to solve the full equations (8.87) with a different choice of R(α).
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2. Random Effects Structure.

R(α) =





















1 α . . . α

α 1 . . . α
...

... . . .
...

α α . . . 1





















.

This is the correlation structure of a linear random effects model in which

all variables in the same “group” (here the variables contained in Y i)

have the same correlation.

3. Autoregressive Process of Order m.

Here, we would take the uvth element of the matrix Ri to be

[Ri]u,v =











α|ti,u−ti,v |, |ti,u − ti,v| ≤ m

0 |ti,u − ti,v| > m,

where ti,u and ti,v are the uth and vth observation times of the individual

(subject, group) indexed by i.

For estimation of β, α, and φ, the general prescription is to utilize a Gauss-

Newton type of algorithm in which one iteration for β is conducted using

current estimates of α as fixed, then estimating new α for the current β and

so forth. At each iteration, α is updated via a moment-based estimator, and φ

is also estimated based on a moment-type estimator. We will not present the

details here (since we’ve covered the basic ideas already), but see Zeger and

Liang (1986) or Pawitan (2001) for all the details.

Inference about β is made using Wald theory asymptotics based on asymp-

totic normality of the GEE (generalized estimating equations) estimates. The

form of the asymptotic covariance matrix for β̂ is given in Zeger and Liang
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(1986) and Liang and Zeger (1986), and is estimated by using moment-based

estimators α̂ and φ̂ as “plug-in” values.

8.5.2 Estimating Functions

The generalized estimating equations of the previous subsection are a special

case of what are known as estimating functions. Given random variables Y ≡
(Y1, . . . , Yn)

T with a density fY (y|θ), an unbiased estimating function for θ

can be defined quite simply as any function v(Y , θ) such that, for all values

of θ ∈ Θ,

E{v(Y , θ)} = 0. (8.89)

If we are interested in only a part of θ, then the estimating function is defined

relative to only that component or components.

Example 8.22

Let Y1, . . . , Yn be iidN(µ, σ2). Possible estimating functions for µ include,

v(y, µ) =
n
∑

i=1

(yi − µ) = 0,

v(y, µ) =
n
∑

i=1

sgn(yi − µ) = 0,

v(y, µ) =
n
∑

i=1

ψ(yi − µ) = 0,

where in this third possibility, for some real number r,

ψ(x) = x(r2 − x2)2I(−r < x < r).

Estimates resulting from solving these three possible estimating functions for

µ are the sample mean, the sample median, and a “robust” estimator that
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corresponds to use of the function ψ(·) which in the above is known as the

biweight or bisquare function, attributed to Tukey (e.g., Hampel et al. 1986).

Asymptotic inference for estimating functions is developed in much the

same way as for maximum likelihood estimators and (although we did not

cover it in any detail) maximum quasi-likelihood estimators. Specifically, in

the case of a scalar parameter θ, suppose conditions sufficient to show the

following are assumed:

1. The solution to an unbiased estimating function θ̃ may be expanded as

v(y, θ̃) ≈ v(y, θ) +
∂v(y, θ̃)

∂θ̃

∣

∣

∣

∣

∣

θ̃=θ

(θ̃ − θ),

from which we have, since v(y, θ̃) = 0 by definition,

θ̃ − θ = −v(y, θ)
{

∂v(y, θ̃)

∂θ̃

∣

∣

∣

∣

∣

θ̃=θ

}−1

.

2. The random version of v(·) satisfies,

n−1/2v(Y , θ) is AN(0, q(θ)),

for some function q(·).

3. The random version of the derivative of v(·) satisfies,

1

n

∂v(Y , θ)

∂θ

p→ s(θ),

for some function s(·).

Then the result is (Barndorff-Nielsen and Cox 1994, p.303),

θ̃ is AN

(

θ,
q(θ)

n s2(θ)

)

.
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There appear to be two major areas in which estimating functions surface.

The first is an an alternative “theory of estimation”, in which estimating func-

tions are presented as an alternative to both least squares (viewed as an exact

theory procedure) and maximum likelihood. This is, for example, the view

offered by Godambe and Kale (1991) in which the authors claim to demon-

strate that estimating functions “unifies the method of maximum likelihood

and the method of minimum variance unbiased estimation in the case of para-

metric models” (Godambe and Kale 1991, p.17). Under this viewpoint we

must deal with the development of criteria under which one of a variety of

possible estimating functions can be deemed “optimal”. Clearly, there will be

any number of unbiased estimating functions that can be developed in most

situations (as illustrated in Example 8.22). A variety of possible optimality

criteria are offered by Godambe and Heyde (1987). A slightly different view is

offered by Barndorff-Nielsen and Cox (1994) who point out that, in the case of

Y1, . . . , Yn ∼ iid with common density f(y|θ) for a scalar θ, the two matrices

q(·) and s(·) in conditions 2 and 3 listed above for asymptotic normality of θ̃

become

q(θ) = var

{

∂ log{f(yi|θ)
∂θ

}

,

s(θ) = E

{

∂2 log{f(yi|θ)
∂θ2

}

,

so that q(θ) = −s(θ) and the asymptotic result leads to the solution to the

likelihood equation (an estimating function) being asymptotically normal with

variance given by the inverse information. This then motivates them to suggest

a criterion

ρv(θ) =
[E{∂v(Y , θ)/∂θ}]2
var{v(Y , θ)} ,
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as a measure of the lost efficiency of the solution to any estimating function

v(Y , θ); this is because ρv(θ) is maximized by the likelihood score function.

The second major area in which estimating functions play a role is in the

development of robust estimators, as indicated by the third possible estimating

function given in Example 8.22 for the one-sample normal problem. This is

the flavor of the presentation by, for example, Pawitan (2001, Chapter 14). In

this context, estimating functions are also often called M-estimators. See, for

example, Hampel et. al. (1986), and Carroll and Ruppert (1988, Chapter 7).

One aspect of estimating functions that deserves mention is that, if v1(·), . . . , vp(·)
are unbiased estimating functions, then any linear combination,

∑

ajvj is also

an unbiased estimating function. This property can sometimes be utilized to

form simple estimating functions in even complex situations. For example, in

the autoregressive process

Y (t) = θY (t− 1) + ǫ(t),

where ǫ(t) ∼ iidN(0, 1), we could take estimating functions,

vt = y(t) − θy(t− 1),

and form the combination,

v(y, θ) =
∑

t

y(t− 1) vt.

An example of such development is given in McCullagh and Nelder (1989,

p.341).

8.5.3 Pseudo-Likelihood

In one sense, all of the discussion so far in Chapter 8.5 could be categorized

under the heading of pseudo-likelihood in that the prefix “pseudo-” implies
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false or spurious. On the other hand, the distinction between the functions we

have discussed under the heading quasi-likelihood and those to be considered

in this subsection is perhaps worth maintaining. This is because the func-

tions considered as quasi-likelihoods were developed in an attempt to maintain

likelihood-like behavior.

Even the generalized estimating equations of Section 8.5.1 and the estimat-

ing functions of Section 8.5.2 mimic at least the derivatives of log likelihoods in

asymptotic behavior. In one sense, those methods “abandoned a fully specified

model” in order to maintain something akin to a likelihood function. In this

subsection, however, we consider functions that are decidedly not likelihoods,

but which are used “as if they were” likelihoods, in order to make estimation

possible (or easier). In the first of these we discuss, formulated for estima-

tion of unknown variance parameters in additive error models, the model does

not necessarily make a full distributional assumption. In the second form of

pseudo-likelihood we consider, the model is maintained, but the likelihood is

not. Thus, one way to think of (at least this second type of) pseudo-likelihood

is that we are willing to “abandon the complete likelihood” in order to maintain

the model.

While many pseudo-likelihood functions are possible in varying situations

(technically, anything that is not a likelihood could be considered a pseudo-

likelihood) we will consider two examples of pseudo-likelihoods that have proven

useful.

The Pseudo-Likelihood of Carroll and Ruppert

This version of what is sometimes called pseudo-likelihood was suggested by

Carroll and Ruppert (1988) for estimation of unknown parameters in the vari-
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ance functions of regression models. Consider, then, the general form of such

a model discussed in Section 7.2.4,

Yi = g1(xi,β) + σg2(xi,β, zi, θ) ǫi,

where, for i = 1, . . . , n, ǫi ∼ iid F such that E(ǫi) = 0, and var(ǫi) = 1.

The functions g1(·) and g2(·) are assumed to be known, smooth functions,

xi; i = 1, . . . , n are known covariates involved in the expectation function, β

are unknown regression parameters, and zi are covariates that may be involved

in the variance model but not the expectation model. To simplify presentation,

we will assume that xi and β enter the variance function g2(·) only through

the expectation, which we will now denote as µi(β) ≡ g1(xi,β); we must keep

in mind, with this notation, that µi(β) is a function of the covariates xi as

well as β. Then, the model becomes

Yi = µi(β) + σg(µi(β), zi, θ) ǫi, (8.90)

which was previously given as expression (7.10) in Section 7.2.4.

Now, we have seen that, with θ considered known in (8.90) the regression

parameters β may be estimated using the generalized least squares algorithm

outlined in Section 8.2.2, and inferences about the values of β may be ac-

complished through the Fundamental Theorem of Generalized Least Squares,

which provides asymptotic normality for β̂. Under this strategy, the parame-

ter σ2 is usually obtained from a moment-based estimator given as expression

(8.26) (if we make the substitution µi(β) ≡ g1(xi,β).

For model (8.90), however, we are not assuming that θ is known, and the

pseudo-likelihood strategy of Carroll and Ruppert (1988) is an attempt to allow

its estimation without making full distributional assumptions on the model.

Suppose then, for the moment, that β is known to be equal to a particular value
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β(0), say. As Carroll and Ruppert (1988, p.71) put it, “pretend” that the ǫi

have normal distributions so that Yi ∼ indepN(µi(β
(0)), σ2g2(µi(β

(0)), zi, θ)).

Then a log pseudo-likelihood for θ and σ2 could be written as,

L∗(θ, σ
2|β(0)) = −n

2
log(σ2) − 1

2

n
∑

i=1

log
[

g2
{

µi(β
(0)), zi, θ

}]

− 1

2σ2

n
∑

i=1





yi − µi(β
(0))

g
{

µi(β
(0)), zi, θ

}





2

.

(8.91)

One way to maximize the pseudo-likelihood (8.91) in θ and σ2, is to apply the

idea of profiling for θ. That is, if take the partial derivative of (8.91) with

respect to σ2 and set equal to zero, the solution is,

σ̂2(θ|β(0)) =
1

n

n
∑

i=1





yi − µi(β
(0))

g
{

µi(β
(0)), zi, θ

}





2

. (8.92)

That is, the maximum pseudo-likelihood estimate of σ2 is a function of θ.

Thus, to maximize (8.91) in θ and σ2, we maximize in θ what could be called

a log-profile-pseudo-likelihood, formed by substituting the solution (8.92) into

(8.91) to arrive at,

Lp∗(θ|β(0)) = −n
2

log
{

σ̂2(θ|β(0))
}

− 1

2

n
∑

i=1

log
[

g2
{

µi(β
(0)), zi, θ

}]

.

(8.93)

Thus, to find maximum pseudo-likelihood estimates of θ and σ2, for a fixed

value β = β(0), we would maximize (8.93) in θ, and substitute the maximizing

value into (8.92) to estimate σ2.

Estimation of the full set of parameters {β, θ, σ2} by this strategy consists

of beginning with an initial value β(0), estimating θ from (8.93) with σ̂2(θ|β(0))

given in (8.92), completing the steps of the generalized least squares algorithm
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of Section 8.2.2 to obtain updated estimates of β as β(1), repeating estimation

of θ as above with β(1) replacing β(0), returning to the generalized least squares

algorithms with the new value of θ, and so forth until a given stopping rule

is met (recall the discussion of stopping rules in generalized least squares). In

essence, all that has been done is to insert and estimation phase for θ between

steps 1 and 2 of the generalized least squares algorithm.

There is no one clear path for making inference about the parameters us-

ing this pseudo-likelihood procedure. A common approach for making inferen-

tial statements about the regression parameters β is to fix θ at its estimated

value (from the pseudo-likelihood procedure above) and then use the results

of the Fundamental Theorem of Generalized Least Squares, usually with the

moment-based estimator of σ2 rather than the pseudo-likelihood estimator

(8.92). A criticism of this approach is that uncertainty in the estimation of

θ is not accounted for in the estimation of β. A number of possible ways to

make inference about θ are discussed in Carroll and Ruppert (1988, Chapter

3.4). Rather than go into detail about these possible methods, we will sim-

ply conclude this discussion of Carroll and Ruppert’s pseudo-likelihood with a

few comments about what might motivate its use, and connections with other

estimation approaches we have discussed.

1. The entire concept of using a pseudo-likelihood for models such as (8.90)

is based on the desire to maintain the “distribution-free” flavor of gener-

alized least squares. An obvious alternative is to just assume normality

in the first place, and apply full maximum likelihood estimation to all

parameters in the model (possibly making use of profiling methods if

needed). One motivation for making use of the pseudo-likelihood strat-

egy then is to keep the potential robustness properties of least squares in



484 CHAPTER 8. ESTIMATION AND INFERENCE

effect for estimation of β, although whether this is truly possible with-

out further restrictions on the variance (e.g., σ2 is “small”) remains less

clear.

2. Following the point of comment 1, Carroll and Ruppert (1988, Chapter

6.4) extend the pseudo-likelihood estimation of θ to be instead based on

an estimating function within the context of M-estimators. The connec-

tion between estimating functions and the development of robust esti-

mators was briefly mentioned in these notes toward the end of Section

8.5.3.

3. Although robustness may motivate, to some extent, the use of pseudo-

likelihood, we should be careful not to interpret robustness here to also

imply resistance. Pseudo-likelihood, similar to full maximum likelihood

based on an assumption of normal distributions, is typically sensitive to

extreme observations. If such extreme values do, in fact, correspond to

errors in data collection or recording, pseudo-likelihood has provided no

additional protection against their effects over that given by full maxi-

mum likelihood.

The Pseudo-Likelihood of Besag

The second type of Pseudo-likelihood we will briefly mention is constructed

in an entirely different context that that of the preceding sub-section. This

pseudo-likelihood was suggested by Besag (1974) for use with conditionally

specified models and, in particular, conditionally specified models having con-

ditional distributions in one-parameter exponential families (or exponential

dispersion families). We have discussed only one of these models in any detail,

that being a Gaussian conditionals model, sometimes called a conditional au-
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toregressive model (see Section 7.5.5). In that case, the joint distribution was

available in closed form as a Gaussian density, and the full likelihood could be

used (most easily through profiling methods). In the general case, however, the

joint density or mass function is available only up to an unknown normalizing

constant which involves the parameters of interest. While estimation in such

cases can be approached in a number of ways (e.g., Monte Carlo maximum

likelihood), most of these methods are either complex in theory or computa-

tionally intensive, or both. Besag (1974) suggested a type of pseudo-likelihood

to deal with these difficulties.

The general situation is as follows. For a set of random variables {Y (si) :

i = 1, . . . , n}, suppose that a conditionally specified model has been formulated

through the set of full conditional density or mass functions, for i = 1, . . . , n,

fi(y(si)|{y(sj) : y 6= i}) =

exp [Ai({y(sj) : j 6= i})Ti(y(si)) −Bi({y(sj) : j 6= i}) + C(y(si))] ; y(si) ∈ Ωi.

(8.94)

A density or mass function in the form of (8.94) is written as a one-parameter

exponential family, with the function Ai({y(sj) : j 6= i}) playing the role of

the natural parameter. Now, for a model such as (172) Besag (1974) showed

that a necessary parameterization for Ai(·) is,

Ai({y(sj) : j 6= i}) = αi +
n
∑

j=1

ci,jTj(y(sj)), (8.95)

where ci,j = cj,i, ci,i = 0, and ci,j = 0 unless locations si and sj are neighbors

(i.e., ci,j = 0 for sj 6∈ Ni).

Given difficulties in deriving the joint density (or mass function) of Y (s1), . . . , Y (sn)

in closed form, to use the joint in estimation becomes a complex matter. Let
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θ denote the collection of parameters in the model. For example, in the con-

ditional Gaussian model used in the spatial analysis of monitoring nitrates in

the Des Moines River (Section 7.5.5) θ = (β0, β1, β2, η, τ
2, k). Besag (1974)

suggested the following pseudo-likelihood to accomplish estimation of θ.

ℓ∗(θ) ≡
n
∏

i=1

fi(y(si)|θ, {y(sj) : y 6= i}), (8.96)

or, in log form,

L∗(θ) =
n
∑

i=1

log {fi(y(si)|θ, {y(sj) : y 6= i})} . (8.97)

In (8.96) and (8.97) we have made explicit the dependence of the conditional

density functions on the parameter vector θ.

The pseudo-likelihood (8.96) or log pseudo-likelihood (8.97) are used ex-

actly as likelihood functions for estimation of θ, although the usual asymptotic

inference does not apply. For a sketch of some of the asymptotic results avail-

able, see Cressie (1993, p. 487).

8.6 Parametric Bootstrap

What is known as a parametric bootstrap is a widely applicable method for

assessing uncertainty in parameter estimates, often in the form of interval esti-

mation, although the formation of prediction regions or intervals is also a clear

area of application. We will present the parametric bootstrap in the case of a

scalar parameter θ, although it appears that the same essential ideas could be

easily extended to confidence regions for vector-valued parameters. In partic-

ular, since the parametric bootstrap is a version of simulation-based inference,

using a model with θ ≡ (θ1, θ2) and simulating in the manner to be described

below results in an assessment of the marginal distribution of an estimator θ̂1;
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often, but not necessarily, θ̂1 is a maximum likelihood estimator.

8.6.1 Notation and Basic Simulation Estimators

To set the basic notation for this section, let Y1, . . . , Yn be independent random

variables that follow a model giving joint density or mass function f(y1, . . . , yn|θ).
Suppose that an estimator of θ, θ̂ say, is available by some means (maximum

likelihood, least squares, quasi-likelihood, an estimating function, or maxi-

mum pseudo-likelihood). We assume that θ̂ is a function of the observations,

θ̂ ≡ θ̂(y), whether or not that function can be expressed in closed form; this

dependence will be assumed in writing θ̂. Substitution of θ̂ for θ in the model

gives the fitted model with density or mass function f(y1, . . . , yn|θ̂) and distri-

bution function F (y1, . . . , yn|θ̂). The basic simulation process is to generate

observations y∗1, . . . , y
∗
n from the fitted model and then calculate the estimator

of θ from these simulated values, which we will denote θ∗. If this process is

repeated a number of times, denoted by M , we obtain the values θ∗1, . . . , θ
∗
M .

The underlying idea is that the distribution of a function of the true parameter

and the actual estimate, h(θ, θ̂), can be approximated by the empirical distri-

bution of that same function using θ̂ as the “true” parameter value and the

values θ∗1, . . . , θ
∗
M as estimates. Thus, for example, the bias associated with θ̂,

namely B(θ̂) ≡ E{θ̂ − θ}, may be approximated by,

BM(θ̂) =
1

M

M
∑

m=1

(θ∗m − θ̂) = θ̄∗ − θ̂. (8.98)

Similarly, the variance of θ̂ is approximated by

VM(θ̂) =
1

M − 1

M
∑

m=1

(θ∗m − θ̄∗)2. (8.99)
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In the same way, quantiles of the distribution of h(θ, θ̂) are approximated by

using the empirical distribution of h(θ̂, θ∗). That is, let h1, . . . , hM denote the

values of h(θ̂, θ∗m); m = 1, . . . ,M . If G(u) = Pr{h(θ, θ̂) ≤ u}, then G(·) is

approximated by

GM(u) =
1

M

M
∑

m=1

I{h(θ̂, θ∗m) ≤ u}, (8.100)

where I(·) is the usual indicator function. Now, if we are interested in quantiles

of the distribution of h(θ, θ̂), we use the general result that, if X1, . . . , XN are

independently distributed with distribution function FX , and if X[1], . . . , X[n]

denote the ordered values, then

E{X[k]} ≈ F−1

(

k

n + 1

)

,

leading to the estimate of the qth quantile of FX , which is xq = F−1
X (q) as,

xq = X[(n+1)q].

Thus, the estimated value of the qth quantile of h(θ, θ̂) is the (n+ 1)qth

largest value of {h(θ̂, θ∗m) : m = 1, . . . ,M}.

8.6.2 Normal Approximation Intervals

Consider a situation in which we are willing to accept (approximate or as-

ymptotic) normality for θ̂, but the variance or standard error of this estimator

is unavailable. If θ̂ is AN with mean θ + B(θ̂) and variance V (θ̂) then an

approximate normal interval can be derived in the usual way from,

Pr{Lα ≤ θ ≤ Uα} = 1 − α,

which leads to

Lα = θ̂ − B(θ̂) − V 1/2(θ̂)z1−α/2

Uα = θ̂ − B(θ̂) + V 1/2(θ̂)z1−α/2, (8.101)
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where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution. To

see this, note that it is the quantity

θ̂ − B(θ̂)

V 1/2(θ̂)
,

which is approximately N(0, 1). The derivation then proceeds exactly as in

elementary statistics courses using θ̂ −B(θ̂) in place of an unbiased estimator

of θ.

To use the interval (8.101) in practice requires only estimation of B(θ̂) and

V (θ̂) as given by BM(θ̂) in (176) and VM(θ̂) as given in (8.99). A bootstrap

normal approximation interval for θ is then,

(

θ̂ − BM(θ̂) − V
1/2
M (θ̂)z1−α/2, θ̂ −BM(θ̂) + V

1/2
M (θ̂)z1−α/2

)

. (8.102)

8.6.3 Basic Bootstrap Intervals

Now suppose we are in a situation in which we are reluctant to assume ap-

proximate normality for our estimator θ̂. The distributional form of θ̂ can, by

the way, be assessed for many functions such as h(θ, θ̂) = θ̂− θ through exam-

ination of the empirical distribution of the values θ∗1, . . . , θ
∗
M for M sufficiently

large (e.g., M > 1000).

We may desire to compute an interval with equal probability in each tail,

that is, equal left-tail and right-tail errors as,

Pr{θ ≤ Lα} = Pr{Uα ≤ θ} = α/2.

Then we desire Lα and Uα such that

Pr{θ − θ̂ ≤ Lα − θ̂} = α/2

Pr{Uα − θ̂ ≤ θ − θ̂} = α/2,
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which implies that,

Pr{θ̂ − Lα ≤ θ̂ − θ} = α/2

Pr{θ̂ − θ ≤ θ̂ − Uα} = α/2,

or,

Pr{θ̂ − θ ≤ θ̂ − Lα} = 1 − α/2

Pr{θ̂ − θ ≤ θ̂ − Uα} = α/2.

Using the notation of Section 8.6.1, if we knew the distribution of h(θ, θ̂) =

(θ̂ − θ) as G(·), then we would have,

θ̂ − Lα = v1−α/2

θ̂ − Uα = vα/2, (8.103)

where vα denotes the α quantile of the distribution G(·). Now, we do not

know G(·), but we can approximate it using a parametric bootstrap as in ex-

pression (8.100). Following the development presented immediately following

expression (8.100) we approximate the values vα/2 and v1−α/2 with

v1−α/2 ≈ (θ∗ − θ̂)[(M+1)(1−α/2)]

vα/2 ≈ (θ∗ − θ̂)[(M+1)(α/2)]

which, from expression (8.103) leads to,

Lα = θ̂ − (θ∗ − θ̂)[(M+1)(1−α/2)]
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= θ̂ − (θ∗[(M+1)(1−α/2)] − θ̂)

= 2θ̂ − θ∗[(M+1)(1−α/2)],

and,

Uα = θ̂ − (θ∗ − θ̂)[(M+1)(α/2)]

= θ̂ − (θ∗[(M+1)(α/2)] − θ̂)

= 2θ̂ − θ∗[(M+1)(α/2)].

A (1 − α)100% interval estimate for θ is then,

(

2θ̂ − θ∗[(M+1)(1−α/2)], 2θ̂ − θ∗[(M+1)(α/2)]

)

. (8.104)

The interval (8.104) is called the basic bootstrap confidence interval for θ by

Davison and Hinkley (1997). Note that this interval estimate assumes that

things have been arranged so that (M + 1)(α/2) and (M + 1)(1 − α/2) are

integers. This is not difficult if M is large; for example, take α/2 = 0.05 and

M = 9999 for a 90% interval.

The normal approximation interval given in expression (8.102) has the typ-

ical property of being symmetric, in this case about θ̂ − B(θ̂); it will be sym-

metric about θ̂ if that estimator is known to be unbiased, in which case we take

B(θ̂) = 0 rather than estimating it through expression (8.98). The basic boot-

strap interval (8.104) however, is not necessarily symmetric. It will be symmet-

ric or close to symmetric as the empirical distribution of {θ∗m : m = 1, . . . ,M}
is symmetric or close to symmetric.
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8.6.4 Percentile Bootstrap Intervals

We will briefly mention one other approach to the formulation of bootstrap

confidence intervals, called percentile methods by Davison and Hinkley (1997,

Chapter 5.3). The origin of the name is not intuitively obvious but presumably

comes from the fact that we end up using the (α/2) percentile and (1 − α/2)

percentile of the empirical distribution of bootstrap estimates θ∗ directly as

interval endpoints, as will be shown below. Percentile methods have been

modified (or adjusted) in a number of ways that seem to offer some improve-

ment over normal approximation or basic bootstrap intervals in meeting nom-

inal coverage goals, although assessments have been made primarily through

the use of nonparametric bootstrap sampling (see, e.g., Davison and Hinkley

1997, Chapter 5.4 and Chapter 5.7). The performance of percentile methods

in parametric bootstrap, which is our concern here, is less well understood.

Suppose that, in application of the basic bootstrap method of Section 8.6.3,

there exists some transformation of the estimator θ̂, say φ̂ ≡ W (θ̂), such that

the distribution of φ̂ is known to be symmetric; for the moment the existence

of such a function W (·) is all that matters, not its identity. Consider, then,

applying this transformation to θ̂ and then using the basic bootstrap method to

form an interval for φ = W (θ), with the following modifications. First, notice

that we now have estimates of functionals of the distribution of h(φ, φ̂) as in

Section 8.6.1 through the bootstrap simulations {h(φ̂, φ∗
m) : m = 1, . . . ,M}.

In the basic bootstrap method we take h(φ, φ̂) = φ− φ̂ and h(φ̂, φ∗
m) = φ̂−φ∗

m.

The development of the basic bootstrap interval for φ proceeds up to expression

(8.103) exactly as given in Section 8.6.3 with φ replacing θ, φ̂ replacing θ̂ and

φ∗ replacing θ∗. Now, however, the symmetry of the distribution of φ̂ − φ

indicates that v1−α/2 = −vα/2 so that expression (8.103) may be changed to
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(in terms of φ),

φ̂− Lα = −vα/2

φ̂− Uα = −v1−α/2,

where vα is now a quantile from the distribution of φ̂ − φ rather than θ̂ − θ.

Then,

vα/2 ≈ (φ∗ − φ̂)[(M+1)(α/2)],

v1−α/2 ≈ (φ∗ − φ̂)[(M+1)(1−α/2)],

which leads to,

Lα = φ̂+ (φ∗ − φ̂)[(M+1)(α/2)]

= φ∗
[(M+1)(α/2)]

and,

Uα = φ̂+ (φ∗ − φ̂)[(M+1)(1−α/2)]

= φ∗
[(M+1)(1−α/2)].

A (1 − α)100% basic bootstrap estimate for φ is then

(

φ∗
[(M+1)(α/2)], φ

∗
[(M+1)(1−α/2)]

)

. (8.105)

Now, if the transformation W (·) that produced φ from θ, φ̂ from θ̂ and

φ∗
m from θ∗m was monotone, then φ∗

[k] corresponds to θ∗[k] for any integer k ∈
{1, . . . ,M}. Transforming the interval (8.105) back to the θ scale then results

in the bootstrap percentile interval for θ of,

(

θ∗[(M+1)(α/2)], θ
∗
[(M+1)(1−α/2)]

)

. (8.106)
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What is surprising, then, is that such an interval can be formulated (and

computed) for θ without ever determining what the transformation φ = W (θ)

might be.

8.6.5 Predication Intervals

Another use of parametric bootstrap is in forming prediction intervals for a

new random variable Y 0, assumed to follow the same model as Y1, . . . , Yn. Let

the model evaluated at a possible value y0 be denoted as F (y0|θ). Given an

estimated parameter θ̂ the natural starting point is an interval with endpoints

given by the (α/2) and (1 − α/2) quantiles of the estimated model F (y0|θ̂).
Denote these values as

q(θ̂)α/2 ≡ F−1(α/2 | θ̂)

q(θ̂)1−α/2 ≡ F−1(1 − α/2 | θ̂). (8.107)

The interval (q(θ̂)α/2, q(θ̂)1−α/2) will be overly optimistic (i.e., too short) be-

cause it does not take into account uncertainty in the estimation of θ by θ̂.

That is, if we knew the true value θ, it would be the case that

Pr
[

q(θ)α/2 ≤ Y 0 < q(θ)1−α/2 | θ
]

= 1 − α.

Since we do not know θ but are estimating it with θ̂ we need to assess the

actual coverage rate,

Pr
[

q(θ̂)α/2 ≤ Y 0 < q(θ̂)1−α/2 | θ
]

= 1 − c(α). (8.108)

If there is a functional relation between c(α) and α, then we could “adjust” the

procedure to use q(θ̂)α′/2 and q(θ̂)1−α′/2, where α′ is chosen such that c(α′) = α.

The essential problem, then, is estimation of c(α) in expression (8.108). A

parametric bootstrap may be used for this estimation in the following way.
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In the notation of Section 8.6.1, the function of θ and θ̂ to be estimated is,

h(θ, θ̂) = Pr
[

q(θ̂)α/2 ≤ Y 0 < q(θ̂)1−α/2 | θ
]

= E
{

I
[

q(θ̂)α/2 ≤ Y 0 < q(θ̂)1−α/2 | θ
]}

.

Given a fitted model through θ̂, simulate bootstrap data sets y∗
m ≡ (y∗1, . . . , y

∗
n)
T
m

in the usual way from F (y1, . . . , yn|θ̂) to obtain bootstrap estimates θ∗m; m =

1, . . . ,M . Also simulate values of the predictand y0
m; m = 1, . . . ,M from the

fitted model F (y0|θ̂). Compute the intervals (q∗(α/2),m, q
∗
(1−α/2),m) with nominal

coverage 1 − α for each bootstrap data set as,

q∗(α/2),m ≡ F−1(α/2 | θ∗m)

q∗(1−α/2),m ≡ F−1(1 − α/2 | θ∗m). (8.109)

Estimate the actual coverage of the interval as,

1 − cM(α) =
1

M

M
∑

m=1

I
(

q∗(α/2),m ≤ y0
m < q∗(1−α/2),m

)

. (8.110)

Expression (8.110) is then a bootstrap estimate of the probability (8.108).

There are then two options. One might simply report 1 − ĉ(α) as the actual

coverage, or one might relate ĉ(α) to α through some empirical model (e.g.,

a quadratic regression of ĉ(α) on α might provide a good description of the

relation). In the latter case, we can attempt to select an appropriate value α′

to use in expression (8.107) in calculating q(θ̂)α′/2 and q(θ̂)1−α′/2 to provide an

actual coverage at level 1 − α.

8.6.6 Dependence and Other Complications

The usefulness of parametric bootstrap is perhaps the greatest in situations

for which we have an estimator θ̂ but it is difficult to derive the variance or
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distribution of θ̂. At the same time, we have presented parametric bootstrap

methods for sets of independent random variables Y1, . . . , Yn. This does seem

somewhat incongruous, since it is situations in which we fail to have indepen-

dence among response variables that most often leads to the inability to make

use of distributional results for the purposes of inference. As pointed out by

Davison and Hinkley (1997) the theoretical underpinnings of using bootstrap

methods with models that contain complex dependence structures (e.g., spatial

models) are both unresolved and an area of intensive research. This still re-

mains true today, although any number of advances have been made since the

late 1990s, largely in the area of nonparametric bootstrap. Nevertheless, the

use of simulation from fitted parametric models seems to hold great potential

for a large number of problems.

Consider problems which might be amenable to asymptotic inference. Un-

derlying the development of theoretical properties of bootstrap estimators (ei-

ther parametric or nonparametric) are two levels of asymptotics, and we will

now index θ̂ by the available sample size as θ̂n to illustrate this.

At one level is the convergence of the distribution of h(θ̂n, θ
∗
m) computed

from bootstrap estimates {θ∗m : m = 1, . . . ,M} to the distribution of h(θ, θ̂n).

Here, we must recall that θ∗m is a function of the bootstrap sample, y∗
m ≡

(y∗1, . . . , y
∗
n)
T
m, so that suppressed in this notation is the fact that each y∗

m is

of dimension n and each θ∗m is based on y∗
m. The fact that bootstrap sam-

ples y∗
m have been independently generated certainly helps in demonstrating

this convergence as M increases. A difficulty is if the distribution of h(θ, θ̂n)

depends heavily on the value of θ, since we are using θ̂n as the “true” value

of θ for bootstrap simulations. The ideal situation is if h(θ, θ̂n) is a pivotal

quantity; recall this means that the distribution of h(θ, θ̂n) is independent of

θ. Unfortunately, we can often only demonstrate this in a definite manner
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for fairly simple models, in which case we may have alternative procedures

than bootstrap for computing inferential quantities. We may, however, always

examine the dependence of the distribution of h(θ, θ̂n) on θ in the following

way. Let QM(h|θ(k)) denote the estimated qth quantile of h(θ, θ̂n) based on

a bootstrap simulation of size M with data generated from the model with

parameter value θ(k). That is, from Section 8.6.1,

QM(h|θ(k)) = h(θ(k), θ∗)[(M+1)q].

If values QM(h|θ(k)) are computed for a range of values, θ(k) ∈ {θ̂n ± kδ :

k = 1, . . . , K} for some δ, then a simple plot of QM(h|θ(k)) against θ(k) may

demonstrate the degree of dependence of h(θ, θ̂n) on θ, or at least the relative

dependence for several possible choices of h(·).
The second level of convergence needed (at least in an asymptotic setting)

arises because, in order for inference about θ based on θ̂n to have discernible

properties, it is necessary that the distribution of h(θ, θ̂n) allows some de-

scription of its probabilistic behavior as n grows large. This issue involves

the proverbial “not loosing sight of the forest for the trees” as it applies to

bootstrap methods, even outside of an asymptotic context. Consider, for ex-

ample, estimating µ from a model that gives Y1, . . . , Yn ∼ iidN(µ, σ2). My

estimator of choice will be µ̂n = 0.1Y[2] + 0.9Y[n−3], where Y[k] denotes the kth

largest value of the set {Yi : i = 1, . . . , n}. Note, among other things, that

here E{µ̂n} = µ so µ̂n is an unbiased estimator. By taking h(µ, µ̂n) = µ̂n − µ

I will be perfectly capable of estimating the distribution of h(µ, µ̂n) through a

parametric bootstrap, forming bootstrap intervals, and so forth. This clearly

does not, however, offer any justification for my choice of µ̂n in the first place.

The combined issues of what are typically called simulation error and sta-

tistical error present a number of perplexing problems, not the least of which
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is where our concern about uncertainty should be focused. We present one

hypothetical example to illustrate this.

Example 8.23

An important environmental characteristic of riverine ecosystems is the distri-

bution of “sediment types” over the bottom of the river. Sediment types are

often placed into fairly broad categories such as sand, silt, clay, and gravel.

These categories have to do with a combination of particle size and organic

matter content of the substrate. Sediment type is one of the factors that

determine the abundances of many types of aquatic invertebrates and plants

and, consequently, things that depend on them such as fish. Sediment type

is also related to various characteristics of water quality, such as clarity and

the availability of dissolved oxygen to aquatic life. Ecologists are interested

in these relations both from the viewpoint of scientific understanding and to

improve prediction of productivity. For example, models have been developed

that relate the abundance of mayfly larvae to sediment types; mayflies are one

of the “rabbits” of the aquatic world – everything likes to eat them. Now,

sampling for sediment type is relatively easy compared to sampling for num-

ber of mayflies, and a spatial model that allows prediction of sediment types

over a stretch of river might then also allow prediction of mayfly abundance.

Observations are available for sediment samples on a portion of the Upper

Mississippi River called “Pool 13”. The data consist of a number of samples,

each categorized into one of k sediment types, for the cells of a grid placed

over the river.

A number of spatial models might be possible (are, in fact, possible) for

use in this problem. Perhaps the simplest of these is a conditionally spec-



8.6. PARAMETRIC BOOTSTRAP 499

ified multinomial model. Let si ≡ (ui, vi) where ui denotes horizontal in-

dex and vi vertical index of a grid. The location variable si thus denotes

a particular grid cell over the region of interest. Define random variables

Y (si) ≡ (Y1(si), Y2(si), . . . , Yk−1(si))
T to denote the number of samples cate-

gorized as sediment types 1, . . . , k for grid cell si. We have defined only k − 1

response variables for each location because, given these variables and the num-

ber of samples taken within this location, ni, the number of samples placed

into sediment type k is fixed. The exact structure used to build spatial depen-

dence into this model is not vital for this example, but can be developed from

the results of Kaiser and Cressie (2000). What is important is that it is not

clear how to compute inferential quantities such as intervals for parameters.

One possible approach toward estimation of intervals for parameters and/or

predictions is that of the parametric bootstrap. Given a fitted model, it is

not difficult to simulate realizations from the conditional probability mass

functions for each location (from the conditionally specified model) using a

Gibbs sampler. Each simulated data set could then be used for estimation

or, in a “leave-one-out” approach, the formation of prediction intervals. A

difficulty, however, is that for categories (sediment types) with low frequency of

occurrence, many of the locations si; i = 1, . . . , n may not have any simulated

values in those categories. That is, for a subset of locations, one or more

of the elements of Y (si) are zero. This makes estimation for these simulated

realizations of the model difficult or impossible. It is not clear how this problem

should be dealt with. One approach, which has been used in any number

of similar situations, is to condition the simulation estimates of uncertainty

on estimable data sets by simply discarding any simulated data sets that do

not allow estimation. This must result in an underestimation of uncertainty,

but uncertainty about what; the values of parameters, the model itself, or the
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error of simulation? Put another way, should this phenomenon (the simulation

of unestimable data sets from a perfectly acceptable model) impact error of

simulation, statistical error in estimation, or error in model selection?



Chapter 9

Model Assessment

In statistical modeling, once one has formulated a model and produced esti-

mates and inferential quantities, the question remains of whether the model

is adequate for its intended purpose. This may well involve issues other than

whether the model seems to describe the available data in a satisfactory man-

ner, depending on the objectives of the analysis conducted (see Chapter 7.1).

Nevertheless, the two conerstones of data-driven model assessment are exami-

nation of how well the fitted model describes the observed data, and how well

the model predicts observations, and these issues will be the focus of our pre-

sentation in this chapter. Even here, however, there are questions regarding

which components of a model should be the focus of assessment that depend

on the objectives of analysis. Does interest center on a description of the

systematic model component? On the modeled distribution more completely

(e.g., quantiles of the distribution of responses)? On the ability of the model

to predict unobserved random variables (within the extent of the available

data)? Or, perhaps the degree and form of departures from a theoretical rela-

tion among variables is of central concern. Certainly, there is much overlap in

501
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the manner one might approach these questions, but there may well be unique

issues involved as well which simply indicates that model assessment is not a

“one size fits all” activity.

Our goal in this chapter is to organize some of the main procedures used in

assessment of statisical models, not to present a catalog of all (or even most)

of the types of plots, tests, and assessment criteria that have been devel-

oped. Many useful procedures are fairly model specific, having been developed

for certain types of models that become popular in application. In addition,

the number of diagnostics and other assessment methods developed for linear

models far exceeds the number and sophistication of methods developed for

most other types of models, and has resulted in any number of book-length

treatments of the subject (e.g., Belsley, Kuh, and Welsch, 1980; Cook and

Weisberg, 1982). Such detailed procedures should be sought out and utilized

when appropriate in a particular problem of data analysis. But what might

one think of when faced with a model that has been formulated for a specific

problem rather than drawn from a standard list of existing model types? In

keeping with the theme of these notes, what are ways one might approach

model assessment? Three major approaches to model assessment are the use

of residuals, cross-validation, and simulation-based assessment.

9.1 Analysis of Residuals

Every student who has completed a basic course in regression is aware of the

usefulness of residuals in assessing linear regression models; indeed, it has been

assumed in previous chapters that readers were familiar with basic residual

plots. Intuitively, residuals are a direct gauge of how far we have “missed”

the target in a signal plus noise formulation of a model. Here, basic residuals
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have the form of {yi − ŷi : i = 1, . . . , n}, where the combination of all of the

influences (i.e., signals) that produce an observed value yi is contasted with the

(estimated) signals incorporated in a model that produce the fitted or predicted

value ŷi. If all of the primary signals that are important in producing yi have

been (nearly) correctly modeled, then these residuals should reflect primarily

measurement error. But, as we will see, there are other types of residuals as

well, that may be useful in assessing aspects of a proposed model other than

how well it reflects signal as modeled through expected values.

9.1.1 A General Notational Framework

Throughout this section we will rely on a general notation framework built

around the concept of a random field. Let {Y (si) : i = 1, . . . , n} denote a

set of random variables connected with observable quantities, with si a non-

random “location variable”. Several possibilities for the location variables si

are:

1. Independent random variables.

Here, we would natrually take si = i and simplify notation by referring

to Y (si) as just Yi.

2. Groups of random variables.

Here, we might define si = (k, j) where k indexes group and j indexes

observation within group; k = 1, . . . , K and j = 1, . . . , nk.

3. Geographic random variables.

Here, we might take si = (ui, vi), where ui denotes latitude and vi longi-

tude, or ui denotes horizontal coordinate on a grid and vi denotes vertical

coordinate on a grid.
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4. Time series of random variables.

Here we might take si = t where t is time, if each Y (si) occurs at a

unique time, or si = (t, j) where t is time and j is observation number

at time t; t = 1, . . . , T and j = 1, . . . , nt.

We assume that each Y (si) is modeled through a parametric distribution hav-

ing a density (or mass function) fi, depending on parameter ψ(si) through the

data model,

fi(y(si)|ψ(si)); y(si) ∈ Ωi. (9.1)

Here, the densities fi are indexed by i to allow for the possibility of differing

covariates xi or auxilliary information (e.g., binomial sample size).

We will assume that the parameters {ψ(si) : i = 1, . . . , n} represent “min-

imal” parameters in the sense that any other parameters used in writing the

densities fi; i = 1, . . . , n are functions of the ψ(si), and also that we may

write,

ψ(si) = (ψf (si), ψr(si)), (9.2)

where ψf (si) represents parameters that are fixed in the data model and ψr(si)

denotes parameters that are random in the data model. We take ψr(si) to have

a distribution with parameterized density gi(ψr(si)|λ), where this density may

result from marginalization over any additional levels of random terms in the

model. For examle, if ψr(si) is modeled directly in terms of a distribution

g1,i(ψr(si)|λ1(si)) with λ1(si) having a distribution with density g2(λ1(si)|λ),

then,

gi(ψr(si)|λ) =
∫

g1,i(ψr(si)|λ1(si))g2(λ1(si)|λ) dλ1(si). (9.3)

Finally, we then take the marginal density of Y (si) to be given by

hi(y(si)|ψf(si), λ) =
∫

fi(y(si)|ψf (si), ψr(si)) g(ψr(si)|λ) dψr(si). (9.4)
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This notation is sufficent to cover most of the models we have discussed. In

particular, we have not considered any model that contains both fixed and

random parameter components in the second (mixing) or higher levels.

Example 9.1

Consider a typical linear regression model with independent response variables,

written as

Yi = xTi β + σǫi; i = 1, . . . , n.

This model fits into our general notation by defining si ≡ i and ψf (si) ≡ (β, σ2)

and dropping remaining elements of the structure; there is no ψr(si) or density

g.

Example 9.2

We have written a standard generalized linear model as in expressions (7.19)

through (7.21) in Section 7.3.2, namely with responses independent and,

f(yi|θi, φ) = exp [φ{yiθi − b(θi)} + c(yi, φ)] ,

µi = b′(θi)

ηi = xTi β

g(µi) = ηi

which fits into our general notation with si ≡ i and ψf (si) ≡ (β, φ). Note

here that all intermediate parameters can be written in terms of these fixed

values as

ηi(β) = xTi β; µi(β) = g−1(ηi(β)); θi(β) = b′−1(µi(β)).
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Example 9.3

A beta-binomial mixture model was presented in expressions (7.34) and (7.35)

for a set of independent random variables as,

fi(yi|θi) ∝ θyi

i (1 − θi)
ni−yi,

g(θi|α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1
i (1 − θi)

β−1,

hi(yi|α, β) ∝ Γ(α + β)

Γ(α)Γ(β)
θα+yi−1
i (1 − θi)

β+ni−yi−1.

This fits into our general notation with si ≡ i, ψr(si) = θi and λ ≡ (α, β).

Example 9.4

A model euqivalent to one presented in expression (7.24) for data with random

cluster or group effects is,

Yi,j = xTi β + δjI(i ∈ Cj) + σǫi,j ; δj ∼ iidN(0, τ 2); ǫi,j ∼ iidN(0, 1),

where j indexes group and i indexes observation within group. To put this

into our general notation, define si ≡ (i, j), ψf (si) ≡ (β, σ2), ψr(si) ≡ δj , and

λ ≡ τ 2.

Corresponding to a model written as in expressions (9.1) through (9.4),

we assume parameter estimates are available for the components of ψf (si)

and λ and, where applicable, predictors are available for the components of

ψr(si). Also, we assume that these estimates and predictors lead to estimated

expected values µ̂(si) ≡ Ê{Y (si)} for any si in our set of observed locations

and predicted values p̂Y (s0) for any s0 not in our set of observed locations. If

appropriate for a given model, we also assume that estimators of E{ψr(si)} are
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available which will be considered in this section as predictors of the random

data model parameters as p̂ψ(si) ≡ Ê{ψr(si)}.

9.1.2 Types of Residuals

As eluded to in the introductory comments to this chapter, there are any num-

ber of quantities we might label as “residuals” in particular models. It would

seem we may place the majority of such quantities into the broad categories

discussed in this subsection.

Raw and Absolute Residuals

The most basic form of residuals are what we can call raw residuals, defined

as,

r(si) = y(si) − µ̂(si) (9.5)

Raw residuals can be useful in their own right in simple models (e.g., simple

linear regression) in which they reflect the same behaviors as more sophisti-

cated residual quantities, and in extremely complex models where we have

not yet developed the ability to make use of more refined values. In addition,

raw residuals are basic building block for many other residual quantities as

they clearly embodied what we intuitively think of as a “residual”. Absolute

residuals a(si) = |r(si)| are often useful in detecting patterns of unequal vari-

ances and Carroll and Ruppert (1988, p.30) call absolute residuals “the basic

building blocks in the analysis of heteroscedasticity” in regression. Any num-

ber of transformations of raw and absolute residuals are also useful in certain

situations. We defer a discussion of such transformations until the section of

this chapter that deals with residual plots since such transformations do not

seem to represent truly different types of residuals than the basic underlying
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unadjusted quantities.

Studentized Residuals

The use of raw residuals would seem to be well suited for examination of

many additive error models, since they represent our “estimates” of the noise

component in a model conceptualized as signal plus noise. But in most additive

error models, raw residuals do not posess constant variance (even if the model

error terms ǫi do). It is typically desirable then to use studentized residuals,

which should have (at least approximately) constant variance.

In general, consider an additive error model of the form

Y (si) = µ(si) + σ(si) ǫ(si),

where ǫ(si) ∼ iidF , E{ǫ(si)} = 0 and var{ǫ(si)} = 1 for i = 1, . . . , n. Con-

sider, for the time being, that the σ(si) are known, but that the µ(si) are to

be estimated. This model, along with the definition of raw residuals in (9.5),

indicates that the random form of residuals is,

R(si) = Y (si) − µ̂(si)

= µ(si) − µ̂(si) + σ(si) ǫ(si).

Then,

var{R(si)} = var{µ̂(si)} + σ2(si) − 2σ(si)cov{µ̂(si), ǫ(si)},

and we can define studentized residuals as, for i = 1, . . . , n,

b(si) =
r(si)

[var{µ̂(si)} + σ2(si) − 2σ(si)cov{µ̂(si), ǫ(si)}]1/2
. (9.6)

In (9.6) we usually have means µ(si) modeled in terms of a p−dimensional

parameter β with p < n, and the first term in the denominator becomes a
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function of the variance of β̂. Of course, it is not the case that the data model

variances σ2(si) will be known, and the typical approach is to use plug-in

estimates of σ2(si) in (9.6), ignoring any possible covariance with the estimator

of µ(si). That is, common practice is to worry about the covariance of ˆµ(si)

with ǫ(si), but not covariance between ˆµ(si) and estimates of σ2(si). Carroll

and Ruppert (1988, pp. 33-34) give a limited treatment of the effect of this

common practice in terms of a nonlinear model with heteroscedastic errors

that we discussed in Chapter 7 as additive error models with known variance

parameters.

Example 9.5

If ordinary least squares is used to estimate β in the linear regression model

of Example 9.1 we have, from varβ = σ2(XT X)−1 and µ̂i = xTi β, that

var{µ̂i(β)} = σ2xTi (XT X)−1xi

= σ2hi,i, (9.7)

where hi,i is the ith diagonal element of the hat matrix H = X(XT X)−1XT .

Now,

cov{µ̂i(β), ǫi} = E{µ̂i(β)ǫi} − 0

= E







ǫi
n
∑

j=1

yjhi,j







=
n
∑

j=1

hi,jE{yjǫi}

=
n
∑

j=1

hi,jE{(µj + σǫj)ǫi} = σ hi,i.

Substituting into the denominator of (9.6) and replacing σ2 with the usual
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moment estimator σ̂2 gives,

bi =
ri

[σ̂2(1 − hi,i)]1/2
, (9.8)

the usual studentized residual for linear regression with constant variance.

Example 9.6

Consider a nonlinear regression model with constant variance,

Yi = µi(β) + σ ǫi,

where ǫi ∼ iidF , E(ǫi) = 0 and var(ǫi) = 1. With either generalized least

squares or, under the additional assumption that F is N(0, 1), maximum like-

lihood estimation of β, inference is based on asymptotic results, as discussed

in Chapter 8. Hence, derivation of exact forms for the component quantities

of (9.6) is difficult. One development of the usual studentized residual follows.

For a linear model (i.e., µi(β) = xTi β) with constant variance it is easy to

show that, in matrix notation,

[Y − µ(β̂)] = [I −H ][Y − µ(β∗)], (9.9)

where β∗ is the true value of β, and H = X(XT X)−1XT is the usual hat

matrix. Recall that this gives studentized residuals in the form of expression

(9.8). Now, in a nonlinear model with constant variance we can develop two

approximations. First, by expanding the expectation function µi(β) about the

true value β∗, we have that for any β in a small neighborhood of β∗,

µi(β) ≈ µi(β
∗) +

p
∑

k=1

∂

∂βk
µi(β)

∣

∣

∣

∣

∣

β=β
∗

(βk − β∗
k),

or, in matrix notation,

µ(β) ≈ µ(β∗) + V (β∗)(β − β∗). (9.10)
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Note that in (9.10) the matrix of derivatives V is evaluated at the true value

β∗. Now, the minimization problem being solved by a generalized least squares

estimation procedure (or maximum likelihood under normality) is,

min
β

n
∑

i=1

{yi − µi(β)}2,

which, after substitution of (9.10), becomes

min
β

n
∑

i=1



{yi − µi(β
∗)} −

p
∑

k=1

∂

∂βk
µi(β)

∣

∣

∣

∣

∣

β=β
∗

(βk − β∗
k)





2

,

or, in matrix notation,

min
β

[{y − µ(β∗)} − V (β∗)(β − β∗)]T [{y − µ(β∗)} − V (β∗)(β − β∗)],

which has the ordinary least squares solution,

δ̃ = (β̃ − β∗) = [V T (β∗)V (β∗)]−1 V T (β∗){y − µ(β∗)}. (9.11)

Now, we can’t actually compute δ̃ or β̃. But, asymptotoic results (see e.g.,

Seber and Wild Chapter 12.2.3) give that, for large enough n,

(β̂ − β∗) ≈ (β̃ − β∗),

so that we can make use of (9.11) with β̂ in place of β̃.

Now, consider the vector of residuals,

ri = Y − µ(β̂)

≈ Y − µ(β∗) + V (β∗)(β̂ − β∗)

≈ Y − µ(β∗) + V (β∗)[V T (β∗)V (β∗)]−1 V T (β∗) [yY − µ(β∗)]

=
[

I − V (β∗)(V T (β∗)V (β∗))−1V T (β∗)
]

[Y − µ(β∗)]

= [I −H(N)(β∗)][Y − µ(β∗)]. (9.12)
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The second line of (9.12) follows from substitution of (9.10) evaluated at µ(β̂),

while the third line results from further use of (9.11) with β̂ in place of β̃ as

just discussed. The final line of (9.12) is analogous to the linear model result

(9.9) with the hat matrix H replaced by a matrix of the same form but with

V (β∗) in place of X and denoted as H(N)(β∗). That is,

H(N)(β∗) = V (β∗) [V T (β∗)V (β∗)]−1V T (β∗),

where V (β∗) is n× p with i, kth element,

∂

∂βk
µi(β)

∣

∣

∣

∣

∣

β=β
∗

.

With the parallel of expressions (9.12) and (9.9) in hand, we appeal to

analogy with linear model results and define studentized residuals to be

bi =
ri

[σ̂2 {1 − h
(N)
i,i (β̂)}]1/2

. (9.13)

Notice that in (9.13) we have both replaced σ2 with an estimator, and have

also replaced β∗ in the nonlinear “hat” matrix H (N)(β∗) with its generalized

least squares estimator β̂.

Example 9.7

Now consider the general case of a nonlinear model with nonconstant variance,

Yi = µi(β) + σ g(µi(β), zi, θ) ǫi,

where, as usual, ǫi ∼ iidF , E(ǫi) = 0 and var(ǫi) = 1 but where θ is considered

known (or chosen as part of model selection). The usual strategy to develop

studentized residuals in this case is to note that this model could also be

written as
Yi

g(µi(β), zi, θ)
=

µi(β)

g(µi(β), zi, θ)
+ σ ǫi,
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which is in the form of a constant variance nonlinear model with modified re-

sponse Yi/g(µi(β), zi, θ) and modified expectation function µi(β)/g(µi(β), zi, θ).

As indicated by Carroll and Ruppert (1988, p. 33) the standard approach is to

ignore all effects of estimation of g(µi(β), zi, θ) and define studentized residuals

in the form of (19.3) as,

b̃i =
r̃i

[σ̂2 {1 − h̃
(N)
i,i (β̂)}]1/2

, (9.14)

where

r̃i =
yi − µi(β̂)

g(µi(β̂), zi, θ)
,

and h̃
(N)
i,i (β̂) is the ith diagonal element of the n× n matrix

H̃
(N)

(β̂) = Ṽ (β̂)[Ṽ T (β̂)Ṽ (β̂)]−1Ṽ T (β̂),

where Ṽ (β̂) is n× p with i, kth element,

1

g(µi(β̂), zi, θ)





∂

∂βk
µi(β)

∣

∣

∣

∣

∣

β=
ˆβ



 .

Deviance Residuals

Deviance residuals are closely connected with exponential families and, in par-

ticular, exponential dispersion families. They also represent a somewhat dif-

ferent approach to the conceptual question of what we mean by “residual”

than does the fundamental notion of a raw (or studentized) residual. As we

have seen, raw residuals are developed first and foremost by considering the

deviation of individual response values from their (estimated) expected val-

ues. In contrast, deviance residuals are most easily developed as the contri-

butions of individual response values to a quantity that reflects overall model

fit. To develop this idea, assume we have a set of independent response vari-

ables Y1, . . . , Yn with density or mass functions of exponential dispersion family
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form,

fi(yi|θi, φ) = exp [φ{yiθi − b(θi)} + c(yi, φ)] .

Notice that we are allowing the distributions of the Yi to vary only through the

scalar natural parameter θi. Recall from Section 6.1.3 this implies that µi ≡
E(Yi) = b′(θi), or θi = b′−1(µi) so that we can write the natural parameters as

functions of the expected values, θ(µi). Now, in almost all models formulated

on the basis of exponential dispersion family distributions, we further model µi

as a function of other parameters and, perhaps, covariates. Generalized linear

models are the obvious example, but the concept of deviance being developed

depends on exponential dispersion family properties not the specific form of

generalized linear models. In any case, fitting a model will produce a set of

estimated expectations {µ̂i : i = 1, . . . , n} and hence also a set of estimated

natural parameters θ(µ̂) ≡ {θ(µ̂i) : i = 1, . . . , n}.
We have also seen that, given maximum likelihood estimates, full and re-

duced models with nested parameter spaces can be compared through likeli-

hood ratio tests. Consider, then, comparison of a fitted model considered as a

reduced model to a “saturated” model (or a “maximal model”); these labels

are meant to evoke the notions of “fullest model possible” or “model with the

highest likelihood value possible”. Such a model will result from estimating

µi as the observed value yi, for i = 1, . . . , n, which leads to another set of

estimated natural parameters θ(y) ≡ {θ(yi) : i = 1, . . . , n}. Note that such a

saturated or maximal model is not a viable or useful model in practice since

it contains as many parameters as observations, and this is assuming that the

dispersion parameter φ is known. With known φ, a likelihood ratio comparison

of fitted and saturated models would then become,

D∗ ≡ −2{L(θ(µ̂), φ) − L(θ(y), φ)}, (9.15)
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where

L(θ(µ̂), φ) =
n
∑

i=1

[φ{yiθ(µ̂i) − b(θ(µ̂i))} + c(yi, φ)] ,

and

L(θ(y), φ) =
n
∑

i=1

[φ{yiθ(yi) − b(θ(yi))} + c(yi, φ)] .

Expression (9.15) defines the scaled deviance for a model based on independent

exponential dispersion family random variables. Notice that it may also be

written as

D∗ = −2φ
n
∑

i=1

[yi{θ(µ̂i) − θ(yi)} − b(θ(µ̂i)) + b(θ(yi)] , (9.16)

because, with φ considered known, the terms c(yi, φ) cancel in the difference.

The parameter φ may be seen in (9.16) to constitute a scaling factor, and the

unscaled deviance is defined as D ≡ D∗/φ, or

D = −2
n
∑

i=1

[yi{θ(µ̂i) − θ(yi)} − b(θ(µ̂i)) + b(θ(yi)] . (9.17)

Scaled and unscaled deviances are measures of the departure of a fitted

model from a saturated model, which intutitively captures the concept of

goodness of fit. Given the assumed distributional form and with a known

value of φ (more on this in the sequel), nothing could fit the data better than

the saturated model, which has the greatest log likelihood value possible (this

explains my use of the phrase maximal model). If we would not prefer this

maximal model to our reduced fitted model, then the fitted model provides an

adequate representation of the observed data. In this sense, expression (9.16)

constitutes a likelihood ratio goodness of fit test, and D could be compared to

a χ2 distribution with n− p degrees of freedom. Unfortunately, when φ is not

known this no longer is the case and, in fact, it is not even possible to estimate
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φ under the saturated or maximal model.

Example 9.8

It is instructive to examine the forms taken by deviance for some of the more

common exponential dispersion family distributions.

1. Poisson

Here, φ ≡ 1 and θi = log(µi) so that, for a fitted model with estimated

expected values {µ̂i : i = 1, . . . , n}, θ(µ̂i) = log(µ̂i) and θ(yi) = log(yi).

Also, b(θi) = exp(θi) so that D∗ = D, and

D = −2
n
∑

i=1

[yi{log(µ̂i) − log(yi)} − µ̂i + yi]

= 2
n
∑

i=1

[

yi log

(

yi
µ̂i

)

− (yi − µ̂i)

]

.

2. Binomial

For a set of independent binomial random variables taken to represent

proportions rather than counts, let E(Yi) = pi. In exponential dispersion

family form, φ ≡ 1, θi = log{pi/(1 − pi)}, and b(θi) = log{1 + exp(θi)}.
Then, θ(µ̂i) = log{µ̂i/(1 − µ̂i)} and θ(yi) = log{yi/(1 − yi)}. It is con-

vention to simply absorb the known biniomial sample sizes ni into all

formulas as weights, and then again D∗ = D where,

D = −2
n
∑

i=1

ni

[

yi

{

log

(

µ̂i
1 − µ̂i

)

− log

(

yi
1 − yi

)}

− log(1 − µ̂i) + log(1 − yi)

]

= 2
n
∑

i=1

ni

[

yi log

(

yi
µ̂i

)

+ (1 − yi) log

(

1 − yi
1 − µ̂i

)]

.

3. Normal

For normal distributions with the usual mean (µ) and variance (σ2) pa-

rameterization, θi = µi, φ = 1/σ2, and b(θi) = (1/2)θ2
i . Then scaled
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deviance is,

D∗ =
−2

σ2

n
∑

i=1

[yi{µ̂i − yi} − (1/2)µ̂2
i + (1/2)y2

i ]

=
1

σ2

n
∑

i=1

(yi − µ̂i)
2.

Notice that for this situation unscaled deviance is D = σ2D∗, the usual

residual sum of squares.

4. Gamma

Since there are several versions of the “usual” parameterization of a

gamma density function we need to be careful of our initial formulation

for a problem involving independent gamma random variables. For an

individual random variable Y , let the probability density function be

f(y|α, β) =
βα

Γ(α)
yα−1(1 − y)β−1; y > 0.

With this form, µ ≡ E(Y ) = α/β, and by writing ν = α we can arrive

at an exponential dispersion family representation of the density with

θ = −1/µ, φ = 1/ν, and b(θ) = − log(−θ). Let {Yi : i = 1, . . . , n} be a

set of independent random variables have such densities with parameters

{θi : i = 1, . . . , n} and common φ. Then θ(µ̂i) = −1/µ̂i and θ(yi) =

−1/yi, and the scaled deviance becomes,

D∗ = −2φ
n
∑

i=1

[

yi

{

−1

µ̂i
− −1

yi

}

+ log(−µ̂i) − log(−yi)
]

= 2φ
n
∑

i=1

[

yi
µ̂i

− 1 + log(µ̂i) − log(yi)

]

= 2φ
n
∑

i=1

[

yi − µ̂i
µ̂i

− log

(

yi
µ̂i

)]

.
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For the Poisson and binomial portions of Example 9.8 we could use deviance

as a likelihood ratio goodness of fit test statistic, but not for the normal and

gamma. In these latter cases, deviance is generally calculated using an esti-

mated value φ̂ from the fitted model.

Each observation yi contributes one term to (9.16) or (9.17), and it is these

terms that are used to define basic deviance residuals. Let,

d∗i = −2φ̂ [yi{θ(µ̂i) − θ(yi)} − b(θ(µ̂i)) + b(θ(yi)] ,

and define deviance residuals as, for i = 1, . . . , n,

di ≡ sign(yi − µ̂i)
√

d∗i . (9.18)

While, as mentioned, the ideas of deviance and deviance residuals have

their genesis in results for exponential dispersion families, their use is most

closely connected with generalized linear models. In this case, it is common to

standardize deviance residuals as,

d′i =
di

(1 − h
(G)
i,i )1/2

, (9.19)

where h
(G)
i,i is the ith diagonal element of the matrix

H (G) = W 1/2X(XTWX)−1XTW 1/2,

in which X is the n × p matrix of covariate values of the linear predictor

η ≡ (η1, . . . , ηn)
T and W is the n× n diagonal matrix with elements given in

Section 8.3.6 as,

Wi ≡






(

dηi
dµi

)2

V (µi)







−1

.

The standardization of (9.19) is justified by results on the first two moments

of “generalized residuals”, a topic we will cover briefly later in this section, and
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conditions that make higher derivatives of the log likelihood negligible. As a

result, E(di) ≈ 0 and var(di) ≈ 1 − h
(G)
i,i . A readable presentation of this

is contained in Davison and Snell (1991), who also point out that (9.19) is a

special case of a result that applies more generally to exponential dispersion

families. In particular, consider a model formulated in the same manner as

a generalized linear model expect that, rather than using a link to a linear

prediction as g(µi) = xTi β, we simply take the expectations to be a given

function of parameters and covariates as

µi = η(xi, β),

denoted as ηi for brevity.

Then, define the matrix W as the diagonal matrix with ith element

wi = E

[

−∂
2 log{f(yi|θi, φ)}

∂η2
i

]

,

and the n× p matrix Q to have i, kth element,

qi,k =
∂ηi
∂βk

.

Then, take

H̃
(G)

= W 1/2Q(QTWQ)−1QTW 1/2,

and standardized deviance residuals are then given by (9.19) with H̃
(G)

in

place of H(G). Note that, in the case of a generalized linear model, wi has the

same form as given following expression (9.19), and Q = X .

Many of the general ideas described in the past few pages are also ap-

plied in formulating a number of other residual quantities that seem to be

less commonly used in practice. These include what are called score residuals,

likelihood residuals, and Anscombe residuals. See, for example, Lindsey (1996,

p. 168) for mention of the first two of these, and Davison and Snell (1991) for
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the latter. Somewhat more common are Pearson residuals particularly in the

case of models with discrete response varaibles such as Poisson or binomial.

Generalized Residuals

In what remains an important paper on the construction and analysis of resid-

uals, Cox and Snell (1968) gave a general definition of a residual, as follows.

The situation considered is one in which the location variable of our general

notation from Section 9.1.1 is taken to be si = i and the random variables

{Yi : i = 1, . . . , n} are assumed independent. Consider a model in which

Yi = gi(θ, ǫi); i = 1, . . . , n, (9.20)

where θ is a p-dimensional parameter, the ǫi are independent and identically

distributed random variables, and the model is indexed by i (i.e., gi(·)) to allow

for covariates or other known factors. Expression (9.20) is sufficiently general

to cover nearly all models formulated for independent random variables, a key

aspect being the each Yi depends on only one ǫi.

Example 9.9

1. Additive error models, either linear or nonlinear, are easily put into the

form of (9.20) by taking θ = (β, σ2, θ) and, using our previous notation

for such models,

gi(θ, ǫi) = g1(xi,β) + σg2(xi,β, zi, θ)ǫi,

where ǫi ∼ iidF with E(ǫi) = 0.
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2. Multiplicative error models are also easy to put in the form of (9.20).

Cox and Snell consider as an example a model

Yi = β1 exp{β2(xi − x̄)} ǫi,

where ǫi ∼ iid exponential, with E(ǫi) = 1.

3. Let Y1, . . . , Yn be independently and identically distibuted following an

extreme value distribution with density written as, for −∞ < θ1 < ∞
and θ2 > 0,

f(yi|θ1, θ2) =
1

θ2
exp

[

yi − θ1
θ2

− exp

{

yi − θ1
θ2

}]

; −∞ < yi <∞.

The distribution function that corresponds to this density is,

FY (yi|θ1, θ2) = 1 − exp

[

− exp

{

yi − θ1
θ2

}]

,

and the inverse distribution function becomes,

F−1
Y (a|θ1, θ2) = θ1 + θ2 log

[

log
{

1

1 − a

}]

; 0 < a < 1.

To formulate a model in the form of (9.20) for this situation, let

Yi = gi(θ1, θ2, Ui) = F−1
Y (ui|θ1, θ2),

where Ui ∼ iid U(0, 1).

4. The device of item 3 immediately above may be used directly for any set

of continuous random variables for which a model leads to a parameter-

ized distribution function. This is true even if the inverse distribution

function is not available in closed form, such as for gamma, beta, or even

normal distributions; for a normal distribution, however, we would prob-

ably use the easier additive model formulation. It is also not necessary



522 CHAPTER 9. MODEL ASSESSMENT

to have identical distributions. Specifically, if Y1, . . . , Yn are independent

random variables with modeled probability density functions fi(yi|θ),
then the model may be written as,

Yi = gi(θ, Ui) = F−1
i (Ui|θ); i = 1, . . . , n,

where Ui ∼ iid U(0, 1) and

Fi(yi|θ) =
∫ yi

−∞
fi(t|θ) dt.

5. Although the prescription of items 3 and 4 applies only to random vari-

ables with continuous distributions, a similar device may be used for dis-

crete random variables. Let Y1, . . . , Yn be independent with a common

set of possible values Ω and suppose the elements of this set have been

ordered as Ω ≡ {y[1], y[2], . . . , y[m]} so that y[k−1] < y[k] for k = 2, . . . , m.

If we desire to assign probability mass functions fi(yi|θ) to these random

variables, let

Fi(y[k]|θ) =
k
∑

j=1

fi(y[j]|θ),

and take, for i = 1, . . . , n,

Yi = min
{

y[k] : Fi(y[k]|θ) > Ui
}

,

where Ui ∼ iid U(0, 1). Define y[0] to be any value such that Fi(y[0]|θ) =

0. Then, for k = 1, . . . , m,

Pr(Yi = y[k]) = Pr{Fi(y[k−1]θ) < Ui < Fi(y[k]|θ)}

= Fi(y[k]|θ) − Fi(y[k−1]θ)

= fi(y[k]|θ)

as desired.
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Now, writing a model in the form of expression (9.20) does not necessarily

define a residual quantity. Cox and Snell (1968) do so as follows. Suppose

that equation (9.20) has a unique solution for ǫi, say

ǫi = hi(Yi, θ).

If this is the case, and if θ̂ is a maximum likelihood estimate of θ, then define

generalized residuals as, for i = 1, . . . , n,

ri = hi(yi, θ̂). (9.21)

The random version of (9.21) may be written as Ri = hi(Yi, θ̂). The remainder

of the treatment by Cox and Snell (1968) involved deriving approximations

to the means, variances, and covariances of the random version of (9.21) by

expanding Ri−ǫi as a Taylor series in terms of the components of θ̂−θ, which

is where they use the condition that θ̂ is a maximum likelihood estimate of θ.

These approximations provide a means for modifying the residuals Ri so that

the modified residuals have expectations and variances approximately equal

to those of the ǫi. Adjustment of the residuals in (9.21) may be important,

but the form of resultant equations is quite model specific. Here, we simply

indicate that if the number of observations is large relative to the number of

parameters, then the residual quantities (9.21) should have behavior similar to

the ǫi in the model (9.20). This is because it is the observations y1, . . . , yn that

are used to estimate θ as θ̂ so that the Ri are not independent, and generally

will not have expectations or variances equal to those of the ǫi. But as the

number of observations increases relative to the dimension of θ these effects

diminish.

We will use these ideas to develop the notion of generalized residual that

will be used in these notes, drawing on cases 4 and 5 of Example 9.9. Corre-



524 CHAPTER 9. MODEL ASSESSMENT

sponding to case 4, given continuous independent random variables Y1, . . . , Yn

with model Yi = F−1
i (Ui|θ) for Ui ∼ iid U(0, 1), define the residual quantities,

ri ≡
∫ yi

−∞
Fi(t|θ̂) dt; i = 1, . . . , n. (9.22)

If the model is representative of the data, the {ri : i = 1, . . . , n} should behave

in a manner similar to a sample from the uniform distribution on (0, 1). The

probability integral transform would hold if the parameter θ were used in (9.22)

rather than an estimate θ̂. While this result does not hold, we expect that the

residuals of (9.22) should provide diagnostic quantities useful to detect gross

discrepancies between the model and observed responses.

To define similar residuals corresponding to discrete random variables as

in case 5 of Example 9.9 requires an extension of the definition of Cox and

Snell (1968). In the develoment of (9.21) it was assumed that the model (9.20)

allows a unique solution for the ǫi. Here, we define random residuals even for

fixed values of observations {yi : i = 1, . . . , n}. Using the same notation as in

case 5 of Example 9.9, let Y1, . . . , Yn be independent random variables with a

common set of possible values, ordered as Ω ≡ {y[1], y[2], . . . , y[m]}. Take the

ordered value of observation i to be the kth ordered value, that is, yi = y[k].

Define the (random) generalized residual r′i to be the realized value of a random

variable with distribution uniform on the interval (Fi(y[q−1]), Fi(y[q])), that is,

r′i ≡ ui; where Ui ∼ iid U
(

Fi(y[q−1]), Fi(y[q]

)

. (9.23)

Similar to the residuals of expression (9.22), these residuals should behave in

the manner of a sample of iid uniform variables on the interval (0, 1). A set

of residuals {r′i : i = 1, . . . , n} will not, however, be unique for a given set of

observations {yi : i = 1, . . . , n}.
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Other Types of Residuals

The classification of residuals into categories in this subsection is, of course,

not exhaustive of the various quantities proposed for use as residuals. While

many such quantities are rather model specific, there are some that are more

general in nature. A few of these are listed here.

1. Pearson Residuals.

Pearson residuals are motivated by considering individual contributions

to a Pearson Chi-squared goodness of fit test for discrete random vari-

ables. Consider, for example, a set of independent Possion random vari-

ables {Yi : i = 1, . . . , n} with expected values {µi : i = 1, . . . , n} and

variances {V (µi) : i = 1, . . . , n}, where V (µi) = µi. The Pearson χ2

goodness of fit test statistic is,

χ2
∗ =

n
∑

i=1

(yi − µ̂i)
2

V (µ̂i)
=

(yi − µ̂i)
2

µ̂i
.

The square root of the individual contributions are known as Pearson

residuals,

rp,i =
yi − µ̂i√

µ̂i
. (9.24)

The residual quantities in (9.24) are more general that just Poisson, or

even just discrete random variables, and are still called Pearson residuals

even when applied to random variables with continuous distributons.

2. Score Residuals.

For independent random variables, the score function for any given pa-

rameter component consists of a sum of quantities, the random versions

of which each have expected value 0. With respect to a given component

of a generic parameter, θj , say, the score residuals are then based on
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standardized contributions to the total score function,

rs,i =

(

1

Ii,i(θ̂)

)

∂

∂θj
log{fi(yi|θ)}, (9.25)

where Ii,i(θ̂) is the ith diagonal element of the estimated information

matrix.

3. Anscombe Residuals.

Ansombe (1961) proposed a residual quantity of the essential form of

the Pearson residual (9.24) but with yi replaced by a transformed value

that more nearly produces normal distributions than (9.24). The appro-

priate transformation depends on the model chosen, although it can be

expressed in a general form for standard generalized linear models (e.g.,

McCullagh and Nelder, 1989).

9.1.3 Plotting Residuals

Any number of diagnostic plots can be constructed using the residuals quan-

tities discussed in Section 9.1.2, with the intent of detecting departures from

the model structure assumed in an analysis. We mention here some of the

more common of these, along with the types of modeling inadequacies they

are intended to detect. In general, residual plots involve plotting residuals (or

some transformation of residuals) on the vertical axis or ordinate against corre-

sponding quantities of some type on the horizontal axis or abcissa. Typically,

any type of pattern exhibited by the points on such a plot indicates some type

of model inadequacy. Gleaning useful information from residual plots then

involves determination of whether a percieved pattern is due to more than

random variability in a finite set of observed data, and the type of model inad-

equacy suggested by a pattern. The first of these is often a matter of judgment,
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a process that is often made easier by comparison of plots for several models;

the strength or degree of departures from model structure is typically more

easily assessed on a relative scale than an absolute scale. The second requires

undertanding of the expected behavior of residuals under a correctly specified

model, as well as the types of behaviors that would be produced by departures

from the assumed model structure.

Plotting Against Fitted Values

Perhaps the most common type of residual plot results from plotting residu-

als against fitted values from a model. Fitted values are generally taken as

estimated expected values of the random variables associated with observed

responses, that is, the estimated systematic model component. We have al-

ready seen a number of examples of this type of residual plot, at least for linear

regression models using residuals as in expression (9.8). Figure 6.2 presents

such a plot for the simulated data relating Microcystin concentrations to ni-

trogen. Figure 7.4 gives this residual plot for airplane flight times. Figures

7.12, 7.14, 7.15, and 7.19 show these plots for various models employed in the

example of tree volume modeled as a function of diameter and height.

Example 9.10

In Example 7.1 a nonlinear regression model with additive constant variance

errors was fitted to the reaction times of an enzyme as a function of substrate

concentration for preparations treated with Puromycin and also for untreated

preparations. The model was

Yi =
β1 xi
β2 + xi

+ σǫi,
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where xi denoted substrate concentration and we took ǫi ∼ iidF for some

distribution F with E(ǫi) = 0 and var(ǫi) = 1 for i = 1, . . . , n. This model

was fit to each group (treated and untreated) separately. Figure 9.1 presents

the studentized residuals of expression (9.13) for both groups. This residual

plot does not reveal any serious problems with the model, although it is less

than “picture perfect” in terms of what we might hope to see. Given that

this model was formulated on the basis of a theoretical equation for enzyme

reaction times (the Michaelis-Menten equation) and variability is anticipated

(and appears in the data) to be small, we would be justified in assessing this

residual plot with a fairly high level of scrutiny (relative to, say, a residual plot

for a purely observational study with many potential sources of variability).

Does the residual plot of Figure 9.1 exhibit some degree of increasing variance

as a function in increasing mean? To help in this assessment, we might plot

the cube root of squared studentized residuals against the fitted values (e.g.,

Carroll and Ruppert, 1988, p. 30). In this type of residual plot, nonconstant

variance is exhibited by a wedge-shaped pattern of residuals. A plot of the

cube root squared studentized residuals for these data is presented in Figure

9.2. There does not appear to be a increasing wedge or fan of residuals in

the plot of Figure 9.2, suggesting that there is little evidence of nonconstant

variance for this model. Looking closely at the residual plot of Figure 9.1 we

can see a suggestion of a “U-shaped” pattern in residuals from both treated

and untreated groups. This would indicate that the fitted expectation function

from the Michaelis-Menten equation fails to bend correctly to fit data values

at across the entire range of substrate concentrations. A close examination

of the fitted curves, presented in Figure 9.3 verifies that this seems to be the

case for at least the treated preparations. In fact, there appear to be values

at a substrate concentration of just over 0./2 ppm for which the expectation
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Figure 9.1: Studentized residuals from fitting a nonlinear regression based on

the Michaelis-Menten equation to the enzyme reaction times of Example 7.1.

Open circles are the untreated preparations while solid circles are the treated

preparations.
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Figure 9.2: Cube root squared studentized residuals from fitting a nonlinear

regression based on the Michaelis-Menten equation to the enzyme reaction

times of Example 7.1. Open circles are the untreated preparations while solid

circles are the treated preparations.
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Figure 9.3: Fitted regressions based on the Michaelis-Menten equation to the

enzyme reaction times of Example 7.1. Open circles are the untreated prepa-

rations while solid circles are the treated preparations.

function “misses” for both treated and untreated groups. The cause of this

phenomenon is unknown to us as is, indeed, the degree of scientific import

for what it suggests. It may well be the case, however, that there exists some

evidence that the theoretical Michaelis-Menten equation does not adequately

describe the enzyme reaction in this experiment.

In general, the use of cube root squared studentized residuals might be

justified based on what is known as the Wilson-Hilferty transformation to nor-

malize chi-squared variables, but the basic value of such plots seems due to
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more practical than theorectical considerations. Cook and Weisberg (1982)

suggested plotting squared residuals to help overcome sparse data patterns,

particularly when it is not clear that positive and negative residuals have pat-

terns symmetric about zero. Carroll and Ruppert (1988) echo this sentiment,

but indicate that squaring residuals can create extreme values if the original

residuals are moderately large in absolute value to begin with. They then sug-

gest taking the cube root to aleviate this potential difficulty, but point out that

they view the result essentially as a transformation of absolute residuals, which

are taken as “the basic building blocks in the analysis of heteroscedasticity”

(Carroll and Ruppert, 1998, p. 30). From this standpoint, it would seem to

make little difference if one used absolute residuals, the squre root of absolute

residuals or, as in Figures 9.1 and 9.2, a 2/3 power of absolute residuals.
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Chapter 10

Basic Bayesian Paradigms

In this part of the course we consider the topic of Bayesian analysis of statistical

models. Note that I have phrased this as Bayesian analysis of models, as

opposed to analysis of Bayesian models. In some ways this is simply a matter of

semantics, but there is an issue involved that goes slightly beyond the mere use

of words, which we will attempt to elucidate in what follows. The effects of the

two viewpoints on Bayesian analysis presented in this chapter do not influence

mathematical or statistical techniques in the derivation of distributions or

inferential quantities, but they may have an impact on which quantities (i.e.,

which distributions) are deemed appropriate for inference. The issues involved

come into play primarily in the case of hierarchical models, in which there is

more than one level of quantities that play the role of parameters in probability

density or mass functions. In this regard, there might be a distinction between

thinking in terms of analysis of a Bayesian model as opposed to a Bayesian

analysis of a mixture (i.e., random parameter) model.

In this chapter we will attempt to make clear both the fundamental nature

of the Bayesian argument, and the potential impact of the distinction eluded

537



538 CHAPTER 10. BAYESIAN PARADIGMS

to in the previous paragraph. Since this issue is not even necessarily recognized

as an issue by many statisticians, the subsection headings given below are my

own device and should not be taken as standard terminology in the world of

statistics.

10.1 Strict Bayesian Analysis

The heading of “strict” Bayesian analysis comes from a reading of the history of

Bayesian thought. Although I will not give a list of references, I believe this line

of reasoning to be faithful to that history, in which there was reference to what

was called the “true state of nature”. That is, at least one line of reasoning in

the development of Bayes methods held that there is, in fact, an absolute truth

to the order of the universe. This thought is in direct conflict with the frequent

(at least in the past) criticism of Bayesian methods that they depend on totally

subjective interpretations of probability (there were, however, other schools of

thought in the development of Bayesian methods in which probabilities were

viewed as essentially subjective values, but we will not discuss these). The

fundamental point is that this view of Bayesian analysis is in total agreement

with a reductionist view of the world in which, if all forces in operation were

known, observable quantities would be completely deterministic. The true

state of nature in this school of thought is embodied in a fixed, but unknown

parameter value that governs the distribution of observable quantities. Note

that this is starting to sound quite a bit like a typical frequentist argument,

and that is the point.

There is not necessarily anything in a Bayesian approach to statistical

analysis that contradicts the view that, if we knew everything about all physical

relations in the world, we would know the values that would be assumed by
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observable quantities with certainty. We are, of course, not capable of such

exquisite knowledge, and thus the field of statistics has meaning in modeling

the things we do not understand through the use of probability.

The essential departure of Bayesian thought from its frequentist coun-

terpart, under this interpretation of Bayesian analysis, is that an epistemic

concept of probability is legitimate. That is, given a fixed but unknown pa-

rameter θ that represents the true state of nature, it is legitimate to write

Pr(t1 < θ < t2) = c, with θ, t1, t2 and c all being constants, not as a statement

about a random quantity (there are no random variables in the above proba-

bility statement) but rather as a statement about our knowledge that θ lies in

the interval (t1, t2). Thus, under this interpretation of Bayesian thought, there

must be somewhere in a model a fixed quantity or parameter that represents

the “true state of nature”.

Now, if we admit an epistemic concept of probability, then we are free to

represent our current knowledge about θ as a probability distribution. And,

given the possibility of modeling observable quantities as connected with ran-

dom variables (the modeling concept), we can easily formulate the basic struc-

ture of a strict Bayesian approach to the analysis of data; note here that

everything contained in Part II of the course prior to the discussion of esti-

mation and inference (i.e., everything before Chapter 8) applies to Bayesian

analysis as much as it applies to what was presented under the heading of

Statistical Modeling. In particular, suppose that we have a situation in which

we can formulate random variables Y1, . . . , Yn in connection with observable

quantities. Suppose that the joint probability distribution of these variables

can be written in terms of a density or mass function f(y1, . . . , yn|θ) depending

on an unknown (but fixed) parameter θ that represents the true state of nature

(i.e., the phenomenon or scientific mechanism of interest). Now, even in the
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absence of data, we are almost never totally devoid of knowledge about θ. If

an observable quantity Y is a count with a finite range, and the mass function

assigned to Y is a binomial distribution with parameter θ, then we know that

θ must lie between 0 and 1. If a set of observable quantities are connected with

iid random variables having gamma distributions with common parameters α

and β (here, θ ≡ (α, β)T ), then we know that α and β must both be positive

and that any distribution assigned to our knowledge of their values should give

low probability to extremely large values (i.e., both the mean and variance of

the gamma distribution should exist).

Given this background, consider a single random variable Y , to which

we have assigned a probability distribution through density or mass func-

tion f(y|θ) with fixed but unknown parameter θ. Our knowledge about θ

before (i.e., prior) to observing a value connected with Y is embodied in a

prior distribution π(θ). Note that, while f(y|θ) may be interpreted through a

hypothetical limiting relative frequency concept of probability, the prior dis-

tribution π(θ) is an expression of epistemic probability, since θ is considered

a fixed, but unknown, quantity. The mathematics of dealing with π(θ) will,

however, be identical to what would be the case if θ were considered a random

variable. Suppose that θ can assume values in a region (i.e., θ is continuous)

with dominating Lebesgue measure. Then, given observation of a quantity

connected with the random variable Y as having the particular value y, we

may derive the posterior distribution of θ as,

p(θ|y) =
f(y|θ) π(θ)

∫

f(y|θ) π(θ) dθ
. (10.1)

If θ can assume only values in a discrete set and π(·) is dominated by

counting measure, then (10.1) would become,

p(θ|y) =
f(y|θ) π(θ)

∑

θ f(y|θ) π(θ)
. (10.2)
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Expressions (10.1) and (10.2) are generally presented as applications of Bayes

Theorem, the form of which they certainly represent. But Bayes Theorem is

a probability result, which holds for random variables regardless of whether

one is using it in the context of a Bayesian analysis or not. The only reason

one may not accept the expressions (10.1) or (10.2) as valid is if one will not

allow an epistemic concept of probability for the function π(θ) to describe

our knowledge of the fixed but unknown value of θ. Thus, we are led to the

conclusion that the fundamental characteristic of Bayesian analysis does not

rely on Bayes Theorem, but on an epistemic concept of probability to describe

what we know about the true state of nature θ.

In the above development we call the distribution for the observable quan-

tities f(y1, . . . , yn|θ) the observation or data model, and the distribution π(θ)

(interpreted under an epistemic concept of probability) the prior distribution.

The resultant distribution of our knowledge about θ conditioned on the obser-

vations, namely p(θ|y), is the posterior distribution of θ.

Now, notice that nothing above changes if we replace the data model for

a single random variable Y with the joint distribution of a set of variables

Y1, . . . , Yn all with the same parameter θ. That is, the data model becomes

f(y|θ), the prior remains π(θ), and the posterior would be p(θ|y).

In this development we have taken the prior π(θ) to be completely specified

which means that π(·) depends on no additional unknown parameters. That

does not necessarily mean that π(·) depends on no controlling parameters, only

that, if it does, those parameter values are considered known.

Example 10.1

Suppose that we have a random variable Y such that the data model is given
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by Y ∼ Bin(θ). That is, Y has probability mass function

f(y|θ) =
n!

(n− y)! y!
θy (1 − θ)n−y; y = 0, 1, . . . , n.

Now, we know that θ ∈ (0, 1) and, if we wish to express no additional knowl-

edge about what the value of θ might be, we could take the prior to be

θ ∼ U(0, 1), so that,

π(θ) = 1; 0 < θ < 1.

The posterior that would result from an observation of of the data model as y

would then be,

p(θ|y) =
θy (1 − θ)n−y

∫ 1
0 θ

y (1 − θ)n−y dθ

=
Γ(n + 2)

Γ(1 + y) Γ(1 + n− y)
θy (1 − θ)n−y,

which is the density function of a beta random variable with parameters 1 + y

and 1 + n− y.

Now, suppose we have additional information about θ before observation

of y which is represented by a beta distribution with parameters α = 2 and

β = 2; this would give expected value α/(α + β) = 0.5 and variance 0.05.

Then, the posterior would be derived in exactly the same way as above, except

that it would result in a beta density with parameters 2 + y and 2 + n− y. In

general, for any specific choices of α and β in the prior π(θ) = Beta(α, β) the

posterior will be a beta distribution with parameters α+ y and β + n− y.

Now consider a problem in which we have a data model corresponding to

Y1, . . . , Ym ∼ iidBin(θ),

in which the “binomial sample sizes” n1, . . . , nm are considered fixed, and

π(θ) is taken to be beta(α0, β0) with α0 and β0 specified (i.e., considered
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known). Then a derivation entirely parallel to that given above, except using

a joint data model f(y|θ) = f(y1|θ)f(y2|θ) . . . , f(ym|θ) results in a posterior

p(θ|y1, . . . , ym) which is a beta (αp, βp) density with parameters

αp = α0 +
m
∑

i=1

yi,

βp = β0 +
m
∑

i=1

ni −
m
∑

i=1

yi. (10.3)

The essential nature of what I am calling here the strict Bayesian approach

to data analysis follows from the modeling idea that the scientific mechanism

or phenomenon of interest is represented somewhere in a statistical model by a

fixed parameter value. The additional component under a Bayesian approach

is to assign our knowledge of that parameter a prior distribution under an

epistemic concept of probability. This then allows derivation of a posterior

distribution that represents our knowledge about the parameter value after

having incorporated what can be learned from taking observations in the form

of data. Thus, there are really no such things as “Bayesian models”, only

Bayesian analyses of statistical models. This view of Bayesian analysis ex-

tends from simple situations such as that of Example 10.1 to more complex

situations in a natural manner.

Example 10.2

Suppose that we have a data model corresponding to

Y1, . . . , Ym ∼ indepBin(θi),

in which the binomial sample sizes n1, . . . , nm are considered fixed. The only

difference between this data model that that of the second portion of Example

10.1 is that now each response variable Yi; i = 1, . . . , m is taken to have its
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own binomial parameter. If we interpret the values θ1, . . . , θm as representing

different “manifestations” of some scientific mechanism or phenomenon, then

we might assign these values a mixing distribution (as in Part II of the course),

θ1, . . . , θm ∼ iidBeta(α, β),

which would result in a beta-binomial mixture model as discussed previously.

A Bayesian analysis of this mixture model would then consist of assigning

(our knowledge about) the parameter (α, β) a prior distribution π(α, β) and

deriving the posterior distribution p(α, β|y).

Example 10.2 is an illustration of the general structure for a strict Bayesian

analysis of a mixture model. In general we have,

1. Data Model:

Y1, . . . , Yn ∈ Ω have joint density or mass function f(y|θ) = f(y1, . . . , yn|θ1, . . . , θn).
If these response variables are independent, or conditionally independent

given θ1, . . . , θn, then,

f(y|θ) = f(y1, . . . , yn|θ1, . . . , θn) =
n
∏

i=1

fi(yi|θi).

2. Mixing Distribution:

θ1, . . . , θn ∈ Θ have joint density or mass function g(θ|λ) = g(θ1, . . . , θn|λ).

If these random variables are independent, then,

g(θ|λ) = g(θ1, . . . , θn|λ) =
n
∏

i=1

gi(θi|λ).

3. Prior:

Given f(y|θ) and g(θ λ), the parameters λ ∈ Λ are assigned a prior

distribution π(λ).
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4. Posterior:

Using the above formulation, the posterior density or mass function of λ

may be derived as,

p(λ|y) =
f(y|θ) g(θ|λ) π(λ)

∫

Λ

∫

Θ
f(y|θ) g(θ|λ) π(λ) dθ dλ

. (10.4)

If the Yi are conditionally independent and the θi are independent, then,

p(λ|y) =

n
∏

i=1

fi(yi|θi) gi(θi|λ) π(λ)

∫

Λ

{

n
∏

i=1

∫

Θi

fi(yi|θi) gi(θi|λ) dθi

}

π(λ) dλ

.

Now notice that, in the above progression, we could have equivalently com-

bined items 1 and 2 into the overall mixture model

h(y|λ) =
∫

Θ
f(y|θ) g(θ|λ) dθ,

or, in the case of conditional independence of {Yi : i = 1, . . . , n} and indepen-

dence of {θi : i = 1, . . . , n},

h(y|λ) =
n
∏

i=1

∫

Θi

fi(yi|θi) gi(θi|λ) dθi.

The posterior of λ could then be expressed, in a manner entirely analogous

with expression (10.1), as,

p(λ|y) =
h(y|λ) π(λ)

∫

Λ
h(y|λ) π(λ) dλ

, (10.5)

or, in the case of independence,

p(λ|y) =
n
∏

i=1

hi(yi|λ) π(λ)
∫

Ωi

hi(yi|λ) π(λ) dyi
.
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The preceding expressions are a direct expression of a Bayesian analysis of a

mixture model. The mixture model is given by h(y|λ), and we simply assign

the parameters of this model, namely λ, a prior distribution π(λ) and derive

the corresponding posterior p(λ|y).

We are not yet entirely prepared to address the possible issue of the intro-

duction, but notice that, in principle, other distributions are available to us,

such as

p(θ|y) =

∫

Λ
f(y|θ) g(θ|λ) π(λ) dλ

∫

Λ

∫

Θ
f(y|λ) g(θ|λ) π(λ) dθ dλ

,

p(θ|λ,y) =
f(y|θ) g(θ|λ) π(λ)

∫

Θ
f(y|λ) g(θ|λ) π(λ) dθ

.

(10.6)

The first of these expressions is sometimes called the marginal posterior

of θ and the second the conditional posterior of θ. This last expression for

the conditional posterior p(θ|λ,y) is of particular interest, since it can also be

written as,

p(θ|λ,y) =
m(θ,y|λ)

∫

Θ
m(θ,y|λ) dθ

=
m(θ,y|λ)

h(y|λ)
,

=
f(y|θ) g(θ|λ)

h(y|λ)
. (10.7)

where h(y|λ) is the same as the “marginal” density of Y discussed in marginal

maximum likelihood analysis of mixture models. Notice that, to use p(θ|λ,y)
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directly for inference, we would need to have an estimate of λ to use in this

density function as p(θ|λ̂,y).

Finally, we also have the modeled distribution of θ as g(θ|λ) and, given

an estimate of λ we could focus attention on this distribution with estimated

λ as g(θ|λ̂); this, in fact, is what we have done in Part II of the course in

presenting plots of, e.g., beta mixing densities, using λ̂ as given by marginal

maximum likelihood estimates. It would certainly be possible, however, to

take λ̂ to be the mode or expectation of the posterior distribution p(λ|y) in

a Bayesian approach. A portion of the issue introduced in the introduction to

this discussion of Bayesian analysis concerns whether inference about θ in a

Bayesian analysis of a mixture model (or hierarchical model) should be made

based on p(θ|y), p(θ|λ̂,y) or g(θ|λ̂).

10.2 Bayesian Analysis of Unknowns

What I call here the Bayesian analysis of unknowns is not so much a different

approach to that of the strict Bayesian analysis of Chapter 10.1 as it is just a

slightly different angle on what is being accomplished. The philosophy of this

viewpoint is that statistical models contain unknown quantities. Whether some

might be considered random variables and others parameters under the strict

Bayesian interpretation is not material; everything we do not know is simply an

unknown quantity. Probability and, in particular, epistemic probability, is the

way that we describe uncertainty. Thus, anything we do not know the value of

can be assigned a “prior” distribution to represent our current knowledge and,

given a subsequent set of observed data {y1, . . . , yn}, these can be updated to

be “posterior” distributions. This seems to be the view taken in several recent

texts on Bayesian data analysis (Carlin and Louis, 2000; Gelman, Carlin, Stern
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and Rubin, 1995). In fact, Carlin and Louis (2000, p.17) state that

In the Bayesian approach, in addition to specifying the model for

the observed data y = (y1, . . . , yn) given a vector of unknown para-

meters θ, usually in the form of a probability distribution f(y|θ),
we suppose that θ is a random quantity as well, . . .

It is unclear whether Carlin and Louis are asserting that θ is a parameter

or a random variable (in the sense we have used these words in this class). My

own interpretation of their words is that they just don’t really care. If one

wishes to think of θ as a parameter, that’s fine, or if one wishes to think of θ

as a random variable that’s fine too. Either way, θ is unknown, and so we use

probability to describe our uncertainty about its value.

Gelman, Carlin (a different Carlin from Carlin and Louis), Stern and Ru-

bin (1995) are quite circumspect in talking about random variables per se,

more often using phrases such as “random observables”, “sampling models”,

or simply the unadorned “variable” (reference to random variables does pop up

occasionally, e.g., p. 20, but that phrase is nearly absent from the entire text).

These authors present (Chapter 1.5 of that text) a clear exposition of the basic

notion of probability as a representation of uncertainty for any quantity about

which we are uncertain. The implication is again that we need not be overly

concerned about assigning some mathematical notion of “type” (e.g., random

variable or parameter) to quantities in order to legitimately use probability as

a measure of uncertainty.

This notion of using probability as a measure of uncertainty without getting

all tangled up in whether the object of our uncertainty should be considered

a parameter, random variable, or some other type of quantity is seductively

simple, perhaps too much so, as I will argue below. It does have the attractive
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flavor that all quantities involved in an analysis are put on a equal footing.

The distinction is only that some of those quantities will be observable (i.e.,

the data) while others will not. Simplicity in analytical approach (but not nec-

essarily practice) is then achieved through the assertion that the entire process

of statistical inference is just a matter of conditioning our uncertainty (in the

form of probability) about unobservable quantities on the values obtained for

observable quantities.

This view of Bayesian analysis does not result in any differences with that of

the strict Bayesian view in terms of manipulations of distributions, derivation

of posteriors and so forth. In simple problems that involve only a data or

observational model and a prior, such as those described in Example 10.1,

there is only one possible way to condition the distribution of (our knowledge or

uncertainty about) the unobservable θ on that of the data. In these situations,

I see no possible conflicts between the strict Bayesian view and that considered

in this section.

In a hierarchical situation involving data model f(y|θ) and additional dis-

tributions g(θ|λ) and π(λ), there may be some slightly different implications

for inference of the strict Bayesian view and that of this section. In partic-

ular, as noted above, Bayesian analysis of unknowns would indicate that the

proper distribution on which to base inference is the joint posterior p(θ,λ|y),

that is, the conditional distribution of unobservables on observables. If one is

uninterested in λ, for example, the corresponding marginal p(θ|y) is the pos-

terior of concern. The possibilities of making use of the conditional posterior

p(θ|λ,y) or (especially) the model distribution g(θ|λ) are not in total concert

with Bayesian analysis of unknowns.

In fact, the motivation of specifying a distribution g(θ|λ) can be consid-

ered somewhat differently under this view of Bayesian analysis. In a strict
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Bayes view, g(θ|λ) is thought of as a mixing distribution that represents, in

the model, a scientific mechanism or phenomenon of interest. The fixed pa-

rameter λ then embodies the immutable mechanism, while g(θ|λ) describes

the ways that the mechanism is manifested in different situations. Here, we

are hesitant to assign such responsibilities to λ and g(θ|λ). The value of θ

is an unobservable quantity that controls the description of our uncertainty

about the observable quantity y (or quantities y1, . . . , yn). Our uncertainty

about θ is therefore assigned a distribution g(θ|λ), which may depend on an

additional unknown quantity λ. Our uncertainty about λ is then also assigned

a distribution π(λ). It is quite natural,then, to refer to prior distributions for

both θ and λ. The distribution g(θ|λ) would be the conditional prior for θ,

while the marginal prior for θ would be,

πθ(θ) =
∫

Λ
g(θ|λ) π(λ) dλ.

One could then derive a posterior as in expression (10.1) using data model

f(y|θ) and prior πθ(θ), resulting in the posterior

p(θ|y) =
f(y|θ) πθ(θ)

∫

Θ
f(y|θ) πθ(θ) dθ

=

∫

Λ
f(y|θ) g(θ|λ) π(λ) dλ

∫

Λ

∫

Θ
f(y|λ) g(θ|λ) π(λ) dθ dλ

(10.8)

Notice that (10.8) is exactly the same marginal posterior for θ given in

expression (10.6), illustrating the point that all of the mathematics of Chapter

10.1 also apply here.

What I want to contrast (10.8) with, however, is the posterior for λ in

expression (10.5). Expression (10.5) was developed by combining f(y|θ) and
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g(θ|λ) into the mixture model h(y|λ) which was then used with the prior

π(λ) to derive the posterior p(λ|y). Expression (10.8) has been developed by

combining g(θ|λ) and π(λ) into the prior πθ(θ) which was then used with the

data model f(y|θ) to derive the posterior p(θ|y). That is, to get to (10.5) most

directly, g(θ|λ) was considered part of the model h(y|λ) =
∫

f(y|θ)g(θ|λ) dθ,

to which was assigned the prior π(λ). To get to (10.8) most directly, g(θ|λ)

was considered part of the prior πθ(θ) =
∫

g(θ|λ)π(λ) dλ, which was applied

to the model f(y|θ).

While these progressions are not inherent parts of the two viewpoints that

I have called here strict Bayesian analysis and Bayesian analysis of unknowns

they do indicate a somewhat different slant to the way in which hierarchi-

cal models and, in particular, the roles of p(θ|y), p(θ|y,λ) and g(θ|λ), are

interpreted.

10.3 Summary of the Viewpoints

To encapsulate what has been presented in the two previous sections, there

appear to be several angles from which Bayesian analysis of hierarchical models

can be approached. Both depend on the derivation of posterior distributions for

unknown quantities in a statistical model. Both collapse to the same viewpoint

in the case of simple models with a given data or observational model and a

fixed parameter that controls that model. The potential differences arise in

consideration of multi-level or hierarchical models. The following points seem

relevant.

1. Under either viewpoint, all of the same distributions are available. Dis-

tributions of f(y|θ), g(θ|λ) and π(λ) constitute the statistical model.
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Distributions p(θ,λ|y) and the associated marginals p(θ|y) and p(λ|y),

the conditional form p(θ|λ,y), and the model distribution g(θ|λ̂) are

available and identical under both viewpoints. For the purposes of infer-

ence, these last two would require a plug-in estimator of λ as p(θ|λ̂,y)

and g(θ|λ̂).

2. Under what I have called strict Bayesian analysis there is really only

one prior distribution, that being for whatever quantities are considered

fixed parameters in a model. If we have a data model f(y|θ) for which

θ is fixed, and to which we wish to assign the prior g(θ|λ) but have

uncertainty about an appropriate value for λ, then we might combine

g(θ|λ) and π(λ) into the prior πθ(θ) just as in the progression given for

the viewpoint titled Bayesian analysis of unknowns. This seems unlikely,

however. If I know enough about the possible values of θ to assign them

(my knowledge of them) a prior g(θ|λ) that takes a particular form,

surely I must also have some idea what the value of λ might be. Thus, it

would be somewhat unnatural (not necessarily wrong or inappropriate,

but perhaps a bit odd), given a strict Bayesian view of the world, to make

use of the argument of Carlin and Louis (2000, p.19-20) that hierarchical

models result from uncertainty about the appropriate values of the pa-

rameter λ to use in the “first-stage” prior g(θ|λ). A counter-argument

to my assertion is possibly offered by a theorem due to de Finetti (1974)

which we will discuss under the heading of exchangeability in Chapter

12. This theorem may be used to justify the formulation of a prior for

θ in the data model f(y|θ) through the use of a mixture such as πθ(θ)

developed just before expression (10.8).

On the other hand, if we have a data model that consists of the obser-
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vation model f(y|θ) and a mixing distribution g(θ|λ), then we are in

one sense assigning a prior only to λ, and considering θ to be a random

variable in the usual sense of the term, although typically a “latent”

random variable that is not connected to observable quantities. In this

latter setting, p(λ|y) is certainly meaningful. A question arises, however,

concerning p(θ|y) versus p(θ|λ,y) versus g(θ|λ) where, for the purpose

of inference, a plug-in estimate of λ would be needed in the latter two

distributions.

3. Under what I have called Bayesian analysis of unknowns there is no dis-

tinction made between the status of quantities as random variables or

parameters, or the mixing model idea of “random variables that play the

role of parameters”. Probability is epistemic in nature wherever it is ap-

plied; even to observable quantities. If my knowledge about the values of

observable quantities, represented through the observation model f(y|θ)
happens to agree with what would result from repeated observation of

the same situation (i.e., relative frequency) then so much the better; I

then just have some empirical justification for my belief. Given this view-

point, the appropriate quantities for inference would seem to be p(θ,λ|y)

and the associated marginals p(θ|y) and p(λ|y). There is probably little

role for p(θ|λ,y) and almost certainly little use for g(θ|λ), where these

latter two quantities would again be used with a plug-in estimator of λ.

4. What can be said about relations between p(θ|y), p(θ|λ,y) and g(θ|λ)

in the mathematical sense? Such relations must apply regardless of the
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viewpoint toward analysis that is being taken. First, we have that,

p(θ|y) =

∫

Λ
m(y, θ,λ) dλ

∫

Λ

∫

Θ
m(y, θ,λ) dθ dλ

=

∫

Λ
p(θ|λ,y) p(λ|y) h(y) dλ

h(y)

=
∫

Λ
p(θ|λ,y) p(λ|y) dλ.

Thus, as it should be, the marginal posterior p(θ|y) is the expected

value of the conditional posterior p(θ|λ,y) taken over the distribution

of λ given y. The variance of p(θ|y) will then be greater than that of

p(θ|λ,y).

Secondly, directly from (10.7) we have that,

g(θ|λ) =
h(y|λ)

f(y|θ)p(θ|λ,y).

Since h(y|λ) is more diffuse (variable) than f(y|θ), so g(θ|λ) will be

more diffuse than p(θ|λ,y). Thus, both p(θ|y) and g(θ|λ) represent

greater uncertainty about θ than does p(θ|λ,y), which is intuitive. The

unknown relation, at this time, is between p(θ|y) and g(θ|λ) when the

latter is evaluated at a value λ̂, which will be either the expectation or

mode of the posterior p(λ|y).

5. Under what I have called a strict Bayesian viewpoint, inference about λ

is most naturally based on p(λ|y). Inference about θ is most naturally

based on either g(θ|λ̂) or possibly p(θ|y). The role, if any, for p(θ|λ̂,y) is

not clear. Under what I have called the Bayesian analysis of unknowns,

inference for λ is most naturally based on p(λ|y), although this will
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typically not be of much interest. Inference for θ should probably be

based on p(θ|y). There is little, if any, role for p(θ|λ̂,y) and almost

certainly no use for g(θ|λ̂). Note here, however, that using p(θ|λ̂,y) is

one formulation of methods that are called empirical Bayes (e.g., Carlin

and Louis, 2000, Chapter 3).
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Chapter 11

Sequential Bayes

Perhaps one of the strongest arguments in favor of a Bayesian approach to

analysis is provided by the similarity between the view of science as a progres-

sive “building up” of knowledge, and a sequential use of Bayesian analysis. To

see this clearly, adopt for the moment the strict Bayesian viewpoint that our

concern is learning about the value of a fixed “state of nature” represented by

a parameter θ. That is, suppose we have a problem in which data are “gener-

ated” by a observational model f(y|θ) and we have specified a prior π(θ) for

θ. Now, π(θ) represents our knowledge about θ before any observations are

available. Given observations y, we update that knowledge in the form of the

posterior p(θ|y). Now, suppose that we (or someone else) are able to repeat

the study that led to the observations y, or at least conduct a similar study

in which θ is a controlling parameter in an observational model and has the

same scientific meaning it did in the first study. Then it would be natural to

take p(θ|y) from the first study as representing our current knowledge about

θ (i.e., the posterior from the first study becomes the prior for the second

study). In a sequence of k such studies, then, we could conduct an overall

557
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analysis using data models f1(y1), . . . , fk(yk) and a “cascade” of prior and

posterior distributions, in the following way:

Study Prior Data Posterior

1 π1(θ) f1(y1|θ) p1(θ|y1)

2 π2(θ) = p1(θ|y1) f2(y2|θ) p2(θ|y2)

3 π3(θ) = p2(θ|y2) f3(y3|θ) p3(θ|y3)

. . . .

. . . .

. . . .

k πk(θ) = pk−1(θ|yk−1) fk(yk|θ) pk(θ|yk)

At each step in this progression we would have the basic Bayesian update of

expression (10.1), namely,

pj(θ|yj) =
fj(yj |θ) πj(θ)

∫

Θ
fj(yj |θ)πj(θ) dθ

; j = 1, . . . , k.

Implementation of this progression is made much easier if all of the data

models have the same form, f(·) = f1(·) = f2(·) = . . . = fk(·), and if the

common data model f(·) and prior π1(·) have a property called “conjugacy”

which means that the posterior p1(θ|y) has the same form as the prior π1(θ)

(more on this in Chapter 12.2). This then implies that all of the priors

π1(·), π2(·), . . . , πk(·) all have the same form as well.

Example 11.1

The sex ratio at birth of various species is of interest to ecologists in under-

standing evolutionary pressures and the way in which organisms have adapted

in response to those pressures. A study was conducted over several years on

the South American Guanaco (one of the South American “camels”, the others
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being the Llama, Alpaca, and Vicuna) to determine the proportion of males at

birth. It is fairly well established that mortality is higher during the first year

of life for males than for females, because males tend to venture farther from

the protection of the adult “herd” than do females, and are thus more often

attacked by predators (your own interpretation of this being because males are

“adventurous”, “developing skills to protect the herd when adults”, or “just

stupid” may well depend on your own sex). At any rate, this has led ecologists

and geneticists to believe that the ratio of males to females at birth should

be greater than 0.50. The basic idea has nothing to do with the “good of the

species” but rather the genetic pay-off to adult females who produce male or

female offspring. Under random assortment, each female contributes one X

chromosome and each male either an X or Y chromosome with equal prob-

ability. Skewed sex ratio at birth could be due to viability of implantation,

development during gestation, and so forth if there is a “physiological edge”

to being a male with XY chromosomes. That is, if the sex ratio at conception

is 50/50 but more males die before reaching breeding age, then a female who

“decides” (in an evolutionary sense) to produce a male is playing the “genetic

lottery” (less chance of having any grandchildren, but more of them if it hap-

pens). Females should “decide” to take this gamble up to a point, but no

more. Given the pace of evolution in mammals, the ratio of male to female

births should represent an “Evolutionary Stable Strategy”, that is, a “true

state of nature” at least for the duration of multiple human generations. The

study under discussion was conducted out of what was then the Department of

Animal Ecology at Iowa State University (under the direction of Dr. William

Franklin) to determine if there is evidence that such a strategy has developed

in Guanacos so that more males than females are born. I have been told that

geneticists have, for reasons unclear to me, predicted that the proportion of
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males at birth should be 0.524.

The study design was quite simple. Field workers located and observed

adult female Guanacos over a period of 4 years, recording the number of male

and female offspring in each year. Each female Guanaco that breeds in a given

year produces one offspring. Since we are assuming random assortment in the

genetic process, which males were involved is irrelevant (at least to us, maybe

not to them). The number of male and female births recorded in this study

are given in the following table.

Year Males Females

1987 33 30

1988 47 42

1989 51 42

1990 53 46

Since each female in a given year produces one offspring, and we are as-

suming that the male parent is not a factor in sex of that offspring, in a given

year i it is not unreasonable to formulate an observation model for the number

of male offspring as Yi ∼ Bin(θ, ni) where ni is taken as fixed by the number

of births observed. Although some females may have been observed several

times over the 4 year period, individual identification was either not possible

or not recorded. Thus, from a statistical perspective, we will assume that

Y1, Y2, Y3 and Y4 are exchangeable (more on exchangability in the next chap-

ter). Our absolute prior knowledge about the value of θ before any data are

observed is that 0 < θ < 1, and we will choose a beta distribution to represent

our knowledge of this parameter, which represents the “true state of nature”,

based on arguments from the ecological and evolutionary sciences (as sketched

above). We might, in an effort to appear “objective”, choose to take the prior
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for 1987 to have parameters α0 = 1 and β0 = 1, resulting in a uniform dis-

tribution on (0, 1) for θ. From the discussion of Example 10.1, the posterior

after observation in 1987 is a beta distribution with parameters α1 = α0 + y1

and β1 = β0 +n1 − y1. Proceeding in a sequential manner as illustrated in the

table of page 801, we obtain the following posterior parameters:

Year α̂ β̂ Mean Variance

1987 34 31 0.5231 0.0038

1988 81 73 0.5260 0.0016

1989 132 115 0.5344 0.0010

1990 185 161 0.5347 0.0007

Graphs of the posterior densities (which by conjugacy will all be beta den-

sities) are shown in Figure 11.1; the prior for the 1987 sample is a uniform and

not shown in this figure.

Credible intervals for θ (we will get to these in Chapter 13.2) were,

Year 95% Interval 90% Interval

1987 (0.402, 0.642) (0.421, 0.624)

1988 (0.447, 0.604) (0.460, 0.592)

1989 (0.472, 0.596) (0.482, 0.586)

1990 (0.482, 0.587) (0.490, 0.579)

As can be seen from the above tables and Figure 11.1, the posterior distribu-

tions appear to be “narrowing in” on a value of θ that is above the value of

0.50, although after 4 years of data the value 0.50 is still included in both 95%

and 90% credible intervals.

While the results of Example 11.1 are a pleasing illustration of a sequential

process of gaining more and more knowledge about a parameter θ, as evidenced

by the decreasing variances of the posterior distributions in moving from 1987
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Figure 11.1: Sequential posterior densities for the analysis of sex ratio at birth

in Guanacos. The initial prior was a uniform distribution on the interval (0, 1).
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to 1990, one has to wonder if this truly represents some kind of scientific sup-

port for the concept that θ represents an evolutionarily stable strategy on

which we are “zeroing in” as more data are accumulated. An examination

of the model (and evidenced by the values of α̂ and β̂ in the previous table),

shows that the beta distribution parameters α and β will both increase as more

data are collected. Does this essentially imply that the posterior variance will

decrease as a function of amount of data, regardless of what those data indi-

cate about the value of θ? This question is difficult to answer analytically, but

an example will suffice to illustrate the point.

Example 11.2

First consider a simulated version of the situation of Example 11.1, in which

5 successive values y1, . . . , y5 were independently simulated from a binomial

distribution with parameter θ = 0.55 and binomial sample size fixed at n = 30

for each value. Beginning with a uniform (0, 1) prior, analysis of these data

in the same manner as that of Example 11.1 produced the following posterior

values:

i yi Mean Variance

1 14 0.469 0.0075

2 19 0.548 0.0039

3 18 0.565 0.0026

4 16 0.557 0.0020

5 14 0.539 0.0016

We see in this table essentially the same behavior as that of the table of

posterior values for Example 11.1, which is good, although in that example

we do not know the actual value of θ, while here we know the true value is

θ = 0.55. Nevertheless, what we are doing in this example is essentially trying
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Figure 11.2: Posterior densities for the first set of simulated data in Example

11.2. The true value of θ = 0.55 is shown by the solid vertical line.

to mimic the behavior of data and estimators from that situation with real

data. Graphs of the sequence of prior/posterior densities for the simulated

data are shown in Figure 11.2, which again looks quite similar to Figure 11.1.

Now consider values y1, . . . , y5 simulated from a beta-binomial model in

which the observation or data model is taken to be Bin(θi, n), again with

n = 30, and θ1, . . . , θ5 are values from a beta distribution with parameters

α = 4 and β = 3.2727. These values are the λ in the mixing distribution
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g(θ|λ) and produce E(θ) = 0.55 and var(θ) = 0.0299. Suppose, however, that

we apply the same model used previously in which each yi; i = 1, . . . , 5 is

taken to be from the same binomial with parameter θ and n = 30. In this

case, a sequential analysis, proceeding exactly as above yields the following

results:

Posterior

i yi θi Mean Variance

1 11 0.407 0.375 0.0071

2 16 0.412 0.452 0.0039

3 18 0.532 0.500 0.0027

4 25 0.855 0.582 0.0020

5 20 0.704 0.599 0.0016

While the posterior expectations in the above table are perhaps somewhat

more variable than those from the previous table (although this would be

exceedingly difficult to detect without having the previous values available),

what I want to draw your attention to are the posterior variances, which are

so similar to the first portion of this example as to be discomforting. Graphs

of the posterior densities for these data from fitting the (incorrect) sequential

model are shown in Figure 11.3.

Figure 11.3 is, again, quite similar to Figure 11.2, particularly if one did

not have the solid vertical line showing, in this case, the true expected value

of θi; i = 1, . . . , 5. In fact, without knowledge of the true data generating

mechanism (in this case the simulation distributions) we would not consider

the results of this sequential analysis applied to the two sets of data different

at all, and that is exactly the point. Although the data were simulated from

quite distinct models, an analysis supposing a single binomial parameter gave

quite similar results.
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Figure 11.3: Posterior densities for the second set of simulated data in Example

11.2. The true value of E(θ) = 0.55 is shown by the solid vertical line.
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If we superimpose on the graphs of Figure 11.3 the true distribution g(θ|λ) =

g(θ|α, β) we obtain what is shown in Figure 11.4. If inferences were made about

a value of θ that was (incorrectly) assumed to be constant for these data, we

would base that inference on the densities shown by the solid curves of Figure

11.4, which would clearly be misleading. Relative to the analysis of Example

11.1 about sex ratio at birth in Guanacos, the implications of this exercise is

that we should take no comfort from the progression of posterior densities that

appear to be closing in on a given value of θ. Rather, support for that con-

clusion must come from the scientific argument that θ does in fact represent

an evolutionarily stable strategy, and hence should be considered the same for

each year of observation.

The message of this example is not that Bayesian analysis can result in

misleading inferences. The same difficulty illustrated above could easily be

encountered in a non-Bayesian analysis of this problem. The message is that

uncritical Bayesian analysis can lead to such difficulties, just as uncritical non-

Bayesian analysis. That is, there is no special protection against the deleterious

effects of model misspecification offered by taking a Bayesian approach. No

matter what approach is taken toward estimation and inference of parametric

statistical models, the modeling process itself is critical. Gelman, Carlin, Stern

and Rubin (1995, p. 161) make this same point in emphasizing that the use of

sensitivity analysis in a Bayesian approach should consider not only the effects

of prior specification, but also the likelihood that results from a given data

model.

Now consider a Bayesian analysis of the actual model used to simulate the

second data set of Example 11.2, which was a beta-binomial model. We would

take the model to consist of binomial specifications for independent random

variables Y1, . . . , Y5, each with its own data model parameter θ1, . . . , θ5, which
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Figure 11.4: Posterior densities for the second set of simulated data in Example

1.2 with the true mixing density for values of θ overlaid. The true value of

E(θ) = 0.55 is shown by the solid vertical line.
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follow the same beta distribution with parameters α and β. A prior would be

specified for the distribution of λ ≡ (α, β)T as π(λ). The posterior distribution

p(λ|y) would represent our knowledge about λ in the light of the observed data

y1, . . . , y5. But what about the “posterior” p(θ|y)? Here, given independence

of the Yis and exchangeability or independence of the θis, this distribution

would have the form,

p(θ|y) =
5
∏

i=1

pi(θi|y)

=
5
∏

i=1

pi(θi|yi).

What interpretation should be given to the pi(θi|yi) in this case? This is the

conditional distribution of θi given the observed value yi, but, if each θi is

representation of a unique random variable, what does this conditional distri-

bution (i.e., this “posterior”) tell us? In the model, the common distribution of

the θis, namely g(θ|λ) represented the (distribution of the) ways in which the

scientific mechanism or phenomenon of interest is expressed in observable sit-

uations. But here, each pi(θi|yi) will be a different distribution. Does pi(θi|yi)
then represent what we know about how the mechanism was manifested in the

particular situation that led to the observed value yi? Perhaps. Does pi(θi|yi)
represent what we know about the “true state of nature” in the situation that

led to the observation yi? Perhaps. But, extending the pure reductionist

view that everything would be deterministic if we understood all of the forces

at work in particular situations, the “true state of nature” should represent

forces or factors (i.e., scientific mechanisms or phenomena) that are larger in

scope than can be seen in those particular instances, that is, commonalities or

fundamental laws about nature. And, from this perspective, the conditional

distributions pi(θi|yi) seem to be less of any type of “posterior” distributions
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than simply mathematical expressions of questionable value.

A number of points are relevant at this juncture:

1. It is difficult to fit the above situation into the framework offered by

Carlin and Louis (2000) that in hierarchical models g(θ|λ) is a true prior

on θ that is controlled by a parameter λ about which we have additional

uncertainty and thus use a “second-stage” prior π(λ).

2. There does seem to be a role for g(θ|λ) in inference, since this distrib-

ution is thought (from the modeling exercise) to apply to a broader set

of situations than those under observation, while p(θ|y) concerns only

the particular values of θ that may have been associated with what was

observed.

3. Clearly, whatever view we have of Bayesian (or even non-Bayesain) analy-

sis, a fundamental concern is model formulation. This is one of the

reasons I indicated previously that the viewpoint of “simply putting dis-

tributions on unknown quantities” and then making inference by con-

ditioning unobservable quantities on observable quantities was perhaps

a bit overly simplistic. Without careful consideration of how a model

is connected to a problem under study, which seems most natural by

considering the concepts of random variables, random parameters, and

fixed parameters, no approach to analysis will be guaranteed to provide

reasonable scientific inferences.

4. Coming full circle, I now repeat the claim made in the first sentence of

this part of the course (Chapter 10) that what we are concerned with is

the Bayesian analysis of models, not the analysis of Bayesian models.



Chapter 12

Prior Distributions

Regardless of the overall view one might take toward Bayesian analysis, there

is a need to specify prior distributions for one or more quantities in a model.

In this chapter we consider several topics that are involved in this process of

assigning priors.

12.1 Exchangeability

A common assumption in Bayesian analyses is that the “observable” random

variables Y1, . . . , Yn are exchangeable. The meaning of exchangeable is given

in the following definition.

Definition:

1. Y1, . . . , Yn are marginally exchangeable if, for a probability density or

mass function m(·) and permutation operator P,

m(y1, . . . , yn) = m (P(y1, . . . , yn)) .

571
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2. Y1, . . . , Yn are conditionally exchangeable given z if, for a probability

density or mass function m(·) and permutation operator P,

m(y1, . . . , yn|z) = m (P(y1, . . . , yn)|z) .

The interpretation of these definitions needs clarification. For any valid joint

distribution it is always true that the indices of variables may be permuted.

That is, for random variables X1 and X2 is is always true that

Pr(X1 = x1, X2 = x2) = Pr(X2 = x2, X1 = x1).

This is trivial, not exchangeability. What exchangeability implies is that

Pr(X1 = x1, X2 = x2) = Pr(X1 = x2, X2 = x1),

which is a quite different condition. The implication of exchangeability is that

the probability with which random variables assume various values does not

depend on the “identity” of the random variables involved; this is essentially

a “symmetry”condition.

It is true that iid random variables are exchangeable, and we often assume

the condition of independent and identical distribution, but we should realize

that exchangeability is not the same as either independence or identical dis-

tribution, as shown by the following example.

Example 12.1

1. Exchangeable but not Independent Random Variables. Let the pair of

random variables (X, Y ) be bivariate with possible values

(X, Y ) ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)} ,
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such that each possible value has probability 0.25.

Exchangeability:

Clearly, Pr(X = x, Y = y) = Pr(X = y, Y = x), since each possible

value has the same probability.

Lack of Independence:

Pr(X = 1) = 0.25 and Pr(Y = 0) = 0.5, but Pr(X = 1, Y = 0) =

0.25 6= 0.25(0.5)

2. Independent but not Exchangeable Random Variables.

Let X and Y be any two independent random variables with X be-

ing discrete with probability mass function fX(x); x ∈ ΩX and Y being

continuous with probability density function fY (y); y ∈ ΩY .

Independence: Independence is by assumption, so that the joint (mixed)

density (and mass function) is

m(x, y) = fX(x)fY (y); (x, y) ∈ ΩX × ΩY .

Lack of Exchangeability:

For any y 6∈ ΩX we would have

fX(y)fY (x) = 0 6= fX(x)fY (y),

so that X and Y cannot be exchangeable.

In the first portion of this example, what “messes up” independence is the

lack of what has previously been called the positivity condition. That is, while

ΩX ≡ {−1, 0, 1} and ΩY ≡ {−1, 0, 1}, and the probability distributions of X

and Y on these sets is the same (i.e., X and Y are identically distributed), it

is not true that ΩX,Y = ΩX ×ΩY . In the second portion of the example, what
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“messes up” exchangeability is that the sets of possible values ΩX and ΩY are

not the same, although the positivity condition does hold in this case.

In general, random variables that are not identically distributed cannot

be exchangeable, random variables that are independent and identically dis-

tributed are exchangeable, but exchangeability is not the same property as

independence.

The role of exchangeability in formulation of prior distributions follows

from a famous theorem of de Finetti (1974) which essentially states that, if

quantities θ1, . . . , θn are exchangeable following the same distribution m(θi|λ)

where λ is unknown, then any suitably “well-behaved” joint distribution for

these quantities can be written in the mixture form,

m(θ) =
∫

Λ

{

n
∏

i=1

m(θi|λ)

}

π(λ) dλ,

as n→ ∞.

What this theorem basically justifies is the use of a prior as a mixing

distribution in distributions that have the form of an iid mixture. We relied

on exchangeability of Y1, . . . , Y4 in Example 12.1 for the sequential analysis of

sex ratio at birth in Guanacos. In hierarchical models, exchangeability of the

data model parameters {θi : i = 1, . . . , n} and de Finetti’s theorem does lend

some credence to thinking of a distribution,

πθ(θ) =
∫

Λ

{

n
∏

i=1

g(θi|λ)

}

π(λ) dλ,

as a prior to be applied to the data model f(y|θ).
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12.2 Conjugate Priors

We have already seen the use of conjugate priors in Example 10.1 and Ex-

amples 11.1 and 11.2 on sequential Bayes. To expand on conjugacy, consider

a simple setting with observation model f(y|θ) and prior π(θ|λ0), where we

have written the prior as a parameterized distribution, but are considering λ0

to be a known (or specified) value. The prior π(·) is conjugate for the data

model f(·|·) if the resultant posterior has the form,

p(θ|y) =
f(y|θ) π(θ|λ0)

∫

Θ
f(y|θ) π(θ|λ0) dθ

= π(θ|h(y,λ0)),

where h(y,λ0) is some function of y and λ0. That is, if in the transition from

prior to posterior, the effect of the data y is only to modify the parameter

values of the prior, not its functional form, then the prior π(·) is said to be

conjugate for the given data model f(·|·).

Example 12.2

Consider a data model consisting of Y1, . . . , Yn ∼ iidN(µ, σ2) where σ2 is con-

sidered known, and our interest is in the fixed parameter µ. Let the prior for

µ be specified as µ ∼ N(λ, τ 2), where both λ and τ 2 are specified values. The

posterior of µ is easily shown to be a normal distribution with parameters

σ2λ + τ 2nȳ

nτ 2 + σ2
;

σ2τ 2

nτ 2 + σ2
.

Note also in this example that the posterior mean may be written as a weighted

average of the prior mean λ and the usual data estimator ȳ as

n
σ2 ȳ + 1

τ2 λ
n
σ2 + 1

τ2

.
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This form also indicates why many statisticians write model formulations to

which a Bayesian analysis is to be applied in terms of “precision” parameters

(here 1/σ2 and 1/τ 2) rather than variances.

12.3 Noninformative Priors

In some ways the phrase “noninformative prior” is an unfortunate title for

several of the methods for prior formulation discussed in this section. In the

sense that noninformative implies providing no information, not all “noninfor-

mative” priors should be considered as such. Nevertheless, this has become the

standard heading under which to consider the methods for formulating priors

that we consider here.

12.3.1 Proper Uniform Priors

The parameter space of some data or observation models is bounded both

above and below. For example, a binomial model with parameter θ implies

that 0 < θ < 1. A multinomial model with k + 1 categories and parameters

θ1, . . . , θk implies that both 0 < θj < 1 for j = 1, . . . , k and that
∑

j θj ≤ 1.

In these situations, placing a uniform prior on the allowable interval allows us

to express a prior belief that gives no preference to any of the possible values

of the parameter θ. We have already seen examples of a uniform priors used

in this manner in previous examples that combine binomial data models with

priors that take θ ∼ Unif(0, 1).

In other models, even when the data model parameter space is unbounded

in one or both directions, it may be possible to determine an interval (a, b)

such that it is either physically impossible, or scientifically implausible that
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θ < a or θ > b. In these cases, it may be reasonable to assign θ a prior

distribution that is uniform on the given interval.

Uniform priors sometimes (but not always) simplify calculation of the inte-

gral that appears in the denominator of expression (10.1) since then we have,

∫

Θ
f(y|θ)π(θ) dθ =

1

b− a

∫ b

a
f(y|θ) dθ.

An objection to uniform priors as “noninformative” is that uniform distri-

butions are not invariant to transformation. For example, if θ ∼ U(0, 1) then

η = 1/θ has density h(η) = 1/η2; 1 < η < ∞. Thus, the indifference that

would seem to be expressed by the uniform prior on θ does not translate into

indifference about values of η, although the data model may be equivalently

expressed as either f(y|θ) or f(y|η). Note that this is an objection to uniform

priors being thought of as noninformative in nature, not as an objection to

uniform priors per se.

12.3.2 Improper Priors

For data models that have parameters with unbounded parameter space from

one or both directions, an extension of the idea of giving all possible values

equal prior weight results in improper priors of the form

π(θ) = 1; θ ∈ Θ,

which are clearly not distributions since they do not integrate to any finite

value as long as Θ is not a bounded set. Improper priors do not, however,

necessarily imply improper posteriors. As long as the integral

∫

Θ
f(y|θ) dθ = K(θ) <∞,
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then the posterior distribution

p(θ|y) =
f(y|θ)

∫

Θ
f(y|θ) dθ

=
f(y|θ)
K(θ)

,

will exist and will integrate to 1. It has actually become quite popular to use

improper priors, particularly for some elements of the parameter vector θ in

complex models that involve a parameter θ of high dimension.

Improper priors perhaps deserve the label “noninformative” in that poste-

rior distributions in simple cases with improper priors often result in essentially

the same conclusions that would be reached under the sampling distribution

of non-Bayesian estimators.

Example 12.3

Consider again the situation of Example 12.2 in which Y1, . . . , Yn ∼ iidN(µ, σ2)

with σ2 known. By sufficiency, we may reduce this data model to consider-

ation of Ȳ ∼ N(µ, σ2/n). Suppose that we place an improper prior on µ as

π(µ) = 1; −∞ < µ <∞. The resulting posterior is,

p(µ|y) =
exp

{

− n
2σ2 (ȳ − µ)2

}

∫ ∞

−∞
exp

{

− n

2σ2
(ȳ − µ)2

}

∝ exp
{

− n

2σ2
(µ− ȳ)2

}

,

which is the density of a normal distribution with mean ȳ and variance σ2/n,

that is, p(µ|y) is N(ȳ, σ2/n). While we have not yet discussed Bayesian esti-

mation and inference, it should be intuitive that a reasonable point estimate

of µ is the expectation of the posterior distribution which would be, in this

case, ȳ which agrees with any sensible non-Bayesian estimation. Similarly, a

reasonable 90% interval estimate would be the central 90% of the posterior
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density or distribution, namely ȳ± 1.645 (σ2/n) which again agrees with what

would be obtained from a non-Bayesian approach.

As illustrated by Example 12.3, improper priors often lead to situations in

which the prior actually plays no role at all or is, in truth, “noninformative”.

It may be the case that we wish to take this approach for certain elements

of θ, while placing informative proper prior distributions on our knowledge of

other elements of θ. The standard caution in use of improper priors is that

one must be certain that the resulting posterior is in fact a distribution. This

is not always a trivial matter.

12.3.3 Jeffreys’ Priors

Consider again the objection to using uniform prior distribution that they are

not invariant to transformation in expressing lack of knowledge or indiffer-

ence about values of a parameter. Jeffreys (1961) introduced a procedure for

prior formulation based on the idea that any noninformative prior should be

equivalent, in terms of expression of prior knowledge, on different scales.

To understand this, consider a data model with scalar parameter, and a

procedure for assigning a prior, such as priors that are uniform on the range

of the parameter space. If applied to the data model f(y|θ) with parame-

ter space θ ∈ Θ ≡ (θ1, θ2), this procedure results in the prior πθ(θ). Now

consider an alternative parameterization using η ≡ h(θ) for some one-to-one

transformation h(·). An equivalent model is now f(y|η) with parameter space

η ∈ (h(θ1), h(θ2)). Applying the same procedure for prior formulation as used

under the model f(y|θ) results in a prior πη(η). But, the original prior πθ also

implies a distribution for η ≡ h(θ) as,

π′
η(η) = πθ(h

−1(η))

∣

∣

∣

∣

∣

d h−1(η)

d η

∣

∣

∣

∣

∣
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= πθ(θ)

∣

∣

∣

∣

∣

d θ

d η

∣

∣

∣

∣

∣

. (12.1)

Jeffreys idea was that the procedure for assigning priors πθ(θ) and πη(η) is

invariant under transformation if

πη(η) = π′
η(η),

that is, if the prior assigned under the model f(y|η) is the same as the distrib-

ution that results from the prior assigned under model f(y|θ) by transforming

θ into η. As we have seen in Section 12.3.1, assigning uniform priors on the

ranges of parameter spaces does not result in this property.

The suggestion Jeffreys gave for a procedure to assign priors that would

result in this property was to take, under a model f(y|θ),

[πθ(θ)]
2 ∝ E





(

d log f(y|θ)
d θ

)2




= −E
[

d2 log f(y|θ)
d θ2

]

= I(θ),

or,

πθ(θ) = {I(θ)}1/2 . (12.2)

The form (12.2) is thus known as Jeffreys prior.

To verify that the procedure (12.2) does result in the desired property for

priors, apply this procedure to the model f(y|η), which gives,

[πη(η)]
2 ∝ E





(

d log f(y|η)
d η

)2
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= E





(

d log f(y|θ)
d θ

∣

∣

∣

∣

∣

d θ

d η

∣

∣

∣

∣

∣

)2




= E





(

d log f(y|θ)
d θ

)2




∣

∣

∣

∣

∣

d θ

d η

∣

∣

∣

∣

∣

2

= I(θ)

∣

∣

∣

∣

∣

d θ

d η

∣

∣

∣

∣

∣

2

,

or,

πη(η) = {I(θ)}1/2

∣

∣

∣

∣

∣

d θ

dη

∣

∣

∣

∣

∣

.

Now, using (12.1), the distribution for η implied by (12.2) is

π′(η) = {I(θ)}1/2

∣

∣

∣

∣

∣

d θ

d η

∣

∣

∣

∣

∣

.

Thus, π′
η(η) = πη(η) and the approach suggested by Jeffreys does result in the

property desired.

Example 12.4

Suppose that we have a single observation corresponding to the data model

Y ∼ Bin(θ, n) where n is fixed. We now have two choices for assigning

θ a so-called noninformative prior distribution. The first would be to take

π1(θ) = 1; 0 < θ < 1, while the second would be to use the procedure of

Jeffreys. In this case,

I(θ) = −E
[

d2 log f(y|θ)
dθ2

]

=
n

θ(1 − θ)
,

so that Jeffreys prior would be π2(θ) ∝ {θ(1 − θ)}]−1/2. As we have already

seen in Example 10.1, the uniform prior results in a beta posterior with para-
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meters 1+ y and 1+n− y. A parallel derivation gives the posterior associated

with the Jeffreys prior as beta with parameters (1/2) + y and (1/2) + n− y.

In principle, Jeffreys’ method for forming noninformative priors can be

extended to the case of vector valued θ by taking

πθ(θ) ∝ |I(θ)|1/2 ,

where |I(θ)| here denotes the determinant of the expected information matrix

I(θ). This type of multidimensional prior can be difficult to achieve in practice,

however, and Jeffreys priors are usually seen in simpler cases with scalar θ.

12.4 Priors for Vector Parameters

Although much of what we have presented applies in principle to parameter

vectors θ (e.g., Jeffreys priors), the practical assignment of a joint prior to a

p-dimensional parameter θ can become less than an easy matter. Two tech-

niques that are often used in such situations are to take joint priors as products

of individual (marginal) priors in the same way we would form a joint distrib-

ution for independent random variables, and to specify priors for some of the

components of θ as conditional on the others, and specify a marginal prior for

those other components. We illustrate these two techniques here for a model

with two-dimensional parameter θ ≡ (θ1, θ2)
T .

Example 12.5

Consider again the beta-binomial mixture model of Example 10.2. There we

had

Y1, . . . , Ym ∼ indepBin(θi)

θ1, . . . , θm ∼ iidBeta(α, β)
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What is necessary to conduct a Bayesian analysis for this model is a prior for

the parameter λ ≡ (α, β)T . Now, the parameter space is α > 0, β > 0, but if

we first reparameterize the beta mixing distribution in terms of parameters,

µ =
α

α + β
and η =

1

α + β + 1
,

then 0 < µ < 1 and 0 < η < 1. We might then assign the joint prior as

π(µ, η) = πµ(µ) πη(η),

where both πµ(·) and πη(·) are uniform distributions on the interval (0, 1).

Derivation of the posterior p(α, β|y) would, in this example, require the use

of simulation methods.

Example 12.6

Consider again the normal one-sample problem of Example 12.3, but now not

assuming that the variance σ2 is known. Here, it would not be possible to

consider only the distribution of Ȳ in the likelihood, since Ȳ is sufficient for µ

but not σ2. Thus, we must work with the full joint distribution of Y1, . . . , Yn,

which can be written as,

f(y|µ, σ2) = {2πσ2}n/2 exp

[

− 1

2σ2

n
∑

i=1

(yi − µ)2

]

= {2πσ2}n/2 exp

[

− 1

2σ2

{

n
∑

i=1

(yi − ȳ)2

}

− 1

2σ2
n (ȳ − µ)2

]

.

One way to assign the joint prior π(µ, σ2) to this model is to use the conditional

prior π1(µ|σ2) and the marginal prior π2(σ
2) as,

π1(µ|σ2) =
1√

2πσ2
exp

[

− κ0

2σ2
{µ− µ0}2

]
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π2(σ
2) =

βα0
0

Γ(α0)
{σ2}−(α0+1) exp{−β0/σ

2}.

Here, π1(·) is normal with parameters µ0 and σ2/κ0, while π2(·) is inverse

gamma with parameters α0 and β0, which are conjugate for µ in a model with

σ2 assumed known and σ2 with µ assumed known, respectively.

It can be shown, using this model with prior π(µ, σ2) = π1(µ|σ2) π2(σ
2)

that the marginal posterior p(µ|y) is a t− distribution, the marginal poste-

rior p(σ2|y) is an inverse gamma distribution, and the conditional posterior

p(µ|σ2,y) is a normal distribution (e.g., Gelman, Carlin, Stern and Rubin,

1995, pp. 72-73). What is important for us at this point is the use of the con-

ditional prior π1(µ|σ2). First, the fact that σ2 appears in this prior indicates

that µ and σ2 are not independent in the joint prior π(µ, σ2).

Secondly, the fixed constant κ0 plays the role of the “number of obser-

vations” we believe our prior information about µ is “worth” in the overall

problem; note that π1(·) has the form of the distribution of the sample mean

of κ0 observations taken from a N(µ, σ2) distribution.

Gelman, Carlin, Stern and Rubin (1995) use this example also as a simple

case in which simulation-based derivation of the posterior is valuable. While

the marginal posteriors are of relative “nice” forms, and the joint posterior

can be derived in closed form, this joint posterior is not necessarily easily

manipulated to find, for example, expectations, quantiles, and so forth. But

the fact that the conditional posterior p(µ|σ2,y) is normal and the marginal

p(σ2|y) is inverse gamma indicates that these two univariate distributions may

be easily simulated from. An algorithm to simulate values from the joint

posterior is then also easily constructed as follows:

1. Generate (or draw or simulate) a value σ2∗ from the marginal posterior



12.4. PRIORS FOR VECTOR PARAMETERS 585

p(σ2|y).

2. Using this value, generate a value µ∗ from the conditional posterior

p(µ|σ2∗,y).

3. The resulting pair (µ∗, σ2∗) is one value from the joint posterior P (µ, σ2|y).

4. Repeat this process a large number M times, and make inference based

on the empirical distribution of the set of values {(µ∗
j , σ

2∗
j ) : j = 1, . . . ,M}.

It is also instructive to contrast Example 12.6 to what would happen if,

instead of specifying π1(µ|σ2) as N(µ0, σ
2/κ0) we would use independent priors

and simply take p(µ) as N(µ0, τ
2
0 )) for example. In this case (e.g., Gelman,

Carlin, Stern and Rubin, 1995, Chapter 3.4) µ and σ2 are still dependent in

the joint posterior, the conditional posterior of µ given σ2 is again normal, but

the marginal posterior of σ2 cannot be derived in closed form. The simulation

algorithm given above can also be used in this situation, but the initial step

of generating σ2∗ becomes more difficult, and must make use of an indirect

method of simulation (e.g., inversion, rejection sampling, etc.).
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Chapter 13

Basic Estimation and Inference

In some ways, discussing Bayesian methods of inference is a very short topic.

Under the concept of epistemic probability, a posterior distribution represents

our knowledge about a parameter of interest. That is, given a posterior p(θ|y),

we are free to make probability statements about θ with the understanding

that our statements actually refer to our knowledge about the value of θ which,

under the strict Bayesian viewpoint is a fixed parameter and under the view-

point of Bayesian analysis of uncertainty is just some unknown quantity. That

is, in this context it is perfectly acceptable to write a statement such as

Pr(a ≤ θ ≤ b) = α,

where a, b, and α are all particular real numbers. Nevertheless, there are a few

particular issues relative to Bayesian inference that merit brief consideration.

Before moving on to these, we will mention that, although inference is to

be based on a posterior, there are several broad methods for obtaining those

posteriors, several of which have been eluded to in the previous sections. We

may find a posterior distribution through one of three avenues:

1. Analytical derivation.

587
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2. Approximation.

3. Simulation.

The first of these, analytical derivation, we have seen in a number of the

examples presented. Here, a posterior is derived in closed mathematical form,

usually as a probability density function. Simple models with conjugate priors

are a prime example of situations in which this approach is useful. We will

not discuss approximation in this course, but will only mention that the most

popular such approximation is known as the Laplace Approximation. For a

very accessible introduction to this approximation see Carlin and Louis (2000)

Chapter 5.2.2. Finally, simulation of posteriors has become the most widely

used method for finding posteriors in use today. This is because it may be

applied to a huge variety of models, many of which could not be approached

by any other technique. Our department offers a course (the old Stat 601, the

number of which was usurped for this current course, and has yet to receive

a new designation) in which simulation of posteriors using methods known

collectively as Markov Chain Monte Carlo (MCMC) are the bulk of what is

discussed.

13.1 Point Estimation

While it is well and fine to indicate that, given a posterior distribution, one

is free to make any probability statement desired, there is typically still a

desire for concise summarization of a posterior. For example, we may desire

as a summarization of the location of a posterior distribution a single value

or “point estimate”. Here, I am about to start sounding like I’m teaching

Statistics 101 because the values that are used are the posterior mean, median,



13.1. POINT ESTIMATION 589

or mode. The median is not used that frequently, the mode is still popular,

but less than it was before the advent of MCMC simulation, and the mean is

often the quantity of choice in Bayesian analyses.

The posterior mode is often the easiest to find in an analytical approach,

because it does not depend on finding the posterior “normalizing constant”,

the denominator of

p(θ|y) =
f(y|θ) π(θ)

∫

Θ
f(y|θ) π(θ) dθ

.

As shown for one case in Example 12.3, if π(θ) ∝ 1 for θ ∈ Θ, then the

posterior mode is equal to the maximum likelihood estimate, since then,

max
θ

p(θ|y) = max
θ

f(y|θ).

Use of the posterior mean or expected value can be justified based on

decision-theoretic grounds, if one considers squared error loss (e.g., Berger,

1985, p. 161). For scalar θ, the posterior mean is given in the obvious way as,

E{θ|y} =
∫

Θ
θ p(θ|y) dθ, (13.1)

and is sometimes reported along with the posterior variance,

var(θ|y) =
∫

Θ
(θ −E{θ|y})2 dθ. (13.2)

For vector-valued parameters θ,

E{θ|y} = (E{θ1|y}, . . . , E{θp|y}),

and expression (13.1) continues to hold for the component quantities with θ

replaced by θj and p(θ|y) replaced by pj(θj|y), the marginal posterior of θj ;

j = 1, . . . , p. The same is true for the variances and expression (13.2), with
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the additional covariances given as,

cov(θj, θk) =

∫

Θ

∫

Θ
(θj −E{θj |y})(θk − E{θk|y})pj,k(θj , θk|y) dθj dθk, (13.3)

where pj,k(θj , θk|y) is the joint marginal posterior of θj and θk.

13.2 Interval Estimation

Although posterior variances and covariances can be, and often are, computed

as given in expressions (13.2) and (13.3) they are typically not used to form

interval estimates of θ or its components. This is because we are not dealing

with sampling distributions of estimators, and because we have at hand the

entire posterior distribution of θ. The Bayesian analog of confidence sets or

intervals are typically called “credible sets” or “credible intervals”. All that is

needed is a sensible way to make probability statements such as Pr(a ≤ θ ≤
b) = 1 − α and find the appropriate values of a and b. The basic definition of

a credible set for θ is a set C such that

1 − α ≤ Pr(θ ∈ C|y) =
∫

C
p(θ|y) dθ. (13.4)

If θ should happen to be discrete the integral in (13.4) is replaced with a

summation.

For a given posterior p(θ|y) there may be many sets C that satisfy (13.4).

One technique that has been used to help get around this difficulty is to define

a Highest Posterior Density credible set as a set

C∗ = {θ : p(θ|y) ≥ k(α)},

where k(α) is the largest constant such that C∗ is a credible set. What this
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means is that, for any θ∗ ∈ C∗ and any other θ ∈ C∗′, where C∗′ is the comple-

ment of C,

p(θ∗|y) ≥ p(θ|y).

In other words, the posterior density for any value of θ included in the credible

set is at least as great as that for any value not in the credible set.

While highest posterior density (HPD) credible sets are not hard to find

for scalar θ, they can be quite difficult to determine in higher dimensions. In

addition, HPD credible sets are not invariant to transformation of θ. For a

more complete discussion of issues involved with credible sets, HPD credible

sets and their extension to “optimal” credible sets see Berger (1985).

In many applications and, in particular, those in which the posterior is

found through the use of simulation, a common practice is to use the “central”

1 − α interval for any component of θ, regardless of whether it would qualify

as an HPD interval or not. That is, if we wish a (1−α)100% credible interval

for θj , that interval is given by (L, U) where

1 − α/2 =
∫ L

−∞
p(θj |y) dθj

1 − α/2 =
∫ ∞

U
p(θj |y) dθj (13.5)

and where p(θj |y) is the marginal posterior of θj .

13.3 Model Comparison

Suppose that we have two competing models denoted as M1 and M2 that we

would like to compare in light of a set of observations y. These models may

differ in the number of parameters associated with covariates (e.g., a typical

“variable selection” problem in regression), by one model having fixed values
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for a portion of a vector-valued parameter (e.g., µ = 0 in a normal data

model), by having parameter values that are restricted to different regions of

a partitioned parameter space (e.g., p < 0.5 versus p > 0.5 in a binomial

model), by having different priors, or by having different data models f1(y|θ1)
and f2(y|θ2) (e.g., gamma versus lognormal). Notice that, in particular, we do

not require nested parameter spaces for our competing models.

Now, suppose we represent our beliefs about the possible models M1 and

M2 in terms of a prior distribution, which will necessarily place distinct proba-

bilities on the possible modelsM1 andM2 (e.g., π(M1) = γ and π(M2) = 1−γ).
Let the values of this prior be represented as Pr(M1) and Pr(M2). The two

models may then be compared by taking the ratio of posterior probabilities of

the models as the “posterior odds ratio”.

Pr(M1|y)

Pr(M2|y)
=

Pr(M1)

Pr(M2)

Pr(y|M1)

Pr(y|M2)

=
Pr(M1)

Pr(M2)
BF (M1, M2)

(13.6)

where BF (M1, M2) denotes the “Bayes Factor” of model M1 relative to model

M2, namely,

BF (M1, M2) =
Pr(y|M1)

Pr(y|M2)
. (13.7)

Ways to interpret the concept quantified in a Bayes factor include:

1. BF is ratio of posterior odds in favor of model M1 to the prior odds in

favor of model M1, as,

BF (M1, M2) =
Pr(M1|y)/Pr(M2|y)

Pr(M1)/Pr(M2)
.

2. BF is a likelihood ratio, which is a direct interpretation of expression

(13.7), that is, the ratio of the likelihood of the data y under model M1
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to the likelihood of the data y under model M2. Note, however, that

the Bayes Factor of (13.7) is written in terms of probabilities rather than

densities.

If the Bayes factor BF (M1, M2) is greater than 1, then the posterior odds

in favor of model M1 are increased from the prior odds. If the prior odds ratio

is taken to be 1 (i.e., Pr(M1) = Pr(M2) = 0.5) the the Bayes factor is equal

to the posterior odds ratio in favor of M1. How big should BF (M1, M2) be

in order for us to have substantially greater belief in M1 than M2? Kass and

Raftery (1995) give a slightly modified version of a scale suggested by Jeffreys

(1961) which suggests that values from 3.2 to 10 provide some evidence in favor

of M1, values from 10 to 100 provide strong evidence, and values greater than

100 provide “decisive” evidence. These authors also suggest their own scale

which results in the same categories of evidence for ranges of Bayes factors 3 to

20 (some evidence), 20 to 150 (strong evidence) and greater than 150 (decisive

evidence).

Now, in a situation in which a model is formulated through density func-

tions,a given model Mi is embodied through its data model fi(y|θi) and its

prior πi(θi) so that Pr(y|Mi) is associated with the density,

hi(y|Mi) =
∫

fi(y|θi) πi(θi) dθi,

or, in the case of a hierarchical model,

hi(y|Mi) =
∫

fi(y|θi) g(θi|λi) πi(λi) dθi dλi.

The Bayes factor for models M1 and M2 is then often written in terms of these

densities as,

BF (M1, M2) =
h1(y|M1)

h2(y|M2)
, (13.8)
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where the notation hi(·); i = 1, 2 has been used to emphasize that these den-

sities are not necessarily of the same form.

Now, the Bayes factor of (13.8) is based on densities, not probabilities (cf.

13.7), but to have interpretation as developed from the posterior odds ratio of

expression (13.6) we still need it to be true that,

Pr(M1|y) =
Pr(M1)h1(y|M1)

Pr(M1)h1(y|M1) + Pr(M2)h2(y|M2)
,

(13.9)

and similarly for Pr(M2|y). What is needed in order for (13.9) to hold? Es-

sentially the same type of conditions as were needed in order for likelihoods

to be proportional to the probability of data y for given parameters θ in Sec-

tion 8.3.1 of Part II of these notes. Here, we extend the basic idea of using

a linear approximation to the integral mean value theorem (what we actually

depended on for likelihood is usually called the intermediate value theorem)

from the case of independent variables to that of a joint density hi(y|Mi).

Consider a joint density hi(y|Mi) evaluated at the observed values y. In

order to apply the mean value or intermediate value theorems for multiple

integrals, we can use the following:

(i) The value y implies that there exists an n−dimensional ball δy, centered

at y, such that for the random variable Y associated with the situation

that led to y,

Pr(Y ∈ δy) =
∫

δy
hi(t|Mi) dt.

(ii) The set δy is connected in the sense that any two points of δy can be

joined by an arc that lies entirely in δy.
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(iii) The density function hi(·) is continuous on δy.

Under these conditions, and the assumption that δy is of sufficiently small

volume, a similar argument as used to connect likelihood with probability

gives that
∫

δy
hi(t|Mi) dt ≈ |δy|hi(y|Mi), (13.10)

or Pr(y|Mi) ∝ hi(y|Mi). Now, the last thing needed in order to make (13.9)

hold is then that the volume |δy| be the same for models M1 and M2. If this

is the case, then (13.9) may be used on the right hand side of (13.6) to give,

Pr(M1|y)

Pr(M2|y)
=

Pr(M1)

Pr(M2)

h1(y|M1)

h2(y|M2)

=
Pr(M1)

Pr(M2)
BF (M1, M2),

with the Bayes factor BF defined as in expression (13.8). For the majority of

models we deal with, the conditions needed to take the Bayes factor as a ratio

of densities is not likely to raise any concern. But, if competing data models

would happen to differ in functional form, then greater caution is needed.

Example 13.1

In the continuation of Example 5.2 contained in Section 7.3.1 of these notes we

considered a number of possible models for analysis of a hypothetical study of

the effect of violent cartoons and stories on aggression in children. The mea-

sured quantities were responses of “like”, “do not like”, or “don’t care about”

made to pictures shown to children who had watched or been read “violent”

or “happy” cartoons or stories. In considering possible random variables that

could be constructed for this setting, and possible distributions that might

be assigned to those random variables, we discussed possible models based on

binomial, multinomial, and beta distributions. Any of these models could be
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analyzed through a Bayesian procedure. If we were to attempt a comparison of

two of these models, say the beta model and the multinomial model, through a

Bayes factor, the issue described immediately above would become important.

Suppose, for example, that we took y to be the proportion of the total “score”

possible over 20 pictures by making “don’t like” correspond to 0, “don’t care”

correspond to 1 and “like” correspond to 2, then summing these scores across

pictures for each child and dividing by 40 (the maximum “aggression score”

possible).

We might then take f1(y|θ1) to be beta with a (joint) prior for θ1 formulated

as a product of uniform (0, 1) densities as described in Example 12.5 in Chapter

12.4. Also suppose that we took f2(y|θ2) to be multinomial with a (joint) prior

for θ2 given as a Dirichlet. It would be possible, of course, to derive h1(y|M1)

from the beta model and h2(y|M2) from the multinomial model, and then just

slap these distributions into expression (13.8) calling the result a Bayes factor.

This would clearly be a mistake, and the formal reason for this is the above

discussion.

Another potential difficulty with the use of Bayes factors occurs with the

use of improper prior distributions. In this case it may be true that numerical

values may be computed for the integrals preceding expression (13.8) (this will

be the case whenever improper priors lead to proper posteriors) but the Bayes

factor is nevertheless undefined, since these integrals cannot be considered

proportional to Pr(y|Mi) as in expression (13.7). The distinction is that, in

derivation of a posterior, we consider

p(θ|y) ∝ f(y|θ),

where the proportionality constant is the integral
∫

Θ
f(y|θ)π(θ) dθ.
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Thus, so long as this integral is finite, the posterior exists as a proper distrib-

ution. For use in a Bayes factor, however, we need this same integral to result

in a density for the argument y as,

h(y) =
∫

Θ
f(y|θ)π(θ) dθ,

such that
∫ ∞

−∞
h(y) dy = 1.

If f(y|θ) is a proper density with support Ω and π(θ) is an improper prior

over Θ, the function h(·) cannot be a density with argument y because then,
∫ ∞

−∞
h(y) dy =

∫

Ω

∫

Θ
f(y|θ)π(θ) dθ dy

=
∫

Θ

∫

Ω
f(y|θ)π(θ) dy dθ

=
∫

Θ
π(θ) dθ,

which is not finite.

Despite the potential difficulties with Bayes Factors they can often be a

useful method for comparing among models. In addition, for cases in which

Bayes factors are defined, they may also be used to conduct what might be

thought of as Bayesian tests of hypotheses.

Example 13.2

Consider again the analysis of sex ratio at birth in Guanacos of Example 11.1

discussed at some length in Chapter 11. With θ being defined as the probability

of a male birth, we may formulate a hypothesis in this example of H0 : θ ≤ 0.5

and an alternative hypothesis of H1 : θ > 0.5. Let these hypotheses corre-

spond to the models M2 and M1, respectively. That is, model M2 corresponds



598 CHAPTER 13. BASIC ESTIMATION AND INFERENCE

to θ ≤ 0.5 while model M1 corresponds to θ > 0.5. Suppose that, a priori we

give these two models equal weight, so that Pr(M1) = Pr(M2) = 0.5. Since,

in this case, models correspond to values of θ, these hypotheses are naturally

reflected in a uniform prior for θ on the interval (0, 1); there are other priors

that could also reflect these hypotheses (anything with a density symmetric

about 0.5 would suffice), but the uniform serves nicely in this case. The prior

odds of M1 to M2 is then 0.5/0.5 = 1.0. In this case, then, expression (13.6)

indicates that the posterior odds of M1 to M2 become

Pr(M1|y)

Pr(M2|y)
= BF (M1, M2).

Now,

Pr(M1|y) = Pr(θ > 0.5|y),

and,

Pr(M2|y) = Pr(θ ≤ 0.5|y).

At the end of four years of data collection (1990) we had that, beginning with a

uniform prior, the posterior distribution of θ was beta with parameters α = 185

and β = 161 (see Chapter 11). Thus, the posterior odds, or Bayes factor, in

favor of model M1 are

Pr(θ > 0.5|y)

Pr(θ ≤ 0.5|y)
=
Pr(θ > 0.5|α = 185, β = 161)

Pr(θ ≤ 0.5|α = 185, β = 161)
.

These values are easily computed for a beta distribution to be,

Pr(θ > 0.5|y)

Pr(θ ≤ 0.5|y)
=

0.90188

0.09812
= 9.1913.

Using typical scales for “strength of evidence” as discussed earlier in this Sec-

tion we would conclude that there is some, but not strong, evidence against M2

in favor of M1, which agrees with our assessment from the credible intervals

of Chapter 11.
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13.4 Predictive Inference

It is often the case that we desire a predictive distribution for a “new” obser-

vation y∗, presumed to follow the same model as the components of y. Such

predictive distributions may be useful in their own right for the purposes of

forecasting if y∗ lies outside of the extent (or spatial and temporal window)

of the available observations y, or prediction if y∗ lies within the extent of

the available data but corresponds to a location or time or general “position”

that is not observed in the data. In addition, predictive distributions may

be useful in model assessment from the viewpoint that a good model predicts

well. Quantifying the agreement of “replicated” data with actual data, where

the replicated data are simulated from a predictive distribution is one way

to accomplish this type of model assessment (e.g., Gelman, Carlin, Stern and

Rubin 1995, Chapter 6.3).

The fundamental distribution used in predictive inference is the poste-

rior predictive distribution p(y∗|y), which is in concert with the viewpoint

of Bayesian analysis of unknowns in that inference about unobserved quanti-

ties are made on the basis of the conditional distributions of those quantities

given the observed data. Consider either a simple model consisting of f(y|θ)
and the prior π(θ), or a hierarchical model in which we view the mixture
∫

g(θ|λ)π(λ) dλ to constitute a prior for θ as πθ(θ). Using the notation p(·)
as a generic probability density or mass function, and assuming that y∗ is

conditionally independent of y given θ,

p(y∗|y) =
p(y∗,y)

p(y)

=
1

p(y)

∫

Θ
p(y∗,y, θ) dθ

=
1

p(y)

∫

Θ
p(y∗|θ)p(y|θ)p(θ) dθ
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=
1

p(y)

∫

Θ
p(y∗|θ)p(θ,y) dθ

=
∫

Θ
p(y∗|θ)p(θ|y) dθ.

(13.11)

Conditional independence of y∗ and y is used in the transition from line

2 to line 3 of expression (13.11). Notice that (13.11) indicates the posterior

predictive density of y∗ is the expected value of p(y∗|θ), which will be of the

same form as the data model f(y|θ), taken with respect to our knowledge

about θ as represented by the posterior distribution p(θ|y). Now, reverting to

the use of f(·) for the data model density and p(·|y) for a posterior density,

the posterior predictive density of y∗ may be written as,

p(y∗|y) =
∫

Θ
f(y∗|θ)p(θ|y) dθ. (13.12)

In a hierarchical model it is also possible to derive a conditional posterior

predictive density for y∗ as,

p(y∗|y,λ) =
∫

Θ
f(y∗|θ)p(θ|λ,y) dθ. (13.13)

Expression (13.12) is the same as expression (13.11) with notation to make

the roles of the data model f(y∗|θ) and posterior p(θ|y) explicit. Expression

(13.13) can be derived along the lines of (13.11), leading to the conditional

posterior predictive distribution in notation parallel to that of the ordinary

or marginal posterior predictive density (13.12). While the predictive density

(13.13) is certainly less common in typical Bayesian analysis, it does appear

on occasion, for example in the dynamic models of West and Harrison (1989).

To make use of the conditional distribution (13.13) one would need a plug-in

value for λ in the same way that this is required for use of the conditional

posterior p(θ|λ,y) of expression (10.7).



Chapter 14

Simulation of Posterior

Distributions

The basic idea of simulation of a posterior distribution is quite simple. Suppose

that we have a model that consists of a data model f(y|θ) and a prior π(θ).

The posterior is

p(θ|y) =
f(y|θ)π(θ)

∫

Θ f(y|θ)π(θ) dθ

∝ f(y|θ)π(θ). (14.1)

Note that both the left and right hand sides of this expression must be

considered as functions of θ. Suppose that the integral in the denominator

of the first line of (14.1) is intractable so that the posterior p(θ|y) cannot be

derived in closed form. A typical goal in simulation of posteriors is then to

use the last line of expression (14.1) to allow simulation of values from p(θ|y)

even in such cases. In a hierarchical model we have a data model f(y|θ),
an intermediate distribution g(θ|λ), which can be considered either a part of

601
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the model as a mixing distribution or a part of the prior, depending on the

viewpoint taken, (see Chapter 10) and a prior or final stage prior π(λ). For

this type of model with θ ∈ Θ and λ ∈ Λ, we may have interest in the joint

posterior,

p(θ,λ|y) =
f(y|θ)g(θ|λ)π(λ)

∫

Λ

∫

Θ f(y|θ)g(θ|λ)π(λ) dθ dλ

∝ f(y|θ)g(θ|λ)π(λ). (14.2)

Again, the integrals in the first line of (14.2) may be intractable, and a common

goal is to use the last line of (14.2) to allow simulation from p(θ,λ|y) without

explicitly evaluating these integrals. There are several ways that simulation

from the posteriors (14.1) and (14.2) can be accomplished, but before going

into these methods it is useful to identify several basic principles of simulation.

14.1 Fundamental Principles of Simulation

It is useful to set forth several basic truths of simulation procedures, which we

do in this section, using generic notation for random variables X, Y , and Z

and their density functions as f(x), f(y) and f(z).

1. Averaging over Simulations Estimates Expectations

This first principle embodies the fundamental idea of Monte Carlo esti-

mation, which we have already encountered in Chapter 8.6 in discussing

Parametric Bootstrap methods. Consider first the case of a univariate

random variable X with distribution function F (x). If we obtain simu-

lated values {x∗j : j = 1, . . . ,M} as independent and identical realizations
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from F (x), a Monte Carlo estimate of the expected value E(X) is,

ÊM(X) =
1

M

M
∑

j=1

x∗j .

Indeed, for any suitable function q(X),

ÊM{q(X)} =
1

M

M
∑

j=1

q(x∗j ). (14.3)

Thus, simulation and averaging accomplishes estimation of the integral

E{q(X)} =
∫

q(x) dF (x),

where it is assumed that the dominating measure is Lebesgue or counting

measure. That ÊM{q(X)} is consistent for E{q(X)} follows immediately

from the law of large numbers. Similarly, the empirical distribution func-

tion of the values {x∗j : j = 1, . . . ,M},

FM(x) =
1

M

M
∑

j=1

I(x∗j ≤ x),

converges to F (x) for each fixed x as M → ∞. The Gilvenko-Cantelli

Theorem gives that this convergence is uniform in x (e.g., Billingsley,

1986, p. 275).

These results, which form the basis for Monte Carlo estimation, may be

extended to sequences of random variables that are not independent, if

such sequences have a property called ergodicity. A complete coverage

of ergodicity is beyond the scope of these notes, but an intuitive under-

standing of the fundamental idea can be gained as follows. Consider a

distribution F (x); x ∈ Ω from which we would like to simulate a sample

{x∗j : j = 1, . . . ,M} so that the above Monte Carlo estimators ÊM{q(X)}
and FM(x) converge to E{q(X)} and F (x) as in the case of independent
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realizations. Now, suppose we are unable to simulate values from F (x)

directly, but we are able to construct a sequence of random variables

X(t) ≡ {X(t) : t = 0, 1, . . . , } called a chain in such a way that the

above results continue to hold using values simulated from X(t) rather

than F (x). This can only occur, for dependent X(t), if the sequence

“mixes” over the set Ω in the proper manner. Suppose we partition Ω

into and arbitrary number of k subsets, Ω1, . . . ,Ωk. Suppose further that

{X(t) : t = 0, 1, . . . , } has the property that for some value B and t > B,

the relative frequencies with which X(t) ∈ Ωk for each k converge to

the probabilities dictated by F (as t → ∞). If this is true for all arbi-

trary partitions of Ω, then the results desired will continue to hold using

{x∗(t) : t = B,B + 1, . . . B +M} in place of {x∗j : j = 1, . . . ,M}. What

is needed, then, is for the sequence X(t) to “visit” or “mix over” each of

the subsets Ω1, . . . ,Ωk with the correct frequencies, and with sufficient

rapidity that we don’t have to wait until M becomes too large for the ap-

proximations to be adequate. Sequences X(t) have have these behaviors

are called ergodic.

The construction of what are called Markov chain samplers is concerned

with developing chains that are ergodic and, importantly, mimic the

probabilistic behavior of the distribution F (x), simulation from which

was goal in the first place. In this context, F (x) is often called the

“target” distribution. We will encounter several Markov chain samplers

in Chapters 14.4 and 14.5.

2. Expectations wrt to F Can be Estimated by Simulating from G.

Consider basic Monte Carlo estimation of E{q(X)} as described in the

first part of item 1 above. There, it was assumed that values {x∗j : j =
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1, . . . ,M} had been simulated from F (x), the distribution of X. Assume

that F (x) has a corresponding density function f(x). The expected value

of q(X) may than also be written as,

E{q(X)} =
∫

q(x)
f(x)

g(x)
g(x) dµ(x),

for some function g(·) with domain matching the support Ω of f(·), and

µ either Lebesgue or counting measure. If g(·) corresponds to a density

over Ω, then a Monte Carlo estimate of the expectation can be computed

as

ÊM{q(X)} =
1

M

M
∑

j=1

q(x∗j )
f(x∗j )

g(x∗j )
, (14.4)

where {x∗j : j = 1, . . . ,M} have been simulated from the distribution

with density g(x); x ∈ Ω. Expression (14.4) is called an importance

sampling estimator of E{q(X)}, and g(x) is the importance (or impor-

tance sampling) distribution. While importance sampling had its origins

in techniques useful to reduce the variance of Monte Carlo estimators, in

most statistical applications it appears in one of two situations. First, no-

tice that importance sampling can be used to formulate a Monte Carlo

estimator of the integral of nearly any function, regardless of whether

that integral is originally expressed as an expectation or not. That is,

the integral of a function h(x) can be expressed as the expectation of

h(x)/g(x) with respect to a distribution having density g(·) as long as

the support of g matches the limits of the original integration. Secondly,

and perhaps most commonly, importance sampling is useful in situations

where the distribution with density f(·) in (14.4) is difficult to simulate

from, but for which we can find an importance distribution with density

g(·), with the same support, but from which it is easy to simulate. A key

to the successful application of importance sampling, however, is not only
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finding an importance distribution from which it is easy to sample, but

also one that is “good” in the sense that it results in rapid convergence

of ÊM{q(X)} to E{q(X)}.

3. Successive Simulation of Marginal and Conditional Distributions Accom-

plishes Integration.

For two random variables X and Y with marginal and conditional den-

sities f(x) and f(y|x), simulation of a value x∗ from f(x) followed by

simulation of a value y∗ from f(y|x∗), gives one value y∗ from the mar-

ginal density

f(y) =
∫

f(y|x)f(x) dx. (14.5)

Thus, if we want a set of simulated values {y∗j : j = 1, . . . ,M} from the

distribution with density f(y), we simulate M values {x∗j : j = 1, . . . ,M}
independently from f(x) and, for each of these values, simulate a value

y∗j from f(y|x∗j).

Similarly, simulation of one value z∗ from f(z∗), followed by simulation

of one value x∗ from f(x|z∗), followed in turn by one value y∗ simulated

from f(y|x∗) produces one value y∗ from the distribution,

f(y) =
∫ ∫

f(y|x)f(x|z)f(z) dx dz, (14.6)

where a crucial assumption is that f(y|x, z) = f(y|x), that is, y depends

on z only through its effect on x. To simulate a set of M values we

simulate {z∗j : j = 1, . . . ,M} from f(z), simulate {x∗j : j = 1, . . . ,M}
from f(x|z∗j ), and then simulate {y∗j : j = 1, . . . ,M} from f(y|x∗j).

This principle of simulation perhaps comes into play directly most often

in simulating values from a given model, but it can also be useful in

situations for which it is possible to derive in closed form marginal and
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conditional posteriors p(λ|y) and p(θ|λ,y). In particular, for scalar θ

and λ, the above prescription can be used to simulate values from p(θ|y)

by simulating λ∗ from p(λ|y) and then θ∗ from p(θ|λ∗,y). Here, p(λ|y)

plays the role of f(x) in (14.5) while p(θ|λ,y) plays the role of f(y|x).

4. Simulation of Joint Distributions Accomplishes Simulation of Marginal

Distributions.

Consider a joint distribution F (x, y, z) for random variablesX, Y , and Z.

Suppose we are able to simulate the values {(x∗j , y∗j , z∗j ) : j = 1, . . . ,M}
from this joint distribution. Then, an estimator of E{q(X)}, for example,

would be the same as given in expression (14.3) using only the values

{x∗j : j = 1, . . . ,M} and ignoring the y∗j and z∗j values. Estimators

for the expected values of functions of Y and Z would be formed in a

similar manner. In fact, the empirical distribution of the values {x∗j :

j = 1, . . . ,M} would approximate the true marginal distribution FX(x)

say, and the same would be true for the empirical distributions of the

values {y∗j : j = 1, . . . ,M} and {z∗j : j = 1, . . . ,M} as estimators of

the marginals FY (y) and FZ(z). Thus, if we are able to simulate from a

joint distribution we have also accomplished simulation from any of the

marginals.

This principle of simulation comes into play in that if, for a model with

multiple parameter elements, say θ ≡ (θ1, . . . , θp)
T , simulation from

p(θ|y) also provides simulated values from p(θj |y) for j = 1, . . . , p. Sim-

ilarly, if we are able to simulate from the joint posterior p(θ,λ|y) from a

hierarchical model, then we have also simulated from the marginal pos-

teriors p(θ|y) and p(λ|y) and, by what is immediately above, also the

marginals of any of the elements of θ and λ.
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14.2 Basic Methods of Simulation

14.2.1 Inversion

14.2.2 Composition

14.2.3 Basic Rejection Sampling

14.2.4 Ratio of Uniforms

14.2.5 Adaptive Rejection Sampling

14.3 The Method of Successive Substitution

14.4 The Gibbs Sampler

14.5 Metropolis Hastings


