
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Shelley Powers

Learning Node
Moving to the Server Side

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-94312-0

[LSI]

Learning Node
by Shelley Powers

Copyright © 2016 Shelley Powers. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Shiny Kalapurakkel
Copyeditor: Gillian McGarvey
Proofreader: Rachel Monaghan

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2016: Second Edition

Revision History for the Second Edition
2016-05-23: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491943120 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Node, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491943120
http://www.allitebooks.org

Table of Contents

Preface. vii

1. The Node Environment. 1
Installing Node 2
Saying Hello to the World with Node 3

A Basic Hello World Application 3
Hello World, Tweaked 6
Node Command-Line Options 10

Node Hosting Environments 11
Hosting Node on Your Server, VPS, or Managed Host 11
Cloud Hosting 11

The Node LTS and Upgrading Node 13
Node’s New Semantic Versioning 13
Upgrading Node 14

Node, V8, and ES6 16
Advanced: Node C/C++ Add-ons 17

2. Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature. 19
The global and process Objects 20

The global Object 20
The process Object 21

Buffers, Typed Arrays, and Strings 25
Buffer, JSON, StringDecoder, and UTF-8 Strings 28
Buffer Manipulation 30

Node’s Callback and Asynchronous Event Handling 33
The Event Queue (Loop) 33
Creating an Asynchronous Callback Function 36
EventEmitter 39

iii

www.allitebooks.com

http://www.allitebooks.org

The Node Event Loop and Timers 43
Nested Callbacks and Exception Handling 46

3. Basics of Node Modules and Node Package Manager (npm). 55
An Overview of the Node Module System 55

How Node Finds and Loads a Module 56
Sandboxing and the VM Module 59

An In-Depth Exploration of NPM 63
Creating and Publishing Your Own Node Module 69

Creating a Module 69
Packaging an Entire Directory 70
Preparing Your Module for Publication 71
Publishing the Module 74

Discovering Node Modules and Three Must-Have Modules 75
Better Callback Management with Async 77
Command-Line Magic with Commander 82
The Ubiquitous Underscore 84

4. Interactive Node with REPL and More on the Console. 87
REPL: First Looks and Undefined Expressions 87
Benefits of REPL: Getting a Closer Understanding of JavaScript Under the

Hood 89
Multiline and More Complex JavaScript 90

REPL Commands 94
REPL and rlwrap 95
Custom REPL 96

Stuff Happens—Save Often 100
The Necessity of the Console 100

Console Message Types, Console Class, and Blocking 100
Formatting the Message, with Help from util.format() and util.inspect() 103
Providing Richer Feedback with console and a Timer 107

5. Node and the Web. 109
The HTTP Module: Server and Client 109
What’s Involved in Creating a Static Web Server 114
Using Apache to Proxy a Node Application 124
Parsing the Query with Query String 125
DNS Resolution 126

6. Node and the Local System. 129
Exploring the Operating System 129
Streams and Pipes 131

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

A Formal Introduction to the File System 133
The fs.Stats Class 134
The File System Watcher 135
File Read and Write 136
Directory Access and Maintenance 138
File Streams 138

Resource Access with Path 141
Creating a Command-Line Utility 142
Compression/Decompression with ZLib 144
Pipes and ReadLine 148

7. Networking, Sockets, and Security. 151
Servers, Streams, and Sockets 151

Sockets and Streams 151
TCP Sockets and Servers 152
UDP/Datagram Socket 157

Guards at the Gate 159
Setting Up TLS/SSL 159
Working with HTTPS 161
The Crypto Module 163

8. Child Processes. 169
child_process.spawn 169

child_process.exec and child_process.execFile 173
child_process.fork 175

Running a Child Process Application in Windows 176

9. Node and ES6. 179
Strict Mode 179
let and const 181
Arrow Functions 183
Classes 185
Promises with Bluebird 187

10. Full-Stack Node Development. 191
The Express Application Framework 192
MongoDB and Redis Database Systems 199

MongoDB 199
Redis Key/Value Store 202

AngularJS and Other Full-Stack Frameworks 211

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

11. Node in Development and Production. 217
Debugging Node Applications 217

The Node Debugger 217
Node Inspector 222

Unit Testing 226
Unit Testing with Assert 226
Unit Testing with Nodeunit 229
Other Testing Frameworks 231

Keeping Node Up and Running 234
Benchmark and Load Testing with Apache Bench 237

12. Node in New Environments. 241
Samsung IoT and GPIO 241
Windows with Chakra Node 243
Node for Microcontrollers and Microcomputers 245

Fritzing 246
Node and Adruino 251
Node and Raspberry Pi 2 258

Index. 263

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Node.js has been around long enough to have achieved adoption by some major play‐
ers (LinkedIn, Yahoo!, and Netflix), but is still young enough to be cause for concern
for your typical corporate middle manager. It’s been a driving force behind creating a
more sophisticated JavaScript, as well as the only safe place one can then use the
newly improved scripting language. And, since turnabout is fair play, the cutting-
edge JavaScript has now become the driver for a newly revamped Node.js organiza‐
tion and release paradigm.

Node.js has also redefined what we do with JavaScript. Nowadays, an employer is just
as likely to demand that JavaScript developers work in a server environment as well as
the more familiar browser environment. In addition, Node.js has created a new server
language that’s generating attention from Ruby, C++, Java, and PHP server-side
developers—especially if they also know JavaScript.

To me, Node.js is fun. Compared to so many other environments, it takes little effort
to get started, create and host an application, and try out new things. The scaffolding
necessary for a Node project just isn’t as complex or pedantic as what’s required for
other environments. Only PHP has as simple an environment, and even it requires
tight integration with Apache to create outward-facing applications.

As simple as it is, though, Node.js has bits that can be hard to discover. It is true that
learning Node.js requires obtaining a mastery of its environment and the core APIs,
but it’s also about finding and mastering these hard-to-discover bits.

Who This Book Is For
I see two audiences for this book.

The first audience is the developer who has been creating frontend applications using
a variety of libraries and frameworks, and who now wants to take their JavaScript
skills to the server.

vii

www.allitebooks.com

http://www.allitebooks.org

The second audience is the server-side developer who wants to try something new or
needs to make a shift to a newer technology. They’ve worked with Java or C++, Ruby
or PHP, but now they want to take the JavaScript they’ve picked up over time, and
their knowledge of the server environment, and merge the two.

These are two seemingly separate audiences with one shared knowledge: JavaScript,
or ECMAScript if you want to be more precise. This book does require that you are
very comfortable working with JavaScript. Another commonality is that both audien‐
ces need to learn the same Node basics, including the core Node API.

However, each audience brings a different perspective, and skills, to the learning
experience. To enhance the usefulness, I’ll work to incorporate both perspectives into
the material. For instance, a C++ or Java developer might be interested in creating
C++ Node add-ons, which might not be interesting to the frontend developer. At the
same time, some concepts like big-endian may be very familiar to the server-side
developer but unknown to the frontend person. I can’t dive too deeply into either
viewpoint, but I will work to ensure that all readers don’t end up frustrated or bored.

One thing I’m not going to do is force rote memorization on you. We’ll get into the
core module APIs, but I’m not going to cover every object and function, because
these are documented at the Node website. What I’ll do instead is touch on important
aspects of each core module or specific Node functionality I think is essential in order
to, hopefully, give you a baseline so you can hold your own with other Node develop‐
ers. Of course, practice makes mastery, and this book is a learning tool. Once you’re
finished with the book you’ll need to continue on for more in-depth explorations of
specific types of functionality, such as working the Mongo-Express-Angular-Node
(MEAN) stack. This book will give you the grounding you need to branch out in any
of the many Node directions.

Speaking of Node Documentation
At the time this was written, other Node developers and I were involved in discus‐
sions about issues associated with the Node.js website. Among them was defining the
“current” version of Node.js, which is what should be documented when one accesses
“the” documentation.

When last I joined the discussion, the plan was to list all current long-term support
(LTS) versions of Node.js in the /docs page, as well as the most current Stable
release, and to provide an indicator for Node documentation versions on the top of
each documentation page.

Eventually, the documentation people would like to generate version diffs of the API
for each page, but that’s going to be a challenging project.

viii | Preface

www.allitebooks.com

https://nodejs.org/en/
http://www.allitebooks.org

At the time this book was published, Node released Node.js 6.0.0 as the Current
release, and abandoned Stable as the designation for the active development branch.
Node.js 6.0.x will eventually transition into the next LTS release.

Because of all these versions, when you do access documentation of APIs at the
Node.js website, always check to make sure the documentation matches your version
of Node.js. And it doesn’t hurt to check newer versions to see what new thing is com‐
ing your way.

Node.js Is Node

The formal name is Node.js, but no one uses it. Everyone uses
“Node.” End of story. And that’s what we’ll be using, for the most
part, in this book.

Book Structure
Learning Node is a back-to-basics book. Its focus is on Node, and the modules that
make up the Node core. I do lightly touch on some third-party modules, and provide
extensive coverage of npm, of course, but the primary goal of this book is to bring
you, the reader, up to speed on basic Node functionality. From this solid platform,
you can then move in other directions.

Chapter 1 includes an introduction to Node, including a brief section on how to
install it. You’ll also get a chance to take Node out for a spin, first by creating the web
server listed in the Node documentation, and then by creating a bit more advanced
server using the code I provide. In addition, I’ll also touch on creating Node add-ons,
for the C/C++ coders among you. And what would an introduction to Node be
without an overview of the history of this environment, which issued its first release
as 4.0 rather than 1.0.

Chapter 2 covers essential Node functionality including how events are handled, the
global objects underlying the necessary functionality to create Node applications, and
the asynchronous nature of Node. In addition, I also cover the buffer object, which is
the data structure transmitted via most network services in Node.

Chapter 3 dives into the nature of Node’s module system, as well as providing an in-
depth look at npm, a Node third-party module management system. In this chapter,
you’ll discover how your application finds the Node modules you’re using, and how
you can create a Node module of your own to use. Lastly, I get into the more
advanced aspects of Node functionality by exploring the support for sandboxing. Just
for fun, I also cover three popular Node third-party modules: Async, Commander,
and Underscore.

Preface | ix

The interactive console that comes with Node, and which goes by the name of REPL,
is an invaluable learning tool and environment, and it gets its own chapter in Chap‐
ter 4. I cover how to use the tool, in detail, as well as how to create your own custom
REPL.

We explore developing Node applications for the Web in Chapter 5, including taking
a much closer look at the Node modules that support web development. You’ll get a
chance to see what it takes to create a fully functional static web server, as well as
learning how you can run a Node application alongside Apache, via the use of an
Apache proxy.

Node works in a variety of environments, including both Windows and Unix-based
systems such as OS X and Linux. It does so by providing a set of functionality that
normalizes system differences, and this functionality is explored in Chapter 6. In
addition, I also cover the fundamental nature of Node streams and pipes—essential
elements of all input/output—as well as exploring Node’s filesystem support.

Chapter 7 is all about networks, and you can’t touch on networking without also
touching on security. The two should go hand-in-hand, like peanut butter and jelly,
or chocolate with anything. I’ll introduce you to Node’s TCP and UDP support, as
well as cover how to implement an HTTPS server, in addition to the HTTP server
you learned how to create in Chapter 5. I’ll also cover the mechanics behind digital
certificates and the fundamentals of Secure Sockets Layer (SSL), and its upgrade,
Transport Layer Security (TLS). Lastly, we’ll look at the Node crypto module and
working with password hashes.

One of my favorite aspects of Node is its ability to work with operating system func‐
tionality via child processes. Some of my favorite Node applications are small utility
programs for working with compressed files, using the popular graphics application,
ImageMagick, and creating a screenshot application for grabbing screenshots from
websites. They’re not big-time applications with sophisticated cloud interfaces, but
they are a fun way to learn to work with child processes. Child processes are covered
in Chapter 8.

Most of the examples in the book use the same JavaScript you’ve been using for years.
However, one of the main impetuses behind the Node.js/io.js split and the new,
merged product is support for the newer ECMAScript versions, such as ES6 (or
ECMAScript 2015, if you prefer). In Chapter 9, I cover what’s currently supported in
Node, the impact of the new functionality, and when and why to use new functional‐
ity over old. I also cover the gotchas related to using the newer JavaScript capabilities.
The only time I won’t focus on the native functionality is when I cover promises as
implemented by that very popular module, Bluebird.

Chapter 10 takes a look at the frameworks and functionality that make up what is
known as full-stack Node development. We’ll take a look at Express, a now ubiquitous

x | Preface

component of most Node development, as well as try out both MongoDB and Redis.
We’ll also explore a couple of the frameworks that make up the “full stack” in full-
stack Node Development: AngularJS and Backbone.js.

Once you’ve coded your Node application, you’ll want to push it to production.
Chapter 11 covers tools and techniques for Node development and production sup‐
port, including unit, load, and benchmark testing, as well as essential debugging skills
and tools. You’ll also learn how to run your Node application forever, and restore it if
it fails.

Chapter 12 is dessert. In this chapter, I’ll introduce you to the ways of taking your
mad Node skills to new worlds, including Node in microcontrollers/microcomput‐
ers, as a part of the Internet of Things, and a version of Node that does not run on
V8.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | xi

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/shelleyp/LearningNode2.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning Node by Shelley Powers
(O’Reilly). Copyright 2016 Shelley Powers, 978-1-4919-4312-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐

xii | Preface

https://github.com/shelleyp/LearningNode2
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning-node-2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank the folks who helped me pull this book together: editor, Meg
Foley; tech reviewer, Ethan Brown; copyeditor, Gillian McGarvey; proofreader,
Rachel Monaghan; indexer, Judy McConville; illustrator, Rebecca Panzer; and anyone
else who has touched this book!

Preface | xiii

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/learning-node-2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

The Node Environment

Forget what you’ve heard about Node being a server-side tool only. Node is primarily
used in server applications, true. But Node can be installed on almost any machine
and used for any purpose, including running applications on your PC or even your
tablet, smartphone, or microcomputer.

I have Node installed on my Linux-based server, but I also have it installed on my
Windows 10-based PCs, as well as a microcomputer (Raspberry Pi). I have an extra
Android tablet that I’m thinking of trying Node on, can use Node to program my
Arduino Uno microcontroller, and am currently playing around with incorporating
Node into my smart home setup thanks to IFTTT’s Maker Channel. On my PC, I use
Node as a test environment for JavaScript, as well as an interface to ImageMagick for
batch photo editing. Node is my go-to tool for any batch operation on my PCs or my
server.

And yes, I use Node for server-side processing when I want a web interface that
bypasses my Apache server, or provides a backend server process for a web applica‐
tion.

The point is, the Node environment is rich in functionality and reach. To start explor‐
ing this environment, we have to start at the beginning: installing Node.

IFTTT

IFTTT is a marvelous site that allows you to connect triggers and
actions from a host of companies, services, and products using
simple if-then logic. Each end point of the equation is a channel,
including the aforementioned Maker Channel.

1

https://ifttt.com/maker

Installing Node
The best place to start when installing Node is the Node.js Downloads page. From
here, you can download binaries (precompiled executables) for Windows, OS X,
SunOS, Linux, and ARM architectures. The page also provides access to installers for
a specific architecture that can greatly simplify the installation process—particularly
with Windows. If your environment is set up for building, download the source code
and build Node directly. That’s my preference for my Ubuntu server.

You can also install Node using a package installer for your architecture. This is a
helpful option not only for installing Node, but also for keeping it up-to-date (as we’ll
discuss further, in the section “The Node LTS and Upgrading Node” on page 13).

If you decide to compile Node directly on your machine, you’ll need to set up the
proper build environment, and install the proper build tools. For instance, on Ubuntu
(Linux), you’ll need to run the following command to install the tools needed for
Node:

apt-get install make g++ libssl-dev git

There are some differences in behavior when you first install Node in the various
architectures. For instance, when you’re installing Node in Windows, the installer not
only installs Node, but it also creates a Command window you’ll use to access Node
on your machine. Node is a command-line application, and doesn’t have a graphical
UI like the typical Windows application. If you want to use Node to program an
Arduino Uno, you’ll install Node and Johnny-Five, and use both to program the con‐
nected device.

Accept Defaults in Windows World

You’ll want to accept the default location and feature installation
when installing Node in Windows. The installer adds Node to the
PATH variable, which means you can type node without having to
provide the entire Node installation path.

If you’re installing Node on Raspberry Pi, download the appropriate ARM version,
such as ARMv6 for the original Raspberry Pi, and ARMv7 for the newer Raspberry Pi
2. Once downloaded, extract the binary from the compressed tarball, and then move
the application to /usr/local:

wget https://nodejs.org/dist/v4.0.0/node-v4.0.0-linux-armv7l.tar.gz
tar -xvf node-v4.0.0-linux-armv7l.tar.gz

cd node-v4.0.0-linux-armv7l

sudo cp -R * /usr/local/

2 | Chapter 1: The Node Environment

https://nodejs.org/en/download/
http://johnny-five.io/

You can also set up a build environment and build Node directly.

New Node Environments

Speaking of Node with Arduino and Raspberry Pi, I cover Node in
nontraditional environments, such as the Internet of Things, in
Chapter 12.

Saying Hello to the World with Node
You’ve just installed Node and you naturally want to take it for a spin. There is a tra‐
dition among programmers that the first application in a language is the well-known
“Hello, World” application. The application typically writes out the words “Hello,
World” to whatever is the output stream, demonstrating how an application is cre‐
ated, run, and can process input and output.

The same holds true for Node: it is the application that the Node.js website includes
in the Synopsis in the application’s documentation. And it is the first application we’ll
create in this book, but with a few tweaks.

A Basic Hello World Application
First, let’s take a look at the “Hello, World” application included in the Node docu‐
mentation. To re-create the application, create a text document with the following
JavaScript, using your favorite text editing tool. I use Notepad++ in Windows, and
Vim in Linux.

var http = require('http');

http.createServer(function (request, response) {
 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
}).listen(8124);

console.log('Server running at http://127.0.0.1:8124/');

Save the file as hello.js. To run the application, open a terminal if you’re using OS X or
Linux, or the Node Command window with Windows. Change to the directory
where your saved file is located and type the following to run the application:

node hello.js

The result is printed out to the command line, via the console.log() function call in
the application:

Server running at http://127.0.0.1:8124/

Now open a browser and type either http://localhost:8124/ or http://

127.0.0.1:8124 into the address bar (or your domain, if you’re hosting Node on

Saying Hello to the World with Node | 3

your server). What appears is a simple unadorned web page with “Hello World” in
text at the top, as shown in Figure 1-1.

Figure 1-1. Your first Node application

If you’re running your application in Windows, you’ll most likely receive a Windows
Firewall alert, as shown in Figure 1-2. Uncheck the Public Network option, check the
Private network option, and then click the button to Allow access.

Figure 1-2. Allowing access to Node application in Windows

You won’t have to repeat this process in Windows: the system remembers your
choice.

4 | Chapter 1: The Node Environment

To end the program, you can either close the terminal/Command window (just ter‐
minal from this point), or type Ctrl-C. When you ran the application, you did so in
the foreground. This means you can’t type any other command in the terminal. It also
means when you closed the terminal, you stopped the Node process.

Running Node Forever

For now, running Node in the foreground is a good thing. You’re
learning how to use the tool, you don’t yet want your applications
to be externally available to everyone, and you want it to terminate
when you’re finished for the day. In Chapter 11, I’ll cover how you
can create a more robust Node runtime environment.

To return to the Hello World code, JavaScript creates a web server that displays a web
page with the words “Hello World” when accessed via a browser. It demonstrates sev‐
eral key components of a Node application.

First, it includes the module necessary to run a simple HTTP server: the appropri‐
ately named HTTP module. External functionality for Node is incorporated via mod‐
ules that export specific types of functionality that can then be used in an application
(or another module). They’re very similar to the libraries you’ve used in other
languages.

var http = require('http');

Node Modules, Core Modules, and the http Module

The HTTP module is one of Node’s core modules, which are the
primary focus of this book. I’ll cover Node modules and module
management thoroughly in Chapter 3, and the HTTP module in
Chapter 5.

The module is imported using the Node require statement, and the result assigned
to a local variable. Once imported, the local variable can be used to instantiate the
web server, via the http.createServer() function. In the function parameters, we
see one of the fundamental constructs of Node: the callback (Example 1-1). It’s the
anonymous function that’s passing the web request and response into the code to
process the web request and provide a response.

Example 1-1. Hello, World callback function

http.createServer(function (request, response) {
 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
}).listen(8124);

Saying Hello to the World with Node | 5

JavaScript is single-threaded, and the way Node emulates an asynchronous environ‐
ment in a single-threaded environment is via an event loop, with associated callback
functions that are called once a specific event has been triggered. In Example 1-1,
when a web request is received, the callback function is called.

The console.log() message is output to the terminal as soon as the call to create the
server is made. The program doesn’t stop and block, waiting for a web request to be
made.

console.log('Server running at http://127.0.0.1:8124/');

More on the Event Loop and Callback Function

I’ll be covering the Node event loop, its support for asynchronous
programming, and the callback function in more detail in Chap‐
ter 2.

Once the server is created and has received a request, the callback function writes a
plain text header with server status of 200 back to the browser, writes out the Hello
World message, and then ends the response.

Congratulations, you’ve created your first web server in Node in just a few lines of
code. Of course, it’s not particularly useful, unless your only interest is in greeting the
world. Throughout the book you’ll learn how to make more useful Node applications,
but before we leave Hello World, let’s make some modifications to the basic applica‐
tion to make it a little more interesting.

Hello World, Tweaked
Just printing out a static message does demonstrate, first of all, that the application is
working and, second, how to create a simple web server. The basic example also
demonstrated several key elements of a Node application. But it could be just a little
richer, a little more fun to play with. So I tweaked it to provide you a second applica‐
tion you can try out that has a few more moving parts.

The tweaked code is in Example 1-2. In it, I modified the basic application to parse
the incoming request to look for a query string. The name in the string is extracted
and used to determine the type of content returned. Almost any name will return a
personalized response, but if you use name=burningbird as the query, you’ll get an
image. If no query string is used, or no name passed, the name variable is set to
'world‘.

6 | Chapter 1: The Node Environment

Example 1-2. Hello World, tweaked

var http = require('http');
var fs = require('fs');

http.createServer(function (req, res) {
 var name = require('url').parse(req.url, true).query.name;

 if (name === undefined) name = 'world';

 if (name == 'burningbird') {
 var file = 'phoenix5a.png';
 fs.stat(file, function (err, stat) {
 if (err) {
 console.error(err);
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end("Sorry, Burningbird isn't around right now \n");
 } else {
 var img = fs.readFileSync(file);
 res.contentType = 'image/png';
 res.contentLength = stat.size;
 res.end(img, 'binary');
 }
 });
 } else {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello ' + name + '\n');
 }
}).listen(8124);

console.log('Server running at port 8124/');

The result of accessing the web-based application with a query string of ?name=bur
ningbird is shown in Figure 1-3.

Saying Hello to the World with Node | 7

Figure 1-3. Hello, Burningbird

Not much extra code, but there are several differences between the basic Hello World
application and the tweaked version. From the top, a new module is included in the
application, named fs. This is the File System module, one you will become very
familiar with in the next several chapters. But there’s also another module imported,
but not in the same way as the other two:

var name = require('url').parse(req.url, true).query.name;

Exported module properties can be chained, so we can both import the module and
use its functions in the same line. This frequently happens with the URL module,
whose only purpose is to provide a URL utility.

The response and request parameter variable names are shortened to res and req to
make them easier to access. Once we parse out the request to get the name value, we
first test to see if it’s undefined. If not, the value is set to the fallback result, world. If
name does exist, it’s tested again to see if it’s equal to burningbird. If it isn’t, then the
response is close to what we had in the basic application, except for inserting the sup‐
plied name into the return message.

8 | Chapter 1: The Node Environment

If the name is burningbird, though, we’re dealing with an image rather than text. The
fs.stat() method not only verifies that the file exists but also returns an object with
information about the file, including its size. This value is used in creating the content
header.

If the file doesn’t exist, the application handles the situation gracefully: it issues a
friendly message that the bird has flown the coop, but also provides error information
at the console, using the console.error() method this time:

{ [Error: ENOENT: no such file or directory, stat 'phoenix5a.png']
 errno: -2,
 code: 'ENOENT',
 syscall: 'stat',
 path: 'phoenix5a.png' }

If the file does exist, then we’ll read the image into a variable and return it in the
response, adjusting the header values accordingly.

The fs.stats() method uses the standard Node callback function pattern with the
error value as the first parameter—frequently called an errback. However, the part
about reading the image may have you scratching your head. It doesn’t look right, not
like other Node functions you’ve seen in this chapter (and most likely in other online
examples). What’s different is that I’m using a synchronous function, readFile
Sync(), rather than the asynchronous version, readFile().

Node does support both synchronous and asynchronous versions of most File System
functions. Normally, using a synchronous operation in a web request in Node is
taboo, but the capability is there. An asynchronous version of the same bit of code is
used in Example 1-3.

fs.readFile(file, function(err,data) {
 res.contentType = 'image/png';
 res.contentLength = stat.size;
 res.end(data, 'binary');
 });

Why use one over the other? In some circumstances, file I/O may not impact perfor‐
mance regardless of which type of function you use, and the synchronous version can
be cleaner and easier to use. It can also lead to less nested code—a particular problem
with Node’s callback system, and one I’ll cover in more detail in Chapter 2.

Additionally, though I don’t use exception handling in the example, you can use
try...catch with synchronous functions. You can’t use this more traditional error
handling with asynchronous functions (hence the error value as the first parameter to
the anonymous callback function).

The important fact to take away from this second example, though, is that not all
Node I/O is asynchronous.

Saying Hello to the World with Node | 9

Filesystem and URL Modules, Buffers, and Aynchronous I/O

I’ll cover the URL module in more detail in Chapter 5, and File
System is explored in Chapter 6. Note, though, that File System is
used all throughout the book. Buffers and asynchronous processing
are covered in Chapter 2.

Node Command-Line Options
In the last two sections, Node is invoked at the command line without the use of any
command-line options. I wanted to briefly introduce some of these options before we
move on. Others will be introduced when needed throughout the book.

To discover all the available options and arguments, use the help option, written as
either -h or --help:

$ node --help

This option will list out all of the options, and provides the syntax to follow when
running the Node application:

Usage: node [options] [-e script | script.js] [arguments]
 node debug script.js [arguments]

To find the version of Node, use the following command:

$ node -v or --version

To check the syntax of a Node application, use the -c option. This checks the syntax
without running the application:

$ node -c or --check script.js

To discover the V8 options, type the following:

$ node --v8-options

This returns several different options, including the --harmony option, used to
enable all completed Harmony JavaScript features. This includes all ES6 functionality
that’s been implemented but not yet staged into either the LTS or Current release.

A favorite Node option of mine is -p or --print, which can evaluate a line of Node
script and print the results. This is especially helpful if you’re checking out the Pro‐
cess environmental properties, discussed more fully in Chapter 2. An example is the
following, which prints out all of the values for the process.env property:

$ node -p "process.env"

10 | Chapter 1: The Node Environment

Node Hosting Environments
As you learn Node, you’ll want to become familiar with it in your own local environ‐
ment, be it Windows, OS X, or Linux. When you’re ready to start providing greater
access to your applications, you’ll either need to find an environment where you can
run a Node application, such as a virtual private network (VPN), which is what I use,
or a host that specifically provides for Node application support. The former requires
that you have significant experience running a Internet-faced server, while the latter
may limit what you can or cannot do with your Node application.

Hosting Node on Your Server, VPS, or Managed Host
Hosting Node on the same server as your WordPress weblog is likely going to be a
dead end, because of Node’s requirements. You don’t have to have root or administra‐
tive access to run Node, but you should. In addition, many hosting companies are not
going to be happy with you hosting an application on various ports that may or may
not play havoc with their systems.

Hosting Node on a virtual private server (VPS), like my VPN at Linode, is a simple
matter. You do have root access for your VPS and can pretty much do whatever you
want, as long as you don’t endanger other users who may be on the same machine.
Most companies that provide VPSs ensure that each individual account is isolated
from the others, and that no one account can hog all the available resources either.

The issue, though, with a VPS is the same issue you’d have if you hosted your own
server: you have to maintain the server. This includes setting up an email system and
an alternative web server, most likely Apache or Nginx, to handle firewalls and other
security, email, etc. It’s not trivial.

Still, if you’re comfortable with managing all aspects of a Internet-faced environment,
a VPS can be an affordable option for hosting a Node application. At least until you’re
ready to push it into production, in which case you may want to look at hosting the
application in the cloud.

Cloud Hosting
Nowadays, an application is just as likely to reside in a cloud server as it is on an indi‐
vidual’s or group’s own computers. Node applications are well-suited to cloud-based
implementations.

When you host a Node application in the cloud, what you’re really doing, typically, is
creating the application on your own server or PC, testing it, making sure it’s what
you want, and then pushing the application out to the cloud server. A cloud server for
Node allows you to create the Node application you want to create, using the resour‐
ces of whatever database system or other system you wish, but without having to

Node Hosting Environments | 11

https://www.nginx.com/

manage the server directly. You can focus specifically on the Node application
without having to worry about FTP or email servers, or general server maintenance.

Git and GitHub: Prerequisites for Node Development
If you’ve not used the Git source code control system, you’ll need to install it into
your environments and learn how to use it. Almost all transitioning of Node applica‐
tions, including pushing the applications to a cloud server, happens through Git.

Git is open source, freely available, and easy to install. You can access the software at
the Git website. There’s also an interactive guide you can use to learn the basic Git
commands, at GitHub.

Speaking of Git, where there’s Git, there’s typically GitHub. The Node.js source is
maintained at GitHub, as are most, if not all, of the available Node modules. The
source for the examples for this book is available at GitHub.

GitHub is probably the largest repository of open source code in the world. It’s defi‐
nitely the center of the universe for the Node world. It is a commercial enterprise, but
free to most users. The GitHub organization provides excellent documentation for
how to use the site, and there are books and other tutorials you can access to get up to
speed with both Git and GitHub. Among them is a free, online book on Git, as well as
Loeliger and McCullough’s Version Control with Git (O’Reilly), and Bell and Beer’s
Introducing GitHub (O’Reilly).

The paradigm for hosting a Node application in the cloud is fairly similar across all of
the hosts. First, create the Node application, either locally or on your own server.
When you’re ready to start testing a deployment environment, then it’s time to look
for a cloud server. For most I’m familiar with, you sign up for an account, create a
new project, and specify that it is Node-based if the cloud is capable of hosting many
environments. You may or may not need to specify which other resources are needed,
such as database access.

Once ready to deploy, you’ll push the application to the cloud. You’ll either use Git to
push the application or you may need to use a toolset supplied by the cloud provider.
As an example, Microsoft’s Azure cloud utilizes Git to push the application from your
local environment to the cloud, while Google’s Cloud Platform provides a toolset to
perform the same process.

Finding a Host

Though not completely up-to-date, a good place to start looking
for a Node host is a GitHub page devoted to the topic.

12 | Chapter 1: The Node Environment

https://git-scm.com/
https://try.github.io/levels/1/challenges/1
https://github.com/
https://help.github.com/categories/bootcamp/
https://git-scm.com/book/en/v2
http://shop.oreilly.com/product/0636920022862.do
http://shop.oreilly.com/product/0636920033059.do
https://github.com/nodejs/node-v0.x-archive/wiki/Node-Hosting

The Node LTS and Upgrading Node
In 2014, the Node world was stunned (or at least some of us were taken by surprise)
when a group of Node maintainers split from the rest and formed their own fork of
Node.js called io.js. The reason for the split is that the io.js folks felt that Joyent, the
company that had been maintaining Node, wasn’t moving fast enough to open gover‐
nance of Node. The group also felt that Joyent was behind in its support of the latest
V8 engine updates.

Thankfully, I can report that the two groups resolved the issues leading to the split,
merging their efforts back to one product, still named Node.js. Node is now managed
through a governing nonprofit, the Node Foundation, under the auspices of the
Linux Foundation. As a result, the codebase for both groups was combined, and
rather than the first official release of Node being Node 1.0, it became Node 4.0: rep‐
resenting Node’s original slow pace to Node 1.0, and io.js’s faster 3.0 version.

Node’s New Semantic Versioning
One result of the merge is a strict timeline of Node releases, based on semantic ver‐
sioning (Semver), familiar to Linux users. Semver releases features as three groups of
numbers, each with a specific meaning. For instance, as I’m writing this, I’m currently
using Node.js version 4.3.2 on my server. This translates to:

• The major release is 4. This number will only increase when a major, backward-
incompatible change is made to Node.

• The minor release is 3. This number increases when new functionality is added,
but the functionality is still backward compatible.

• The patch release is 2. This number changes when security or other bug fixes
require a new release of the application. It is also backward compatible.

I’m using the Stable release of 5.7.1 on my Windows machine, and tested the code
using the Current release of 6.0.0 on a Linux machine.

The Node Foundation also supports a much more cohesive, albeit somewhat prob‐
lematic, release cycle than the hit-or-miss releases we have become familiar with. It
started with the first LTS (Long-Term Support) release of Node.js v4, which will be
supported until April 2018. The Node Foundation then released its first Stable
release, Node.js v5, at the end of October 2015. Node 5.x.x will only be supported
until April 2016, when it will be replaced by Node.js v6. The strategy is for a new Sta‐
ble (now Current) release every six months, but only every other one goes LTS, like
Node v4.

The Node LTS and Upgrading Node | 13

http://semver.org/
http://semver.org/

Release of 6.0.0 as Current

In April 2016, Node released 6.0.0, which replaces 5.x, and will
transition into the new LTS in October of 2016. Node also renamed
the Stable designation for the active development branch to Cur‐
rent.

After April 2018, Node v4 enters maintenance mode. In the meantime, there will be
new backward-compatible updates (known as semver-major bumps), as well as bug
and security patches.

What Version Is the Book Covering?

This book covers the long-term stable release of Node.js v4. Anno‐
tations mark differences between v4 and v5/v6, wherever appropri‐
ate.

Regardless of which LTS major release you decide to use, you’ll need to upgrade to
each new bug/security fix as soon as it releases. However you handle each new
semver-major bump is up to you and/or your organization. The upgrade should be
backward compatible, though, with only underlying engine improvements impacted.
Still, you’ll want to incorporate any new release into an upgrade and testing plan.

Which version should you use? In a business or corporate environment, you’ll most
likely want to stick with the LTS release, which is, at this time, Node.js v4. However, if
your environment can more quickly adapt to breaking changes, you can get access to
the latest v8 and other goodies with the latest Node Current release.

The Joys of Testing and Production

I cover Node debugging and testing, as well as other development
process and production procedures, in Chapter 11.

Upgrading Node
With the increased schedule of releases, keeping Node up-to-date is even more criti‐
cal. Thankfully, the upgrade process is painless, and you have alternatives.

You can check your version with the following:

node -v

If you’re using a package installer, then running the package update procedure
updates Node, as well as any other software on your server (sudo is not required in
Windows):

14 | Chapter 1: The Node Environment

www.allitebooks.com

http://www.allitebooks.org

sudo apt-get update
sudo apt-get upgrade --show-upgraded

If you are using a package installer, follow the instructions associated with it that are
provided at the Node website. Otherwise, you’ll end up out-of-sync with releases.

You can also use npm to upgrade Node, using the following sequence of commands:

sudo npm cache clean -f
sudo npm install -g
sudo n stable

To install the latest version of Node on Windows, OS X, or your Raspberry Pi, grab
the installer from the Node.js downloads and run it. It installs the new version over
the old.

Node Version Manager

In a Linux or OS X environment, you can also use the Node Ver‐
sion Manager (nvm) tool to keep Node up-to-date.

The Node package manager (npm) updates more frequently than Node. To upgrade
just it, run the following command:

sudo npm install npm -g n

This command installs the latest version of the necessary application. You can check
the version using:

npm -v

Be aware, though, that this can cause issues, especially in a team environment. If your
team members are using the version of npm that’s installed with Node, and you’ve
manually upgraded npm to the newer version, you can have inconsistent build results
that may not be easy to discover.

I’ll cover npm in more detail in Chapter 3, but for now, note that you can keep all
Node modules up-to-date with the following command:

sudo npm update -g

The Node LTS and Upgrading Node | 15

https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://www.npmjs.com/

Node, V8, and ES6
Behind Node is a JavaScript engine. For most implementations, the engine is V8.
Originally created by Google for Chrome, the V8 source code was open-sourced in
2008. The V8 JavaScript engine was created to improve the speed of JavaScript by
incorporating a just-in-time (JIT) compiler that compiles JavaScript to machine code
rather than interpreting it, which had been the norm for JavaScript for years. The V8
engine is written in C++.

Microsoft’s Node.js Fork

Microsoft forked Node to create a version that uses its JavaScript
engine, Chakra, specifically to power its vision for the Internet of
Things (IoT). I’ll cover this fork in more detail in Chapter 12.

When Node v4.0 released, it did so with support for V8 4.5, the same version of the
engine being used by Chrome. The Node maintainers are also committed to support‐
ing upcoming versions of V8 as they’re released. This means that Node now incorpo‐
rates support for many of the new ECMA-262 (ECMAScript 2015 or ES6) features.

Node v6 V8 Support

Node v6 supports V8 version 5.0, and new releases of Node will
support newer versions of V8 accordingly.

In prior versions of Node, to access the new ES6 features, you would have to use the
harmony flag (--harmony) when running the application:

node --harmony app.js

Now, ES6 feature support is based on the following criteria (directly from the Node.js
documentation):

• All shipping features, which V8 considers stable, are turned on by default on
Node.js and do not require any kind of runtime flag.

• Staged features, which are almost-completed features that are not considered sta‐
ble by the V8 team, require a runtime flag: --es_staging (or its synonym, --
harmony).

• In-progress features can be activated individually by their respective harmony flag
(e.g., --harmony_destructuring), although this is highly discouraged unless for
testing purposes.

16 | Chapter 1: The Node Environment

I’ll cover the ES6 support in Node and how to effectively use the different features in
Chapter 9. For now, know that the following are some of the ES6 features supported
in Node, straight out of the can:

• Classes
• Promises
• Symbols
• Arrow functions
• Generators
• Collections
• let

• The spread operator

Advanced: Node C/C++ Add-ons
Now that Node is installed and you’ve had a chance to play around with it a bit, you
might be wondering exactly what it is you installed.

Though the language used to create Node applications is based in JavaScript, much of
Node is actually written in C++. Normally this information is behind the scenes in
most applications we use, but if you’re familiar with C or C++, you can choose to
extend Node functionality using C/C++ to create an add-on.

Writing a Node add-on is not the same as writing a more traditional C/C++ applica‐
tion. For one, there are libraries, such as the V8 library, that you’ll typically access.
For another, the Node add-on is not compiled using the tools you would normally
use.

The Node documentation for add-ons provides a Hello World example of an add-on.
You can check out the code for the short example, which should be familiar if you
have programmed with C/C++. Once you’ve written the code, though, you’ll need to
use a tool, node-gyp, to actually compile the add-on into a .node file.

First, a configuration file named binding.gyp is created. It uses a JSON-like format to
provide information about the add-on:

{
 "targets": [
 {
 "target_name": "addon",
 "sources": ["hello.cc"]
 }
]
}

The Node add-on configuration step is performed using the following command:

Advanced: Node C/C++ Add-ons | 17

node-gyp configure

It creates the appropriate configuration file (a Makefile for Unix, a vcxproj file in
Windows) and places it in the build/ directory. To build the Node add-on, run the
following command:

node-gyp build

The compiled add-on is installed in the build/release directory, and is now ready to
use. You can import it into your application like you would many of the others
installed with Node (covered in Chapter 3).

Maintaining Native Mode Modules

Though outside the scope of this book, if you’re interested in creat‐
ing native mode modules (the add-ons), you need to be aware of
platform differences. For instance, Microsoft provides special
instructions for native modules in Azure, and the maintainer for
the popular node-serialport native module has detailed the chal‐
lenges he’s faced maintaining the module.

Of course, if you’re not familiar with C/C++, you’ll most likely want to create mod‐
ules using JavaScript, and I’ll cover that in Chapter 3 also. But if you do know these
languages, an add-on can be an effective extension, especially for system-specific
needs.

One thing to be aware of is the rather dramatic changes that have occurred within
Node as it has progressed from v0.8 through the new v6.x. To counter the problems
that can occur, you’ll need to install NAN, or Native Abstractions for Node.js. This
header file helps to smooth out the differences between versions of Node.js.

18 | Chapter 1: The Node Environment

https://azure.microsoft.com/en-us/documentation/articles/nodejs-use-node-modules-azure-apps/
https://azure.microsoft.com/en-us/documentation/articles/nodejs-use-node-modules-azure-apps/
http://www.voodootikigod.com/on-maintaining-a-native-node-module/
http://www.voodootikigod.com/on-maintaining-a-native-node-module/
https://github.com/nodejs/nan

CHAPTER 2

Node Building Blocks: Global Objects,
Events, and Node’s Asynchronous Nature

Though both are built on JavaScript, the environments between browser-based appli‐
cations and Node.js applications are very different. One fundamental difference
between Node and its browser-based JavaScript cousin is the buffer for binary data.
True, Node does now have access to the ES6 ArrayBuffer and typed arrays. How‐
ever, most binary data functionality in Node is implemented with the Buffer class.

The buffer is one of Node’s global objects. Another global object is global itself,
though the global object in Node is fundamentally different than the global object
we’re used to in the browser. Node developers also have access to another global
object, process, which provides a bridge between the Node application and its
environment.

Thankfully, one aspect of Node should be familiar to frontend developers, and that’s
its event-driven asynchronous nature. The difference in Node is that we’re waiting for
files to open rather than for users to click a button.

Event-driven also means those old friends, the timer functions, are available in Node.

Modules and Console

I’ll cover several other global components—require, exports, mod
ule, and console— later in the book. I cover the require, exports,
and module globals in Chapter 3, and the console in Chapter 4.

19

The global and process Objects
Two fundamental objects in Node are the global and process objects. The global
object is somewhat similar to the global object in the browser, with some very major
differences. The process object, however, is pure Node all the way.

The global Object
In the browser, when you declare a variable at the top level, it’s declared globally. It
doesn’t work that way in Node. When you declare a variable in a module or applica‐
tion in Node, the variable isn’t globally available; it’s restricted to the module or appli‐
cation. So you can declare a “global” variable named str in a module and also in the
application that uses the module, and there won’t be any conflict.

To demonstrate, we’ll create a simple function that adds a number to a base and
returns the result. We’ll create it as a JavaScript library to use in a web page, and as a
module to use in a Node application.

The code for the JavaScript library, added to a file named add2.js, declares a base
variable, sets it to the value of 2, and then adds it to whatever number is passed to it:

var base = 2;

function addtwo(input) {
 return parseInt(input) + base;
}

Next, we’ll create a very simple module that does the same thing, except using Node
module syntax. I’ll cover the specifics of the module in Chapter 3, but for now, copy
the following code into a file named addtwo.js:

var base = 2;

exports.addtwo = function(input) {
 return parseInt(input) + base;
};

Now to demonstrate the differences in global in both environments. The add2.js
library is used in a web page, which also declares a base variable:

<!DOCTYPE html>
<html>
 <head>
 <script src="add2.js"></script>
 <script>

 var base = 10;
 console.log(addtwo(10));
 </script>
 </head>

20 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

<body>

</body>
</html>

Accessing the web page with a browser displays a value of 20, rather than the
expected 12, in the browser console. The reason is that all variables declared outside a
function in JavaScript in the browser are added to the same global object. When we
declared a new variable named base in the web page, we overrode the value in the
included script file.

Now, we’ll use the addtwo module in a Node application:

var addtwo = require('./addtwo').addtwo;

var base = 10;

console.log(addtwo(base));

The result of the Node application is 12. Declaring the new base variable in the Node
application had no impact on the value of base in the module, because they both exist
in different global namespaces.

Eliminating a shared namespace is a distinct improvement, but it isn’t universal.
What global does share in all environments is access to all the globally available
Node objects and functions, including the process object, covered next. You can
check it out for yourself by adding the following to a file and running the application.
It prints out all the globally available objects and functions:

console.log(global);

The process Object
The process object is an essential component of the Node environment, as it pro‐
vides information about the runtime environment. In addition, standard input/
output (I/O) occurs through process, you can gracefully terminate a Node applica‐
tion, and you can even signal when the Node event loop (covered in the section “The
Event Queue (Loop)” on page 33) has finished a cycle.

The process object is featured in many applications throughout the book, so check
the index for all appearances. For now, we’ll take a closer look at the process object’s
environmental reporting, as well as the all-important standard I/O.

The process object provides access to information about the Node environment, as
well as the runtime environment. To explore, we’ll use the -p command-line option
with node, which executes a script and returns an immediate result. For instance, to
check out the process.versions property, type the following:

The global and process Objects | 21

$ node -p "process.versions"
{ http_parser: '2.5.0',
 node: '4.2.1',
 v8: '4.5.103.35',
 uv: '1.7.5',
 zlib: '1.2.8',
 ares: '1.10.1-DEV',
 icu: '56.1',
 modules: '46',
 openssl: '1.0.2d' }

Single or Double Quotes for Command Line

Note the use of double quotes, which are required in the Windows
command window. Since double quotes work for all environments,
use double quotes for all scripts.

Versions for various Node components and dependencies are listed, including the
version of V8, OpenSSL (the library used for secure communications), Node itself,
and so on.

The process.env property provides a great deal of information about what Node sees
in your development/production environment:

$ node -p "process.env"

It’s particularly interesting to see the differences between architectures, such as Linux
and Windows.

To explore the process.release values, use the following:

$ node -p "process.release"

What you’ll get depends on what you have installed. In both LTS and Current envi‐
ronments, you’ll get the name of the application, as well as URLs for the source code.
But in LTS, you’ll have an additional property:

$ node -p "process.release.lts"
'Argon'

However, if you access this same value in a Current release, such as v6, you’ll get a
different result:

$ node -p "process.release.lts"
undefined

The environmental information is a way for you, as the developer, to understand
what Node sees before and during development. However, don’t include a depend‐
ency on most of the data directly into your application because, as you’ve seen, it may
not be consistent between Node releases. However, do take time to explore the data.

22 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

What should be consistent between Node releases are several objects and functions
essential for many applications. Among them is access to the standard I/O, and the
ability to gracefully end a Node application.

Standard streams are pre-established communication channels between an applica‐
tion and the environment. They consist of a standard input (stdin), standard output
(stdout), and standard error (stderr). In a Node application, these channels provide
communication between the Node application and the terminal. They’re a way for
you to communicate directly with the application.

Node supports the channels with three process functions:

• process.stdin: a readable stream for stdin
• process.stdout: a writable stream for stdout
• process.stderr: a writable stream for stderr

You can’t close these streams, or end them within the application, but you can receive
input from the stdin channel, and write to the stdout and stderr channels.

The process I/O functions inherit from EventEmitter, explored in the section
“EventEmitter” on page 39, which means they can emit events, and you can capture
these events and process any data. To process incoming data using process.stdin,
you first of all need to set the encoding for the stream. If you don’t, you’ll get the
results as a buffer rather than a string:

process.stdin.setEncoding('utf8');

Next we’ll listen for the readable event, which lets us know there’s a chunk of data,
ready to be read. We’ll then use the process.stdin.read() function to read this data
in, and if the data isn’t null, echo it back out to process.stdout, using the pro
cess.stdout.write() function:

process.stdin.on('readable', function() {
 var input = process.stdin.read();

 if (input !== null) {
 // echo the text
 process.stdout.write(input);
 }
});

Now, we could forgo setting the encoding, and get the same results—we’ll read a
buffer in and write a buffer out—but to the user of the application, it looks like we’re
working with text (strings). We’re not, though. And the next process function we’ll
explore demonstrates this difference.

In Chapter 1, we created a very basic web server that listened for a request and
printed out a message. To end the program, you either had to kill the process via sig‐

The global and process Objects | 23

nal, or using Ctrl-C. You can, instead, terminate an application as part of the applica‐
tion using process.exit(). You can even signal whether the application terminated
successfully or if a failure occurred.

We’ll modify the simple I/O test application to “listen” for an exit string, and then exit
the program when it occurs. Example 2-1 has the complete application.

Example 2-1. Demonstrating standard I/O in Node, and exiting application

process.stdin.setEncoding('utf8');

process.stdin.on('readable', function() {
 var input = process.stdin.read();

 if (input !== null) {
 // echo the text
 process.stdout.write(input);

 var command = input.trim();
 if (command == 'exit')
 process.exit(0);

 }
});

When we run the application, any string we type in is immediately echoed out. And if
we type exit, the application exits without having to use Ctrl-C.

If we remove the process.stdin.setEncoding() function call at the beginning, the
application will fail. The reason is there is no trim() function on a buffer. We could
convert the buffer to a string, and then run trim:

var command = input.toString().trim();

But the better approach is to add the encoding and remove any unexpected side
effects.

The Stream Interface

The process I/O objects are implementations of the Stream inter‐
face, covered with the other system modules in Chapter 6.

The process.stderr object is just like it sounds: you can write to it when an error
occurs. Why would you use it instead of process.stdout? For the same reason the
stderr channel was created: to differentiate between outputs that are expected versus
outputs that note a problem has occurred. In some systems, you can even process

24 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

stderr outputs differently than stdout outputs (such as redirecting a stdout mes‐
sage to a logfile, whereas stderr goes to the console).

There are several other objects and useful functions associated with process, and as I
noted earlier, we’ll be seeing many of them throughout the book.

Buffers, Typed Arrays, and Strings
In browser-based JavaScript, in the early days, there never was a need to handle
binary data (an octet stream). Originally, JavaScript was meant to deal with string val‐
ues accessed or output to alert windows or forms. Even when Ajax changed the
game, the data between client and server was string (Unicode) based.

Things changed, though, when the demands on JavaScript became more sophistica‐
ted. Not only do we still have Ajax, but we also have WebSockets. In addition, what
we can do in the browser has expanded—rather than simple form access, we have
new technologies such as WebGL and Canvas.

The solution in JavaScript and in the browser is the ArrayBuffer, manipulated
through typed arrays. In Node, the solution is the Buffer.

Originally, the two were not the same. However, when io.js and Node.js merged in
Node v4.0.0, Node also received support for typed arrays via V8 v4.5. The Node
buffer is now backed by Uint8Array, one of the typed arrays representing an array of
8-bit unsigned integers. That doesn’t mean, though, that you can use one in place of
the other. In Node, the Buffer class is the primary data structure used with most I/O,
and you can’t swap in a typed array without your application failing. In addition, con‐
verting a Node buffer to a typed array may be doable, but it’s not without issues.
According to the Buffer API documentation, when you “convert” a buffer to a typed
array:

• The buffer’s memory is copied, not shared.
• The buffer’s memory is interpreted as an array, not a byte array. That is, new
Uint32Array(new Buffer([1,2,3,4])) creates a four-element Uint32Array
with elements [1,2,3,4], not a Uint32Array with a single element [0x1020304]
or [0x4030201].

So you can use both types of octet stream handling in Node, but for the most part,
you’re primarily using buffer. So, what is a Node buffer?

Buffers, Typed Arrays, and Strings | 25

What Is an Octet Stream?

Why is a binary or raw data file referred to as an octet stream? An
octet is a unit of measurement in computing. It’s 8 bits long, hence
the “octet.” In a system that supports 8-bit bytes, an octet and a byte
are the same thing. A stream is just a sequence of data. Therefore, a
binary file is a sequence of octets.

A Node buffer is raw binary data that’s been allocated outside the V8 heap. It’s man‐
aged via a class, the Buffer. Once allocated, the buffer can’t be resized.

The buffer is the default data type for file access: unless a specific encoding is pro‐
vided when reading and writing to a file, the data is read into, or out of, a buffer.

In Node v4, you can create a new buffer directly using the new keyword:

let buf = new Buffer(24);

Just be aware that, unlike ArrayBuffer, creating a new Node buffer doesn’t initialize
the contents. If you want to ensure you don’t get pesky, unexpected consequences
with working with a buffer that may or may not contain all sorts of peculiar and pos‐
sibly sensitive data, you’ll also want to fill the buffer as soon as you create it:

let buf = new Buffer(24);
buf.fill(0); // fills buffer with zeros

You can also partially fill a buffer, specifying a start and end value.

Specify Encoding for Buffer Fill

Beginning with Node v5.7.0, you can also specify an encoding for
buf.fill(), using the syntax: buf.fill(string[, start[, end]]
[, encoding]).

You can also directly create a new buffer by passing the constructor function an array
of octets, another buffer, or a string. The buffer is created with the copied contents of
all three. For the string, if it isn’t UTF-8, you’ll need to specify the encoding; strings in
Node are encoded as UTF-8 (utf8 or utf-8) by default.

let str = 'New String';
let buf = new Buffer(str);

I don’t want to cover every method for the Buffer class, since Node provides compre‐
hensive documentation. But I did want to look more closely at some of the
functionality.

26 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

Node v4 to Node v5/v6 Differences

Both the raw and raws encoding types have been removed in
Node v5 and later.

In Node v6, however, the constructors have been deprecated in favor of new Buffer
methods to create new buffers: Buffer.from(), Buffer.alloc(), and Buffer.allocUnsafe().

With the Buffer.from() function, passing in an array returns a buffer with a copy of
the contents. However, if you pass in an ArrayBuffer, with optional byte offset and
length, the buffer shares the same memory as the ArrayBuffer. Passing in a buffer
copies the contents of the buffer, and passing in a string copies the string.

The Buffer.alloc() function creates a filled buffer of a certain size, while
Buffer.allocUnsafe(), creates a buffer of a certain size, but may contain old or sen‐
sitive data, and will then need to be filled, with buf.fill() to ensure otherwise.

The following Node code:

'use strict';

let a = [1,2,3];

let b = Buffer.from(a);

console.log(b);

let a2 = new Uint8Array([1,2,3]);

let b2 = Buffer.from(a2);

console.log(b2);

let b3 = Buffer.alloc(10);

console.log(b3);

let b4 = Buffer.allocUnsafe(10);

console.log(b4);

Results in the following, on my system:

<Buffer 01 02 03>
<Buffer 01 02 03>
<Buffer 00 00 00 00 00 00 00 00 00 00>
<Buffer a0 64 a3 03 00 00 00 00 01 00>

 Note the data artifacts associated using Buffer.allocUnsafe(), compared to
Buffer.alloc();

Buffers, Typed Arrays, and Strings | 27

Buffer, JSON, StringDecoder, and UTF-8 Strings
Buffers can convert to JSON, as well as strings. To demonstrate, type the following
into a Node file and run it at the command line:

"use strict";

let buf = new Buffer('This is my pretty example');
let json = JSON.stringify(buf);

console.log(json);

The result is:

{"type":"Buffer",
"data":[84,104,105,115,32,105,115,32,109,121,32,112,114,101,116,
116,121,32,101,120,97,109,112,108,101]}

The JSON specifies that the type of object being transformed is a Buffer, and its data
follows. Of course, what we’re seeing is the data after it’s been stored in a buffer as a
sequence of octets, which aren’t human-readable.

ES6

Most of the code examples use very familiar JavaScript that’s been
around several years. However, I do sneak in ES6 from time to
time, and I’ll cover Node and ES6 (EcmaScript 2015) in more detail
in Chapter 9.

To go full circle, we can parse the buffer data back out of the JSON object, and then
use the Buffer.toString() method to convert to a string, as shown in Example 2-2.

Example 2-2. A string to buffer to JSON, and back to buffer and back to string

"use strict";

let buf = new Buffer('This is my pretty example');
let json = JSON.stringify(buf);

let buf2 = new Buffer(JSON.parse(json).data);

console.log(buf2.toString()); // this is my pretty example

The console.log() function prints out the original string after it’s been converted
from buffer data. The toString() function converts the string to UTF-8 by default,
but if we wanted other string types, we’d pass in the encoding:

console.log(buf2.toString('ascii')); // this is my pretty example

28 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

We can also specify a starting and ending place in the string conversion:

console.log(buf2.toString('utf8', 11,17)); // pretty

Using Buffer.toString() isn’t the only way we can convert a buffer to a string. We
can also use a helper class, StringDecoder. This object’s sole purpose is to decode
buffer values to UTF-8 strings, but it does so with a little more flexibility and recover‐
ability. If the buffer.toString() method gets an incomplete UTF-8 character
sequence, it returns gibberish. The StringDecoder, on the other hand, buffers the
incomplete sequence until it’s complete and then returns the result. If you’re receiving
a UTF-8 result as chunks in a stream, you should use StringDecoder.

An example of the differences between the string conversion routines is in the follow‐
ing Node application. The euro symbol (€) is coded as three octets, but the first buffer
only contains the first two octets. The second buffer contains the third.

"use strict";

let StringDecoder = require('string_decoder').StringDecoder;
let decoder = new StringDecoder('utf8');

let euro = new Buffer([0xE2, 0x82]);
let euro2 = new Buffer([0xAC]);

console.log(decoder.write(euro));
console.log(decoder.write(euro2));

console.log(euro.toString());
console.log(euro2.toString());

The result to the console is a blank line and a second line with the euro symbol (€)
when you use StringDecoder, but two lines of gibberish when you use
buffer.toString().

You can also convert a string to an existing buffer using buffer.write(). It’s impor‐
tant, though, that the buffer be correctly sized to hold the number of octets necessary
for the characters. Again, the euro symbol requires three octets to represent it (0xE2,
0x82, 0xAC):

let buf = new Buffer(3);
buf.write('€','utf-8');

This is also a good demonstration that the number of UTF-8 characters is not equiva‐
lent to the number of octets in the buffer. If in doubt, you can easily check the buffer
size with buffer.length:

console.log(buf.length); // 3

Buffers, Typed Arrays, and Strings | 29

Buffer Manipulation
You can read and write buffer contents at a given offset with a variety of typed func‐
tions. Examples of using these functions are in the following code snippet, which
writes out four unsigned 8-bit integers to a buffer, then reads them in again and
prints them out:

var buf = new Buffer(4);

// write values to buffer
buf.writeUInt8(0x63,0);
buf.writeUInt8(0x61,1);
buf.writeUInt8(0x74,2);
buf.writeUInt8(0x73,3);

// now print out buffer as string
console.log(buf.toString());

Try this yourself by copying the code into a file and running it. You can also read each
individual 8-bit integer, using buffer.readUInt8().

Node supports reading in and writing out signed and unsigned 8-, 16-, and 32-bit
integers, as well as floats and doubles. For all types other than the 8-bit integers, you
can also pick whether you want little-endian or big-endian format. Examples of some
of the functions supported are the following:

• buffer.readUIntLE(): read value at buffer offset using little-endian format
• buffer.writeUInt16BE(): write unsigned 16-bit integer at offset using big-

endian format
• buffer.readFloatLE(): read float at offset with little-endian format
• buffer.writeDoubleBE(): write 64-bit double value at offset using big-endian

format

Endianness
If you’re unfamiliar with endianness, or byte order, the format determines how the
value is stored: whether the most significant byte is stored at the lowest memory
address (big-endian) or the least significant byte is stored at the lowest memory
address (little-endian).

Figure 2-1, from the Wikipedia entry for endianness, provides a good visual demon‐
stration of the differences between the two.

30 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

Figure 2-1. Demonstration of little-endian and big-endian formats. Image courtesy of
Wikipedia.

You can also write 8-bit integers directly using an array-like format:

var buf = new Buffer(4);

buf[0] = 0x63;
buf[1] = 0x61;
buf[2] = 0x74;
buf[3] = 0x73;

In addition to reading and writing to a specific buffer offset, you can also create a new
buffer consisting of a section of the old, using buffer.slice(). What’s particularly
interesting about this capability is that modifying the contents of the new buffer also
modifies the contents of the old buffer. Example 2-3 demonstrates this by creating a
buffer from a string, grabbing a slice of the existing buffer to create a new one, and
then modifying the contents in the new buffer. Both buffers are then printed out to
the console so you can see this in-place modification.

Example 2-3. Demonstrating in-place modification of old buffer when changing new
buffer

var buf1 = new Buffer('this is the way we build our buffer');
var lnth = buf1.length;

// create new buffer as slice of old
var buf2 = buf1.slice(19,lnth);
console.log(buf2.toString()); // build our buffer

//modify second buffer
buf2.fill('*',0,5);
console.log(buf2.toString()); // ***** our buffer

Buffers, Typed Arrays, and Strings | 31

// show impact on first buffer
console.log(buf1.toString()); // this is the way we ***** our buffer

If you ever need to test whether buffers are equivalent, you can use the
buffer.equals() function:

if (buf1.equals(buf2)) console.log('buffers are equal');

You can also copy the bytes from one buffer to another using buffer.copy(). You
can copy all or part of the bytes using optional parameters. Note, though, that if the
second buffer isn’t large enough to hold all of the contents, you’ll only get the portion
of the bytes that fit:

var buf1 = new Buffer('this is a new buffer with a string');

// copy buffer
var buf2 = new Buffer(10);
buf1.copy(buf2);

console.log(buf2.toString()); // this is a

If you need to compare buffers, you can use buffer.compare(), which returns a
value indicating whether the compared buffer lexically comes before or after. If the
compared buffer comes before, a value of -1 is returned; after, a value of 1. If the two
buffers have equivalent bytes, a value of 0 is returned:

var buf1 = new Buffer('1 is number one');
var buf2 = new Buffer('2 is number two');

var buf3 = new Buffer(buf1.length);
buf1.copy(buf3);

console.log(buf1.compare(buf2)); // -1
console.log(buf2.compare(buf1)); // 1
console.log(buf1.compare(buf3)); // 0

There is another buffer class, SlowBuffer, that can be used if ever you need to retain
the buffer contents for a small buffer for a long period of time. Normally, Node cre‐
ates buffers from a preallocated chunk of memory if the buffers are small (less than 4
KB in size). This way, garbage collection doesn’t have to deal with tracking and clean‐
ing up many small chunks of memory.

The SlowBuffer class allows you to create small buffers from outside this pre-
allocated (pooled) memory chunk and have them persist for longer periods of time.
As you can imagine, though, using the class can have significant impact on perfor‐
mance. It should be used only if nothing else will work.

32 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

Node’s Callback and Asynchronous Event Handling
JavaScript is single-threaded, which makes it inherently synchronous. This means
that JavaScript is executed, line by line, until the application is finished. Since Node is
based in JavaScript, it inherits this single-threaded synchronous behavior.

However, if you have functionality that needs to wait on something, such as opening
a file, a web response, or other activity of this nature, then blocking the application
until the operation is finished would be a major point of failure in a server-based
application.

The solution to prevent blocking is the event loop.

The Event Queue (Loop)
To enable asynchronous functionality, applications can take one of two approaches.
One approach would be to assign a thread to each time-consuming process. The rest
of the code could then go on its way, in parallel. The problem with this approach is
that threads are expensive. They’re expensive in resources, and they’re expensive in
added application complexity.

The second approach is to adopt an event-driven architecture. What happens is that
when a time-consuming process is invoked, the application doesn’t wait for it to fin‐
ish. Instead, the process signals when it’s finished by emitting an event. This event
gets added into a queue, or event loop. Any dependent functionality registers an inter‐
est in this event with the application, and when the event is pulled from the event
loop and processed, the dependent functionality is invoked, with any event-related
data passed to it.

JavaScript in the browser and Node both take the latter approach. In the browser,
when you add a click handler to an element, what you’ve done is register (subscribe
to) an event and provide a callback function to invoke when the event happens, free‐
ing the rest of the application to continue:

<div id="someid"> </div>
<script>
 document.getElementById("someid").addEventListener("click",
 function(event) {
 event.target.innerHTML = "I been clicked!";
 }, false);
</script>

Node has its own event loop, but rather than wait for a UI event, such as clicking on
an element, its loop is used to help facilitate server-based functionality, primarily
input/output (I/O). This includes events associated with opening a file and signaling
when the file is opened, reading its contents into a buffer and notifying the client the

Node’s Callback and Asynchronous Event Handling | 33

process is finished, or waiting for a web-based request from a user. Not only are these
types of processes potentially time-consuming, but there can also be a lot of conten‐
tion for resources, and each access of the resource typically locks the resource from
other access until the original process is finished. In addition, web-based applications
are dependent on user actions and, sometimes, actions of other applications.

Node processes all of the events in the queue, in order. When it gets to the event
you’re interested in, it invokes the callback function you’ve provided, passing in any
information associated with the event.

In the basic web server created as the first example of Node in Chapter 1, we saw the
event loop in action. I’ll repeat the code here, so you can have it handy for review:

var http = require('http');

http.createServer(function (request, response) {
 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
}).listen(8124);

console.log('Server running at http://127.0.0.1:8124/');

In Example 2-4, I modified the code to break out the individual actions, and also to
listen to more of the events that occur during the server creation, client connection,
and listening process.

Example 2-4. Basic web server with additional event highlighting

var http = require('http');

var server = http.createServer();

server.on('request', function (request, response) {

 console.log('request event');

 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
});

server.on('connection', function() {
 console.log('connection event');
});

server.listen(8124, function() {

 console.log('listening event');
});

console.log('Server running on port 8124');

34 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

www.allitebooks.com

http://www.allitebooks.org

Note that the requestListener() function, the server request callback, is no longer
called in the http.createServer() function. Instead, the application assigned the
newly created HTTP server to a variable, which it then uses to capture two events:

• The request event, emitted each time a web request is made from a client
• The connection event, emitted each time a new client connects to the web

application

In both cases, the events are subscribed to using the on() function, which the HTTP
server class inherits from the EventEmitter class. I’ll get into the object this function‐
ality is inherited from in the next section, but for now, let’s focus on the events them‐
selves. There’s one more event subscribed to in the example, and that’s the listening
event, which is accessed using a callback function on the HTTP server.listen()
function.

One object, the HTTP server, and three events: request, connection, and listening. So,
what happens when the application is created and web requests are made?

Starting the application immediately prints out the message that the “Server is run‐
ning on port 8124.” That’s because the application doesn’t block when the server is
created, a client connects, or when we start listening for requests. So, the first time a
console.log() message is actually completed is when we’re past all of the non-
blocking asynchronous functions.

The very next message is “listening event.” As soon as we create the server, we want to
listen for new connections and requests. We do so by calling the server.listen()
function. We don’t need to wait for any “server-created” event, as the http.create
Server() function returns immediately. You can test this for yourself by inserting a
console.log() message directly after the http.createServer() function call. If you
do add this line, it will be the first printed out to the console when you start the
application.

In the previous version of the application, the server.listen() function is chained
to the http.createServer() function, but it doesn’t need to be. Doing so was a mat‐
ter of convenience and programming elegance, not event-driven necessity. The
server.listen() function is, however, an asynchronous function with a callback,
invoked when the listening event is emitted. Therefore, the console message is dis‐
played after the message about the server running at port 8124.

No other message is printed out until a client connects with the web application.
Then we’ll receive the connection event message, because the connection is the first
event invoked with a new client. Following it are one or two request event messages.
The reason for the difference is how each browser makes a request to a new website.
Chrome wants the resource but also wants the favicon.ico, so the application gets two

Node’s Callback and Asynchronous Event Handling | 35

requests. Firefox and IE don’t, so the application only gets one request message for
these browsers.

If you refresh the page request in the same browser, you’ll only get the request event
message(s). The connection has already been established and is maintained until the
user closes the browser or some timeout occurs. Accessing the same resource with
different browsers establishes a separate connection event for each.

Accessing the web application using Chrome results in the following messages to the
console:

• Server running on port 8124
• Listening event
• Connection event
• Request event
• Request event

If you have a function in a module or directly in an application that you want to make
asynchronous, then you need to define it using a specific criteria, covered next.

Creating an Asynchronous Callback Function
To demonstrate the fundamental structure of the callback functionality, Example 2-5
is a complete Node application that creates an object with one function, doSometh
ing(). The function takes three arguments: the first is returned as data if no error
occurs, the second must be a string, and the third is the callback function. In doS
omething(), if the second argument is missing or is not a string, the object creates a
new Error object, which gets returned in the callback function. If no error occurs, the
callback function is called, the error is set to null, and the function data gets returned
(in this case, the first argument).

The key elements of the callback functionality are in boldface in Example 2-5.

Example 2-5. The fundamental structure of the last callback functionality

var fib = function (n) {
 if (n < 2) return n;
 return fib(n - 1) + fib(n - 2);
};

var Obj = function() { };

Obj.prototype.doSomething = function(arg1_) {
 var callback_ = arguments[arguments.length - 1];
 callback = (typeof(callback_) == 'function' ? callback_ : null);
 var arg1 = typeof arg1_ === 'number' ? arg1_ : null;

36 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

 if (!arg1)
 return callback(new Error('first arg missing or not a number'));

 process.nextTick(function() {

 // block on CPU
 var data = fib(arg1);
 callback(null, data);
 });
}

var test = new Obj();
var number = 10;

test.doSomething(number, function(err,value) {
 if (err)
 console.error(err);
 else
 console.log('fibonaci value for %d is %d', number, value);
});

console.log('called doSomething');

The first key functionality is to ensure the last argument is a callback function, and
that the first argument in the callback function is an error. As noted in Chapter 1, this
error-first pattern is frequently referred to as an errback. We can’t determine the user’s
intent, but we can make sure the last argument is a function, and that will have to do.

The second key functionality is to create the new Node Error object if an error
occurs, and return it as the result to the callback function. We can’t rely on
throw...catch in an asynchronous world, so the error handling must be handled in
the Error object in the callback.

The last critical functionality is to invoke the callback function, passing in the func‐
tion’s data if no error occurs. However, to ensure this callback is asynchronous, we
call it within a process.nextTick() function. The reason is that process.next
Tick() ensures the event loop is cleared before the function is called. This means all
of the synchronous functionality is processed before the blocking functionality (if
any) is invoked. In the example, the blocking doesn’t occur because of I/O but
because the operation is CPU-bound. Calling a Fibonacci sequence function with a
value of 10 may not take time, but calling the same function with a value of 50 or
more will, depending on your system’s resources. The Fibonacci function is called
within process.nextTick(), therefore ensuring that the CPU-bound functionality is
handled ascynchronously.

In short, everything else is changeable, as long as these four key functionalities are
present:

Node’s Callback and Asynchronous Event Handling | 37

• Ensure the last argument is a callback function.
• Create a Node Error and return it as the first argument in the callback function if

an error occurs.
• If no error occurs, invoke the callback function, set the error argument to null,

and pass in any relevant data.
• The callback function must be called within process.nextTick() to ensure the

process doesn’t block.

If you change the value of number to 10, the application prints the following to the
console:

called doSomething
[Error: first argument missing or not a number]

If you look through the code in the lib directory of the Node installation, you’ll see
the last callback pattern repeated throughout. Though the functionality may change,
this pattern remains the same.

This approach is quite simple and ensures consistent results from asynchronous
methods.

Callback Nesting

The use of a callback function is simple, but generates its own chal‐
lenges, including deep-nesting of callbacks. I cover deep-nesting
and solutions in Chapter 3, in the section “Better Callback Manage‐
ment with Async” on page 77.

Earlier I mentioned that the http.Server object inherits from another object, and
that’s where we get the event-emitting capability. This object is named, appropriately
enough, EventEmitter, and we’ll cover it next.

Node Is Single-Threaded…Mostly
Node’s event loop is single-threaded. However, this doesn’t mean there aren’t multiple
threads busily working away in the background.

Node invokes functionality, such as the File System (fs), that is implemented in C++
rather than JavaScript. The fs functionality makes use of worker threads in order to
accomplish its functionality. In addition, Node makes use of the libuv library, which
makes use of a pool of worker threads for some functionality. How many threads is
operating-system-dependent.

If you stick with JavaScript and creating JavaScript modules, you need never be con‐
cerned about worker threads and libuv. Point of fact: we have been patted on the head

38 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

and told not to worry our pretty heads about worker threads. And that’s OK with me,
having worked with multithreaded environments in the past.

However, if you’re interested in developing Addon extensions for Node, you’ll need to
become very familiar with libuv. A good place to start is An Introduction to libuv.

For more on the interesting, hidden world of multithreaded Node, I suggest the
answers to the Stack Overflow question: When is thread pool used?

EventEmitter
Scratch underneath the surface of many of the Node core objects, and you’ll find Even
tEmitter. Anytime you see an object emit an event, and an event handled with the
function on, you’re seeing EventEmitter in action. Understanding how EventEmitter
works and how to use it are two of the more important components of Node develop‐
ment.

The EventEmitter enables asynchronous event handling in Node. To demonstrate its
core functionality, we’ll try a quick test application.

First, include the Events module:

var events = require('events');

Next, create an instance of EventEmitter:

var em = new events.EventEmitter();

Use the newly created EventEmitter to do two essential tasks: attach an event handler
to an event, and emit the actual event. The EventEmitter.on() event handler is
invoked when a specific event is emitted. The first parameter to the method is the
name of the event; the second, the callback function to perform some functionality:

em.on('someevent', function(data) { ... });

The event is emitted on the object via the EventEmitter.emit() method when some
condition is met:

if (somecriteria) {
 en.emit('data');
}

In Example 2-6, we create an EventEmitter instance that emits a timed event every
three seconds. In the event handler function for this event, a message with a counter
is output to the console. Note the correlation between the counter argument in the
EventEmitter.emit() function and the corresponding data in the EventEmit
ter.on() function that processes the event.

Node’s Callback and Asynchronous Event Handling | 39

https://nikhilm.github.io/uvbook/basics.html
http://stackoverflow.com/questions/22644328/when-is-the-thread-pool-used

Example 2-6. Very basic test of the EventEmitter functionality

var eventEmitter = require('events').EventEmitter;
var counter = 0;

var em = new eventEmitter();

setInterval(function() { em.emit('timed', counter++); }, 3000);

em.on('timed', function(data) {
 console.log('timed ' + data);
});

Running the application outputs timed event messages to the console until the appli‐
cation is terminated. The key takeaway from this simple application is that an event is
triggered via the EventEmitter.emit() function, and the EventEmitter.on() func‐
tion can be used to trap that event and process it.

This is an interesting example, but not particularly helpful. What we need is the abil‐
ity to add EventEmitter functionality to our existing objects—not use instances of
EventEmitter throughout our applications. This is what http.Server, and most
other event-enabled classes in Node, do.

EventEmitter functionality is inherited, so we have to use another Node object, Util,
to enable this inheritance. The Util module is imported into an application using:

var util = require('util');

The Util module is a helpful beast. I’ll cover most of its functionality in Chapter 11,
when I get into debugging Node applications. But one of the functions, util.inher
its(), is essential right now.

The util.inherits() function enables one constructor to inherit the prototype
methods of another, a superconstructor. To make util.inherits() even more special,
you can also access the superconstructor directly in the functions of the constructor.

The util.inherits() function allows us to inherit Node event queue functionality
with any class, and that includes EventEmitter:

util.inherits(Someobj, EventEmitter);

By using util.inherits() with the object, you can call the emit method within the
object’s methods, and code event handlers on the object instances:

Someobj.prototype.someMethod = function() { this.emit('event'); };
...
Someobjinstance.on('event', function() { });

Rather than attempt to decipher how EventEmitter works in the abstract sense, let’s
move on to Example 2-7, which shows a working example of a class inheriting EventE

40 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

mitter’s functionality. In the application, a new class, inputChecker, is created. The
constructor takes two values, a person’s name and a filename. It assigns the person’s
name to a property, and also creates a reference to a writable stream using the File
System module’s createWriteStream method.

The object also has a method, check, that checks incoming data for specific com‐
mands. One command (wr:) emits a write event, another (en:) an end event. If no
command is present, then an echo event is emitted. The object instance provides
event handlers for all three events. It writes to the output file for the write event, it
echoes the input for the commandless input, and it terminates the application with an
end event, using the process.exit method.

All input comes from standard input (process.stdin). Written output uses a writa‐
ble stream, which is a way of creating a new output source in the background and to
which future writes are queued. It’s a more efficient file output method if you’re
expecting frequent activity, as we are in this application. The input that’s echoed is
just output to process.stdout.

Example 2-7. Creating an event-based object that inherits from EventEmitter

"use strict";

var util = require('util');
var eventEmitter = require('events').EventEmitter;
var fs = require('fs');

function InputChecker (name, file) {
 this.name = name;
 this.writeStream = fs.createWriteStream('./' + file + '.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0o666});
};

util.inherits(InputChecker,eventEmitter);

InputChecker.prototype.check = function check(input) {

 // trim extraneous white space
 let command = input.trim().substr(0,3);

 // process command
 // if wr, write input to file
 if (command == 'wr:') {
 this.emit('write',input.substr(3,input.length));

 // if en, end process
 } else if (command == 'en:') {
 this.emit('end');

Node’s Callback and Asynchronous Event Handling | 41

 // just echo back to standard output
 } else {
 this.emit('echo',input);
 }
};

// testing new object and event handling
let ic = new InputChecker('Shelley','output');

ic.on('write', function(data) {
 this.writeStream.write(data, 'utf8');
});

ic.on('echo', function(data) {
 process.stdout.write(ic.name + ' wrote ' + data);
});

ic.on('end', function() {
 process.exit();
});

// capture input after setting encoding
process.stdin.setEncoding('utf8');
process.stdin.on('readable', function() {
 let input = process.stdin.read();
 if (input !== null)
 ic.check(input);
});

Note that the functionality also includes the process.stdin.on event handler
method, since process.stdin is one of the many Node objects that inherit from Even
tEmitter.

No Octal Literals in Strict Mode

In Example 2-7, I used strict mode because I’m using the let ES6
statement. Because I’m using strict mode, though, I can’t use octal
literals (such as 0666) in the write stream file descriptor flags.
Instead, I use the notation 0o666, which is an ES6-style literal.

The on() function is really a shortcut for the EventEmitter.addListener function,
which takes the same parameters. So this:

ic.addListener('echo', function(data) {
 console.log(this.name + ' wrote ' + data);
});

is exactly equivalent to:

42 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

ic.on('echo', function(data) {
 console.log(this.name + ' wrote ' + data);
});

You can listen to the next event with EventEmitter.once():

ic.once(event, function);

When you exceed 10 listeners for an event, you’ll get a warning by default. Use set
MaxListeners, passing in a number, to change the number of listeners. Use a value of
zero (0) for an unlimited amount of listeners.

You can also remove listeners with EventEmitter.removeListener():

ic.on('echo', callback);

ic.removeListener('echo',callback);

This removes one listener from the array of event listeners, maintaining the order.
However, if you’ve copied the array of event listeners, for whatever reason, using Even
tEmitter.listeners(), you’ll need to re-create it once you’ve removed listeners.

The Node Event Loop and Timers
In the browser we have setTimeout() and setInterval() to use for timers, and we
have these same functions in Node, too. They’re not exactly the same, since the
browser uses the event loop maintained by whatever is the browser engine, and
Node’s event loop is handled by a C++ library, libuv—but any differences are likely to
be negligible.

The Node setTimeout() takes a callback function as first parameter, the delay time
(in milliseconds) as second parameter, and an optional list of arguments:

setTimeout(function(name) {
 console.log('Hello ' + name);
 }, 3000, 'Shelley');

console.log("waiting on timer...");

The name in the argument list is passed as an argument to the callback function in
setTimeout(). The timer value is set to 3,000 milliseconds. The console.log() mes‐
sage of “waiting on timer...” is printed out almost immediately, as the setTimeout()
function is asynchronous.

You can cancel a timer if your application assigns it to a variable when creating it. I
modified the previous Node application to incorporate a faster-acting cancellation
and message:

Node’s Callback and Asynchronous Event Handling | 43

var timer1 = setTimeout(function(name) {
 console.log('Hello ' + name);
 }, 30000, 'Shelley');

console.log("waiting on timer...");

setTimeout(function(timer) {
 clearTimeout(timer);
 console.log('cleared timer');
 }, 3000, timer1);

The timer is set for a very long period of time, plenty of time for the new timer to
invoke a callback that actually cancels the timer.

The setInterval() function operates in a similar manner to setTimeout(), except
that the timer continues to re-fire until the application is cancelled, or the timer is
cleared with clearInterval(). Modifying the setTimeout() example for one dem‐
onstrating setInterval(), the message repeats nine times before it gets cancelled.

var interval = setInterval(function(name) {
 console.log('Hello ' + name);
 }, 3000, 'Shelley');

setTimeout(function(interval) {
 clearInterval(interval);
 console.log('cleared timer');
 }, 30000, interval);

console.log('waiting on first interval...');

As the Node documentation carefully notes, there’s no guarantee that the callback
function will be invoked in exactly n milliseconds (whatever n is). This is no different
than the use of setTimeout() in a browser—we don’t have absolute control over the
environment, and factors could slightly delay the timer. For the most part, we can’t
sense any time discrepancy when it comes to the timer functions. However, if we’re
creating animations, we can actually see the impact.

There are two Node-specific functions you can use with the timer/interval which are
returned when you call setTimeout() or setInterval(): ref() and unref(). If you
call unref() on a timer, and it’s the only event in the event queue, the timer is
cancelled and the program is allowed to terminate. If you call ref() on the same
timer object, this keeps the program going until the timer has processed.

Returning to the first example, we’ll create a longish timer, and then call unref() on
it to see what happens:

44 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

var timer = setTimeout(function(name) {
 console.log('Hello ' + name);
 }, 30000, 'Shelley');

timer.unref();

console.log("waiting on timer...");

Running the application prints out the console message, and then quits. The reason is
that the timer set with setTimeout() is the only event in the application’s event
queue. But what if we added another event? Modifying the code, we’ll add an interval,
as well as the timeout, and call unref() on the timeout:

var interval = setInterval(function(name) {
 console.log('Hello ' + name);
 }, 3000, 'Shelley');

var timer = setTimeout(function(interval) {
 clearInterval(interval);
 console.log('cleared timer');
 }, 30000, interval);

timer.unref();

console.log('waiting on first interval...');

The timer is allowed to continue, which means it terminates the interval. And yet it’s
the interval events that have kept the timer alive long enough to allow the timer to
clear the interval.

The last set of Node timer-like functions are unique to Node: setImmediate() and
clearImmediate(). The setImmediate() creates an event, but the event has prece‐
dence over those created by setTimeout() and setInterval(). However, it doesn’t
have precedence over I/O events. And it has no timer associated with it. The setIm
mediate() event is emitted after all I/O events, before any timer events, and in the
current event queue. If you call it from within a callback function, then it’s placed into
the next event loop after the one in which it was invoked is finished. It is a way of
adding an event to the current or next event loop without adding any arbitrary
timers. It’s more efficient than setTimeout(callback, 0), since it takes precedence
over other timer events.

It’s similar to another function, process.nextTick(), except that the process.next
Tick() callback function is invoked once the current event loop is finished but before
any new I/O events are added. As demonstrated earlier in the section “Creating an
Asynchronous Callback Function” on page 36, it’s used extensively to implement
Node’s asynchronous functionality.

Node’s Callback and Asynchronous Event Handling | 45

Nested Callbacks and Exception Handling
It’s not unusual to find the following in a client-side JavaScript application:

val1 = callFunctionA();
val2 = callFunctionB(val1);
val3 = callFunctionC(val2);

The functions are called in turn, passing the results from the earlier function to each
subsequent function. Since all the functions are synchronous, we don’t have to worry
about the function calls getting out of sequence—there are no unexpected results.

Example 2-8 shows a relatively common case of this type of sequential programming.
The application uses synchronous versions of Node’s File System methods to open a
file and get its data, modify the data by replacing all references to “apple” with
“orange,” and output the resulting string to a new file.

Example 2-8. A sequential synchronous application

var fs = require('fs');

try {
 var data = fs.readFileSync('./apples.txt','utf8');
 console.log(data);
 var adjData = data.replace(/[A|a]pple/g,'orange');

 fs.writeFileSync('./oranges.txt', adjData);
} catch(err) {
 console.error(err);
}

Since problems can occur and we can’t be sure errors are handled internally in any
module function, we wrap all of the function calls in a try block to allow for graceful
—or at least, more informative—exception handling. The following is an example of
what the error looks like when the application can’t find the file to read:

{ [Error: ENOENT: no such file or directory, open './apples.txt']
 errno: -2,
 code: 'ENOENT',
 syscall: 'open',
 path: './apples.txt' }

While perhaps not very user-friendly, at least it’s a lot better than the alternative:

$ node nested2
fs.js:549
 return binding.open(pathModule._makeLong(path), stringToFlags(flags),
mode);
 ^

46 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

Error: ENOENT: no such file or directory, open './apples.txt'
 at Error (native)
 at Object.fs.openSync (fs.js:549:18)
 at Object.fs.readFileSync (fs.js:397:15)
 at Object.<anonymous>
 (/home/examples/public_html/learnnode2/nested2.js:3:18)
 at Module._compile (module.js:435:26)
 at Object.Module._extensions..js (module.js:442:10)
 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:311:12)
 at Function.Module.runMain (module.js:467:10)
 at startup (node.js:136:18)

Converting this synchronous sequential application pattern to an asynchronous
implementation requires a couple of modifications. First, we have to replace all func‐
tions with their asynchronous counterparts. However, we also have to account for the
fact that each function doesn’t block when called, which means we can’t guarantee the
proper sequence if the functions are called independently of each other. The only way
to ensure that each function is called in its proper sequence is to use nested callbacks.

Example 2-9 is an asynchronous version of the application from Example 2-8. All of
the File System function calls have been replaced by their asynchronous versions, and
the functions are called in the proper sequence via a nested callback. In addition, the
use of the try...catch block is removed.

We can’t use try...catch, because the use of the asynchronous functions means that
the try...catch block is actually processed before the asynchronous function has
been called. So trying to throw an error in the callback function is attempting to
throw an error outside of the process to catch it. Instead, we just process the error
directly: if an error exists, handle it and return; if no error exists, continue the call‐
back function’s process.

Example 2-9. Application from Example 2-8 converted into asynchronous nested
callbacks

var fs = require('fs');
fs.readFile('./apples.txt','utf8', function(err,data) {
 if (err) {
 console.error(err);
 } else {

 var adjData = data.replace(/apple/g,'orange');

 fs.writeFile('./oranges.txt', adjData, function(err) {

 if (err) console.error(err);
 });
 }

Nested Callbacks and Exception Handling | 47

});

In Example 2-9, the input file is opened and read, and only when both actions are
finished does the callback function get called. In this function, the error is checked to
see if it has a value. If it does, the error object is printed out to the console. If no error
occurs, the data is processed and the asynchronous writeFile() method is called.
Its callback function has only one argument, the error object. If it’s not null, it’s
also printed out to the console.

If an error occurred, it would look similar to the following:

{ [Error: ENOENT: no such file or directory, open './apples.txt']
 errno: -2,
 code: 'ENOENT',
 syscall: 'open',
 path: './apples.txt' }

If you want the stack trace of the error, you can print out the stack property of the
Node error object:

if (err) {
 console.error(err.stack);
}

The result would look like the following:

Error: ENOENT: no such file or directory, open './apples.txt'
 at Error (native)

Including a sequential asynchronous function call adds another level of callback nest‐
ing and, potentially, new challenges in error handling. In Example 2-10, we access a
listing of files for a directory. In each of the files, we replace a generic domain name
with a specific domain name using the string replace method, and the result is writ‐
ten back to the original file. A log of each changed file is maintained using an open
write stream.

Example 2-10. Retrieving directory listing for files to modify

var fs = require('fs');
var writeStream = fs.createWriteStream('./log.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0666});

writeStream.on('open', function() {
 // get list of files
 fs.readdir('./data/', function(err, files) {

 // for each file

48 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

 if (err) {
 console.log(err.message);
 } else {
 files.forEach(function(name) {

 // modify contents
 fs.readFile('./data/' + name,'utf8', function(err,data) {

 if (err){
 console.error(err.message);
 } else {
 var adjData = data.replace(/somecompany\.com/g,
 'burningbird.net');

 // write to file
 fs.writeFile('./data/' + name, adjData, function(err)
 {

 if (err) {
 console.error(err.message);
 } else {

 // log write
 writeStream.write('changed ' + name + '\n',
 'utf8', function(err) {

 if(err) console.error(err.message);
 });
 }
 });
 }
 });
 });
 }
 });
});

writeStream.on('error', function(err) {
 console.error("ERROR:" + err);
});

First off, we see something new: the use of event handling to handle errors when we
make the fs.createWriteStream function call. The reason we’re using the event han‐
dling is that createWriteStream is asynchronous, so we can’t use the traditional
try...catch error handling. At the same time, it also doesn’t provide a callback func‐
tion where we can capture errors. Instead, we look for an error event and handle it
by writing out the error message. And then we look for an open event (a successful
operation) and do the file processing.

The application prints out the error message directly.

Nested Callbacks and Exception Handling | 49

Though the application looks like it’s processing each file individually before moving
on to the next, remember that each of the methods used in this application is asyn‐
chronous. If you run the application several times and check the log.txt file, you’ll see
that the files are processed in a different, seemingly random order. In my data subdir‐
ectory, I had five files. Running the application three times in a row resulted in the
following output to log.txt (blank lines inserted for clarity):

changed data1.txt
changed data2.txt
changed data3.txt
changed data4.txt
changed data5.txt

changed data2.txt
changed data4.txt
changed data3.txt
changed data1.txt
changed data5.txt

changed data1.txt
changed data2.txt
changed data5.txt
changed data3.txt
changed data4.txt

Another issue arises if you want to check when all of the files have been modified in
order to do something. The forEach method invokes the iterator callback functions
asynchronously, so it doesn’t block. Adding a statement following the use of forEach,
like the following:

console.log('all done');

doesn’t really mean the application is finished, just that forEach didn’t block. If you
add a console.log statement at the same time, you log the changed file:

 // log write
 writeStream.write('changed ' + name + '\n',
 'utf8', function(err) {

 if(err) {
 console.log(err.message);
 } else {
 console.log('finished ' + name);
 }
 });

and add the following after the forEach method call:

console.log('all finished');

and you’ll actually get the following console output:

50 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

all finished
finished data3.txt
finished data1.txt
finished data5.txt
finished data2.txt
finished data4.txt

To solve this challenge, add a counter that is incremented with each log message and
then checked against the file array’s length to print out the “all done” message:

// before accessing directory
var counter = 0;
...
 // log write
 writeStream.write('changed ' + name + '\n',
 'utf8', function(err) {

 if(err) {
 console.log(err.message);
 } else {
 console.log ('finished ' + name);
 counter++;
 if (counter >= files.length) {
 console.log('all done');
 }
 }
 });

You’ll then get the expected result: an “all done” message displays after all the files
have been updated.

The application works quite well—except if the directory we’re accessing has subdir‐
ectories as well as files. If the application encounters a subdirectory, it spits out the
following error, though it keeps on processing the other contents:

EISDIR: illegal operation on a directory, read

Example 2-11 prevents this type of error by using the fs.stats method to return an
object representing the data from a Unix stat command. This object contains infor‐
mation about the object, including whether it’s a file or not. The fs.stats method is,
of course, another asynchronous method, requiring yet more callback nesting.

Example 2-11. Adding in a stats check of each directory object to make sure it’s a file

var fs = require('fs');
var writeStream = fs.createWriteStream('./log.txt',
 {flags : 'a',
 encoding : 'utf8',
 mode : 0666});

writeStream.on('open', function() {

Nested Callbacks and Exception Handling | 51

 var counter = 0;

 // get list of files
 fs.readdir('./data/', function(err, files) {

 // for each file
 if (err) {
 console.error(err.message);
 } else {
 files.forEach(function(name) {

 fs.stat('./data/' + name, function (err, stats) {

 if (err) return err;
 if (!stats.isFile()) {
 counter++;
 return;
 }

 // modify contents
 fs.readFile('./data/' + name,'utf8', function(err,data) {

 if (err){
 console.error(err.message);
 } else {
 var adjData = data.replace(/somecompany\.com/g,
 'burningbird.net');

 // write to file
 fs.writeFile('./data/' + name, adjData,
 function(err) {

 if (err) {
 console.error(err.message);
 } else {

 // log write
 writeStream.write('changed ' + name + '\n',
 function(err) {

 if(err) {
 console.error(err.message);
 } else {
 console.log('finished ' + name);
 counter++;
 if (counter >= files.length) {
 console.log('all done');
 }
 }
 });
 }
 });

52 | Chapter 2: Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature

 }
 });
 });
 });
 }
 });
});

writeStream.on('error', function(err) {
 console.error("ERROR:" + err);
});

Again, the application performs its purpose, and performs it well—but how difficult
it is to read and maintain! I used a return for some of the error handling, eliminating
one conditional nesting, but the program is still almost impossible to maintain. I’ve
heard this type of nested callback called callback spaghetti and the even more colorful
pyramid of doom, both of which are apt terms.

The nested callbacks continue to push against the right side of the document, making
it more difficult to ensure we have the right code in the right callback. However, we
can’t break the callback nesting apart because it’s essential that the methods be called
in turn:

1. Start the directory lookup.
2. Filter out subdirectories.
3. Read each file’s contents.
4. Modify the contents.
5. Write back to the original file.

What we’d like to do is find a way of implementing this series of method calls without
having to depend on nested callbacks. For this, we need to look at third-party mod‐
ules and other approaches. In Chapter 3, I’ll use the Async module to tackle this pyra‐
mid of doom. And in Chapter 9, we’ll look to see if ES6 promises can help us.

Another approach is to provide a named function as a callback
function for each method. This way, you can flatten the pyramid,
and it can simplify debugging. However, this approach doesn’t
solve some of the other problems, such as determining when all
processes have finished. For this, you still need an asynchronous
control handling module.

Nested Callbacks and Exception Handling | 53

CHAPTER 3

Basics of Node Modules and
Node Package Manager (npm)

Throughout the book you’ll have a chance to work with several Node modules, most
of them core modules. These modules are included with the Node installation, and
incorporated into the application using the global require statement.

In this chapter, we’ll explore the concept of the Node module more closely, look at the
require statement in detail, and introduce you to npm, the Node package manager.
We’ll also go shopping for some non-core modules that many people believe are
essential for any Node application development.

An Overview of the Node Module System
Node’s basic implementation is kept as streamlined as possible. Rather than incorpo‐
rate every possible component of use directly into Node, developers offer additional
functionality via modules.

Node’s module system is patterned after the CommonJS module system, a way of creat‐
ing modules so that they’re interoperable. The core of the system is a contract that
developers adhere to in order to ensure that their modules play well with others.

Among the CommonJS module system requirements implemented with Node are:

• Support is included for a require function that takes the module identifier and
returns the exported API.

• The module name is a string of characters, and may include forward slashes (for
identification of paths).

55

• The module must explicitly export that which is to be exposed outside the
module.

• Variables are private to the module.

Some Node functionality is global, which means you don’t have to do anything to
include it. However, most Node functionality is incorporated using the module
system.

How Node Finds and Loads a Module
When you want to include access to a Node module, whether a core module or one
you’ve installed outside of the Node application, use the require statement:

var http = require('http');

You can also access one specific property of an exported object. For instance, people
frequently access only the parse() function when using the URL module:

var name = require('url').parse(req.url, true).query.name;

Or you can access a specific module object to use throughout your application:

var spawn = require('child_process').spawn;

When your application requests a module, several things happen. First, Node checks
to see if the module has been cached. Rather than reload the module each time, Node
caches the module the first time it’s accessed. This eliminates the drag associated with
the system having to perform a system lookup for the file.

One-to-One Correspondence: File to Module

Node only supports one module per file.

If the module isn’t cached, Node then checks to see if it’s a native module. Native
modules are those that are precompiled binaries, such as the C++ add-ons discussed
in Chapter 1. If the module is a native module, a function is used specifically for
native modules, which returns the exported functionality.

If the module isn’t cached or isn’t a native module, a new Module object is created for
it, and the module’s exports property is returned. We cover the module exports in
more detail in “Creating and Publishing Your Own Node Module” on page 69, but
this basically returns public-facing functionality to the application.

The module is also cached. If, for some reason, you want to delete the module from
cache, you can:

delete require('./circle.js');

56 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

The module is reloaded the next time the application requires it.

As part of loading the module, Node has to resolve the location for it. It goes through
a hierarchy of checks when looking for the module file.

First, core modules have priority. You can name your module http if you wish, but
when you go to load http, Node is going to grab the version from core. The only way
you can use http as the module name is if you also provide a path, to differentiate it
from the core module:

var http = require ('/home/mylogin/public/modules/http.js');

As this example demonstrates, if you provide an absolute or relative path with the
filename, Node uses the path. The following looks for the module in the local
subdirectory:

var someModule = require('./somemodule.js');

I give the module extension, but it’s not necessary. When you give a module name
without the extension, Node first looks for the module in the current subdirectory
with a .js extension. If found, the module is loaded. If not found, Node looks for a file
with a .json extension. If a file with the proper name is found with a .json extension,
the module contents are loaded as JSON. Finally, Node looks for a module with
a .node extension. It assumes this module is a precompiled Node add-on, and handles
it accordingly.

JSON files don’t require an explicit exports statement. They only
need to be proper JSON.

You can also use a more complex relative path:

var someModule = require('./somedir/someotherdir/somemodule.js');

Or you can use an absolute path if you’re sure the application will never be moved.
This path is filesystem specific, not a URL:

var someModule = require('/home/myname/public/modules/somemodule.js');

If the module is installed using npm, you don’t need to provide a path; you just list
the module name:

var async = require('async');

Node looks for the module in a node_modules subdirectory, using a search hierarchy
that includes searches in:

An Overview of the Node Module System | 57

1. A node_modules subdirectory local to the application (/home/myname/projects/
node_modules)

2. A node_modules subdirectory in the parent subdirectory to the current applica‐
tion (/home/myname/node_modules)

3. Continuing up the parent subdirectories, looking for node_modules, until top-
level (root) is reached (/node_modules)

4. Finally, looking for the module among those installed globally (discussed next)

The reason Node uses this hierarchy is so that localized versions of a module are
accessed before more global versions. So if you’re testing a new version of a module
and you’ve installed it locally relative to your application:

npm install somemodule

it will be loaded first, rather than the globally installed module:

npm install -g somemodule

You can see which module is loaded using the require.resolve() function:

console.log(require.resolve('async'));

The resolved location of the module is returned.

If you provide a folder name as a module, Node looks for a package.json file that con‐
tains a main property flagging the module file to load:

{ "name" : "somemodule",
 "main" : "./lib/somemodule.js" }

If Node can’t find a package.json file, it looks for an index.js or index.node file to load.

If all these searches fail, you’ll get an error.

Caching Is Filename-Specific

Be aware that caching is based on the filename and path used to
load the module. If you’ve cached a global version of a module and
then load a local version, the local version also gets cached.

Since the Module object is JavaScript-based, we can peek into the Node source code
and get a closer look at what happens behind the scenes with all of this.

Each module wrapped with the Module object has a require function, and the global
require we use invokes the Module-specific function. The Module.require() func‐
tion, in turn, calls another internal function, Module._load(), which performs all of
the functionality I just covered. The only exception is if the request is for REPL, cov‐
ered in the next chapter, which has its own unique handling.

58 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

If the module is the main module, the one that’s actually invoked at the command
line (that I refer to as application), it’s actually assigned to a property, require.main,
of the global require object. Type the following into a file named test.js and run it
with Node:

console.log(require);

You’ll see the main object, which is the Module object wrapping the application code,
and you can see that the filename is the filename and path for the application. You
can also see the paths Node uses to look for modules, as well as the application cache,
containing only the application in this instance.

Locating the Node Source

You can look at all of Node’s functionality if you download the
source. You don’t have to use the source to build Node on your sys‐
tem; just use it as a learning exercise. The JavaScript functionality is
located in the /lib subdirectory, and the actual C++ code for Node
can be found in /src.

This leads me to revisit the concept of Node’s global object once more. In Chapter 2, I
covered the Node global object, and described how it differs from the browser global
object. I noted that unlike the browser, top-level variables are constrained to their
immediate context, which means that variables declared in a module are not going to
conflict with variables declared in the application or any other module included in
the application. That’s because Node wraps all scripts in the following:

function (module, exports, __filename, ...) {}

In other words, Node wraps the modules (main or otherwise) in anonymous func‐
tions, only exposing what the module developer wants to expose. And since these
module properties are prefaced by the module name when you use the module, they
can’t conflict with your locally declared variables.

Speaking of context, I’ll get more into that in the next section.

Sandboxing and the VM Module
One of the first things you learn as a JavaScript developer is to avoid eval() at all
costs. The reason is that eval() executes your JavaScript in the same context as the
rest of your application. You’re taking an unknown or arbitrary block of JavaScript
and executing it with the same level of trust as the code you’ve carefully written. It’s
the same as taking text from an input field and tacking it into a SQL request without
ensuring something nasty hasn’t been inserted.

If, for some reason, you do need to execute an arbitrary chunk of JavaScript in your
Node application, you can do so using the VM module to sandbox the script. As the

An Overview of the Node Module System | 59

Node developers note, however, this isn’t a completely trustworthy approach. The
only safe way to execute an arbitrary chunk of JavaScript is in a separate pro‐
cess. However, if you’re comfortable with the source of the JavaScript but are interes‐
ted in avoiding unintended and accidental consequences, then you can isolate that
script from your local environment with VM.

Scripts can be precompiled first, using the vm.Script object, or passed in as part of a
function called directly on vm. There are also three types of functions. The first, either
script.runInNewContext() or vm.runInNewContext(), runs the script in the new
context, and the script doesn’t have access to either local variables or the global object.
Instead, a new contextified sandbox is passed in the function. The following code
demonstrates this concept. The sandbox contains two global values—the same names
as two Node global objects—but redefined:

var vm = require('vm');

var sandbox = {
 process: 'this baby',
 require: 'that'
};

vm.runInNewContext('console.log(process);console.log(require)',sandbox);

An error results, because the console object isn’t part of the runtime context for the
script. You can make it so:

var vm = require('vm');

var sandbox = {
 process: 'this baby',
 require: 'that',
 console: console
};

vm.runInNewContext('console.log(process);console.log(require)',sandbox);

But that defeats the purpose of creating an entirely new context for the script. If you
want the script to have access to the global console (or other) object, use runInThis
Context() instead. In Example 3-1, I’m using the Script object to demonstrate how
the context includes the global object, but not the local objects.

Example 3-1. Running a script for access to the global console

var vm = require('vm');

global.count1 = 100;
var count2 = 100;

var txt = 'if (count1 === undefined) var count1 = 0; count1++;' +

60 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

 'if (count2 === undefined) var count2 = 0; count2++;' +
 'console.log(count1); console.log(count2);';

var script = new vm.Script(txt);
script.runInThisContext({filename: 'count.vm'});

console.log(count1);
console.log(count2);

The result of running this application is:

101
1
101
100

The variable count1 is declared on the global object, and is available in the context in
which the script is run. The variable count2 is a local variable, and must be defined
within the context. Changes to the local variable in the sandboxed script do not
impact the local variable of the same name in the containing application.

I’ll get an error if I don’t declare count2 in the script that’s running in a separate con‐
text. The error is displayed because one of the sandbox content function’s options is
displayErrors, set to true by default. The other options for runInThisContext()
are filename, shown in the example, and timeout, which is the number of millisec‐
onds the script is allowed to run before being terminated (and throwing an error).
The filename option is used to specify a filename that shows up in stack traces when
the script is run. If you want to specify a filename for the Script object, though, you
need to pass it in when you create the Script object, not in the context function call:

var vm = require('vm');

global.count1 = 100;
var count2 = 100;

var txt = 'count1++;' +
 'count2++;' +
 'console.log(count1); console.log(count2);';

var script = new vm.Script(txt, {filename: 'count.vm'});

try {
 script.runInThisContext();
} catch(err) {
 console.log(err.stack);
}

Other than the filename difference, Script supports the other two global options in
the context function calls: displayErrors and timeout.

An Overview of the Node Module System | 61

Running the code results in a displayed error because the sandboxed script does not
have access to the local variable (count2) in the application, though it does have
access to the global count1. And when the error is printed out, the stack trace is
printed, displaying the filename passed as an option.

Instead of writing the code out directly in the application, we can load it from a file.
Given the following script to run:

if (count1 === undefined) var count1 = 0; count1++;
if (count2 === undefined) var count2 = 0; count2++;
console.log(count1); console.log(count2);

We can precompile it and run it in a sandbox with the following:

var vm = require('vm');
var fs = require('fs');

global.count1 = 100;
var count2 = 100;

var script = new vm.Script(fs.readFileSync('script.js','utf8'));
script.runInThisContext({filename: 'count.vm'});

console.log(count1);
console.log(count2);

What’s to stop us from using the File System module directly in the script? It’s
assigned to a local variable, and not accessible. Why can’t we just import it into the
script? Because require is not available. None of the global objects or functions, such
as require, are accessible in the script.

The last sandbox function is runInContext(). It also takes a sandbox, but the sand‐
box must be contextualized (context explicitly created) before the function call. We’ll
call it on the VM object, directly, in the following code. Note that we’re adding a new
variable to the contextualized sandbox in the code, which then shows in the
application:

var vm = require('vm');
var util = require('util');

var sandbox = {
 count1 : 1
 };

vm.createContext(sandbox);
if (vm.isContext(sandbox)) console.log('contextualized');

vm.runInContext('count1++; counter=true;',sandbox,
 {filename: 'context.vm'});

console.log(util.inspect(sandbox));

62 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

The result from this application is:

contextualized
{ count1: 2, counter: true }

The runInContext() function supports the three options that runInThisContext()
and runInNewContext() supports. Again, the difference between running the func‐
tions in Script and directly in VM is that the Script object precompiles the code, and
you pass the filename in when you create the object rather than as one of the options
to the function calls.

Running Script in a Separate Process

If you’re interested in further isolating the script by running it in a
separate process, check out the third-party sandboxing modules
that provide this additional protection. The next section describes
how to search for these.

An In-Depth Exploration of NPM
Much of the rich functionality associated with Node comes in via third-party mod‐
ules. There are router modules, modules for working with relational or document
database systems, template modules, testing modules, and even modules for payment
gateways.

GitHub

Though not a requirement, developers are encouraged to upload
their modules to GitHub.

To use a module, you can download the source and then install it manually into your
application environment. Most modules provide basic installation instructions, or, at
a minimum, you can deduce the installation requirements by examining the files and
directories included in the module. However, there is a far easier way to install a
Node module: using npm.

The npm site is at http://npmjs.org/. Documentation is available at
the npm Documentation site.

An In-Depth Exploration of NPM | 63

http://npmjs.org/
https://docs.npmjs.com/

Node comes with npm installed, but it doesn’t always come with the most recent ver‐
sion of npm. If you want to use a different version of npm, use the following to
update the version you have (using sudo, if appropriate to your environment):

npm install npm -g

Be careful with updating npm, though: if you’re using a different version than your
teammates, you can have very unexpected results.

To get a detailed overview of npm commands, use the following:

$ npm help npm

Modules can be installed globally or locally. The local installation is the best approach
if you’re working on an isolated project and everyone sharing the same system doesn’t
need access to the module. A local installation, which is the default, installs the mod‐
ule in the current location in the node_modules directory.

$ npm install modulename

As an example, to install Request, use the following:

$ npm install request

npm not only installs Request, but it also discovers its module dependencies and
installs them, too. And the more sophisticated the module, the more dependencies
are installed. Figure 3-1 shows a partial listing from installing Request in my Win‐
dows machine (using Node 5.0.0 at the time).

64 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

Figure 3-1. A partial listing of loaded dependencies for Request

Once the module is installed, you can find the module in your local directory’s
node_modules directory. Any dependencies are also installed in that module’s
node_modules directory. A glance shows you get a lot of bang for your buck when
you install a module like Request.

If you want to install the package globally, use the -g or --global option:

$ npm install request -g

If you’re working in Linux, don’t forget to use sudo if you want to install a module
globally:

$ sudo npm install request -g

Some modules, including command-line applications, may require global installa‐
tion. These examples install packages that are registered at the npm site. You can also
install a module that’s in a folder on the filesystem, or a tarball that’s either local or
fetched via a URL:

npm install http://somecompany.com/somemodule.tgz

If the package has versions, you can install a specific version:

npm install modulename@0.1

An In-Depth Exploration of NPM | 65

You can even install an old friend, jQuery:

npm install jquery

If you’re no longer using a module, you can uninstall it:

npm uninstall modulename

The following command tells npm to check for new modules, and perform an update
if any are found:

npm update

Or you can update a single module:

npm update modulename

To update npm itself, use:

npm install npm -g

If you just want to check to see if any packages are outdated, use the following:

npm outdated

Again, you can run this command against a single module.

List installed packages and dependencies with list, ls, la, or ll:

npm ls

The la and ll options provide extended descriptions. For instance, one of the depen‐
dencies for Request is tunnel-agent@0.4.1 (version 0.4.1 of tunnel-agent). So what the
heck is tunnel-agent? Running npm la request at the command line lists out the
dependencies, including tunnel-agent, with additional detail:

tunnel-agent@0.4.1
HTTP proxy tunneling agent. Formerly part of mikeal/request,
now a standalone module
git+https://github.com/mikeal/tunnel-agent.git
https://github.com/mikeal/tunnel-agent#readme

Sometimes the output will display a warning, such as an unmet dependency, or a
requirement for an older module. To correct, install the module, or the necessary ver‐
sion of the module:

npm install jsdom@0.2.0

You can also directly install all dependencies with the -d flag. For instance, in the
directory for the module, type the following:

npm install -d

If you want to install a version of the module that hasn’t yet been uploaded to the
npm registry, you can install directly from the Git repository:

66 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

npm install https://github.com/visionmedia/express/tarball/master

Use caution, though, as I’ve found that when you install a not-yet-released version of
a module and you do an npm update, the npm registry version can overwrite the ver‐
sion you’re using.

Using npm in Linux via PuTTY

If you’re working with Node/npm in Linux using the PuTTY appli‐
cation in Windows, you might notice that you don’t get a clean
printout when using the npm commands. Instead of nicely defined
lines showing dependencies, you get strange characters.
To fix this problem, you need to instruct PuTTY to translate char‐
acters using UTF-8 encoding. In PuTTY, click the Window-
>Translation option, and select UTF-8 from the drop-down
window.

To see which modules are installed globally, use:

npm ls -g

You can learn more about your npm installation using the config command. The fol‐
lowing lists the npm configuration settings:

npm config list

You can get a more in-depth look at all configuration settings with:

npm config ls -l

You can modify or remove configuration settings either by using a command line:

npm config delete keyname
npm config set keyname value

or by directly editing the configuration file:

$ npm config edit

I would strongly recommend you leave your npm configuration
settings alone, unless you’re very sure of a change’s effect.

You can also search for a module using whatever terms you think might return the
best selection:

npm search html5 parser

An In-Depth Exploration of NPM | 67

The first time you do a search, npm builds an index, which can take a few minutes.
When it’s finished, though, you’ll get a list of possible modules that match the term or
terms you provided.

Getting “registry error parsing json” Results

If you’re using npm and get a “registry error parsing json” error,
you can use one of the npm mirrors to complete your task. For
instance, to use the European mirror, use the following:

npm --registry http://registry.npmjs.eu/ search html5 parser

The npm website provides a registry of modules you can browse through, and an up-
to-date listing of modules most depended on—that is, modules most used by other
modules or by Node applications. In the next section, I’ll cover a sampling of these
modules.

One last note on npm before we move on. When you first start playing around with
npm, you might notice a set of warning messages at the end of the output. The first
line makes a note about not being able to find a package.json file, and all the rest of
the warnings are associated with the missing package.json file.

The npm documentation recommends you create a package.json file to maintain your
local dependencies. It’s not a bothersome request, though the warnings are a bit of an
irritant.

To create a default package.json file in the project directory, run the following
command:

npm init --yes

This creates a default package.json file in the directory, asking you a set of basic
project questions such as your name and the project name, each of which has a
default value. From this point on, when you install a module, you’ll no longer get
most of the annoying messages. To eliminate the rest, you’ll need to update the JSON
in the file to include a description and a repository. In addition, if you want to
update the file to reflect the newly installed module, use the following syntax:

npm install request --save-dev

This saves the module name and version to the devDependencies field in the pack‐
age.json file. You can also save the module to production dependencies, but I’ll get
into more detail on the package.json file (in “Creating and Publishing Your Own
Node Module” on page 69), where you create a Node module of your own.

To automatically save the dependencies, you can add and/or edit a npmrc file. You can
add it per user (~/.npmrc), per project (/path/project/.npmrc), globally ($PREFIX/etc/

68 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

https://www.npmjs.com/

npmrc), and using the built-in configuration file (/path/to/npm/npmrc). Use the fol‐
lowing to edit your personal settings to automatically save the dependencies:

npm config set save=true
npm config set save-exact=true

This automatically adds a --save flag (to save package in dependencies) and a --
save-exact flag (saved with exact version, not npm’s semver range default) when you
install new packages.

There are also many different configuration settings you can adjust. A good place to
start exploring these is in the npm documentation.

Creating and Publishing Your Own Node Module
Just as you do for your client-side JavaScript, you’ll want to split off reusable Java‐
Script into its own libraries. The only difference is that you need to take a couple of
extra steps to convert your JavaScript library into a module for use with Node.

Creating a Module
Let’s say you have a JavaScript library function, concatArray, that takes a string and
an array of strings, and concatenates the first string to each string in the array, return‐
ing a new array:

function concatArray(str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
}

You want to use this function, as well as others, in your Node applications.

To convert your JavaScript library for use in Node, you’ll need to export all of your
exposed functions using the exports object, as shown in the following code:

exports.concatArray = function(str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
};

To use concatArray in a Node application, import the library. The exported function
can now be used in your application:

var newArray = require ('./arrayfunctions.js');

console.log(newArray.concatArray('hello', ['test1','test2']));

You can also create a module consisting of an object constructor or function, and
export it using module.exports.

Creating and Publishing Your Own Node Module | 69

https://docs.npmjs.com/misc/config

As an example, the heavily depended-on Mime module creates a function, Mime():

function Mime() { ... }

adds functionality using the prototype property:

Mime.prototype.define = function(map) {...}

creates a default instance:

var mime = new Mime();

assigns the Mime function to its own same-named property:

mime.Mime = Mime;

and then exports the instance:

module.exports=mime;

You can then use all of the various mime functions in your application:

var mime = require('mime');
console.log(mime.lookup('phoenix5a.png')); // image/png

Packaging an Entire Directory
You can split your module into separate JavaScript files, all located within a directory.
Node can load the directory contents, as long as you organize the contents in one of
two ways.

The first way is to provide a package.json file with information about the directory.
The structure contains other information, but the two entries relevant to packaging
the module are name and main:

{ "name" : "mylibrary",
 "main" : "./mymodule/mylibrary.js"
}

The first property, name, is the name of the module. The second, main, indicates the
entry point for the module.

The second way to load directory contents is to include either an index.js or
index.node file in the directory to serve as the main module entry point.

Why would you provide a directory rather than just a single module? The most likely
reason is that you’re making use of existing JavaScript libraries, and just providing a
“wrapper” file that wraps the exposed functions with exports statements. Another
reason is that your library is so large that you want to break it down to make it easier
to modify.

Regardless of the reason, be aware that all of the exported objects must be in the one
main file that Node loads.

70 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

Preparing Your Module for Publication
If you want to make your package available to others, you can promote it on your
website, but you’ll be missing out on a significant audience. When you’re ready to
publish a module, you’re going to want to publish it to the npm registry.

Earlier I mentioned the package.json file. The npm JSON documentation can be
found online. It’s actually based on the CommonJS module system recommendations.

Among the recommended fields to include in the package.json file are:

name

The name of the package—required

description

The package description

version

The current version conforming to semantic version requirements—required

keywords

An array of search terms

maintainers

An array of package maintainers (includes name, email, and website)

contributors

An array of package contributors (includes name, email, and website)

bugs

The URL where bugs can be submitted

licenses

An array of licenses

repository

The package respository

dependencies

Prerequisite packages and their version numbers

Only the name and version fields are required, though all of these fields are
recommended. Thankfully, npm makes it easier to create this file. If you type the fol‐
lowing at the command line:

npm init

the tool will run through the required/recommended fields, prompting you for each.
When it’s done, it generates a package.json file.

Creating and Publishing Your Own Node Module | 71

https://docs.npmjs.com/files/package.json
http://wiki.commonjs.org/wiki/Packages/1.0#Package_Descriptor_File

In Chapter 2, in Example 2-7, I created an object called InputChecker that checks
incoming data for commands and then processes the command. The example
demonstrated how to incorporate EventEmitter. Now we’re going to modify this
simple object to make it usable by other applications and modules.

First, we’ll create a subdirectory in node_modules and name it inputcheck, and then
move the existing InputChecker code file to it. We need to rename the file to index.js.
Next, we need to modify the code to pull out the part that implements the new object.
We’ll save it for a future test file. The last modification we’ll do is add the exports
object, resulting in the code shown in Example 3-2.

Example 3-2. Application from Example 2-7 modified to be a module object

var util = require('util');
var eventEmitter = require('events').EventEmitter;
var fs = require('fs');

exports.InputChecker = InputChecker;

function InputChecker(name, file) {
 this.name = name;
 this.writeStream = fs.createWriteStream('./' + file + '.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0666});
};

util.inherits(InputChecker,eventEmitter);
InputChecker.prototype.check = function (input) {
 var command = input.toString().trim().substr(0,3);
 if (command == 'wr:') {
 this.emit('write',input.substr(3,input.length));
 } else if (command == 'en:') {
 this.emit('end');
 } else {
 this.emit('echo',input);
 }
};

We can’t export the object function directly, because util.inherits expects an object
to exist in the file named InputChecker. We’re also modifying the InputChecker
object’s prototype later in the file. We could have changed these code references to
use exports.InputChecker, but that’s kludgy. It’s just as easy to assign the object in a
separate statement.

To create the package.json file, I ran npm init and answered each of the prompts. The
resulting file is shown in Example 3-3.

72 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

Example 3-3. Generated package.json for inputChecker module

{
 "name": "inputcheck",
 "version": "1.0.0",
 "description": "Looks for and implements commands from input",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [
 "command",
 "check"
],
 "author": "Shelley Powers",
 "license": "ISC"
}

The npm init command doesn’t prompt for dependencies, so we need to add them
directly to the file. A better approach, however, is to use npm install --save when
installing the modules, which will automatically add the dependencies for us. How‐
ever, the InputChecker module isn’t dependent on any external modules, so we can
leave these fields blank.

At this point, we can test the new module to make sure it actually works as a module.
Example 3-4 is the portion of the previously existing InputChecker application that
tested the new object, now pulled out into a separate test application.

Example 3-4. InputChecker test application

var inputChecker = require('inputcheck').InputChecker;

// testing new object and event handling
var ic = new inputChecker('Shelley','output');

ic.on('write', function(data) {
 this.writeStream.write(data, 'utf8');
});

ic.addListener('echo', function(data) {
 console.log(this.name + ' wrote ' + data);
});

ic.on('end', function() {
 process.exit();
});

process.stdin.resume();
process.stdin.setEncoding('utf8');
process.stdin.on('data', function(input) {

Creating and Publishing Your Own Node Module | 73

 ic.check(input);
});

We can now move the test application into a new test subdirectory within the module
directory to be packaged with the module as an example. Good practice demands that
we also provide a test directory with one or more testing applications, as well as a doc
directory with documentation. For a module this small, a README file should be
sufficient.

Since we now have a test application, we’ll need to modify the package.json file to
include a reference to it:

 "scripts": {
 "test": "node test/test.js"
 },

The test is rather primitive, and isn’t using one of the robust Node testing environ‐
ments, but it does demonstrate how testing can work. To run the test application, type
the following at the command line:

npm test

Lastly, we create a gzipped tarball of the module. You can skip this step, though, when
you publish the module, discussed in “Publishing the Module” on page 74.

What Is This Tarball Thing?

I’ve used the term tarball in this and previous chapters. If you’ve
not worked in Unix, you may not be familiar with the term. A tar‐
ball is one or more files archived together into a single file using a
tar command.

Once we’ve provided all we need to provide, we can publish the module.

Providing More Than Just a Module

You can, minimally, get by with a simplified module like inputch
eck, but you’ll want to provide a lot more before going online with
a module. You’ll need to provide a repository for your module, a
URL for reporting bugs, a home page for the modules, and so on.
Still, start simple, and work up.

Publishing the Module
The folks who brought us npm also provide a guide detailing what’s needed to pub‐
lish a Node module: the Developer Guide.

74 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

https://docs.npmjs.com/misc/developers

The documentation specifies some additional requirements for the package.json file.
In addition to the fields already created, we also need to add in a directories field
with a hash of folders, such as the previously mentioned test and doc:

 "directories" : {
 "doc" : ".",
 "test" : "test",
 "example" : "examples"
 }

Before publishing, the Guide recommends we test that the module can cleanly install.
To test for this, type the following in the root directory for the module:

npm install . -g

At this point, we’ve tested the inputChecker module, modified the package.json pack‐
age to add directories, and confirmed that the package successfully installs.

Next, we need to add ourselves as npm users if we haven’t done so already. We do this
by typing:

npm adduser

and then following the prompts to add a username, a password, and an email address.

There’s one last thing to do:

npm publish

We can provide the path to the tarball or the directory. As the Guide warns us, every‐
thing in the directory is exposed unless we use a .npmignore with the file(s) listed in
the package.json file to ignore material. It’s better, though, just to remove anything
that’s not needed before publishing the module.

Once published—and once the source is also uploaded to GitHub (if that’s the reposi‐
tory you’re using)—the module is now officially ready for others to use. Promote the
module on Twitter, Google+, Facebook, your website, and wherever else you think
people would want to know about the module. This type of promotion isn’t
bragging—it’s sharing.

Discovering Node Modules and Three Must-Have Modules
It’s not difficult to find Node modules. Most that you discover will be ones friends
and coworkers recommend. Others you might discover by searching for specific
functionality using a search engine and they show up at the top in the search results.

At one time, there were few enough modules that the best of the different types were
manually listed on a single page. Well, those days are long gone. Nowadays, if you’re
looking for modules, you’ll most likely do so at the npm website. Not only can you

Discovering Node Modules and Three Must-Have Modules | 75

https://www.npmjs.com/

find documentation for npm at the site, but it also provides a searchable directory of
Node modules.

If you’re looking for modules to support the OAuth protocol, enter this as the search
phrase in the search bar at the top of the page. The top result is named simply Oauth,
and is the most popular OAuth module in use today. You can tell by the statistics dis‐
played for the module.

You will want to check out the module statistics. The biggest challenge when you’re
searching for Node modules at npm is that many of the modules are no longer sup‐
ported, or aren’t considered best in breed. The only way you can tell which modules
are actively supported and most widely used are the statistics listed in the right side of
the page. Figure 3-2 is an example, for the OAuth module.

Figure 3-2. NPM statistics for OAuth module

Note the highlighted text. The module currently available was published in the last
couple of months, which demonstrates that there have been recent updates. It’s the
last of 24 releases, which shows an active involvement. The kicker, though, is the
number of downloads: over 10,000 in just a single day. That’s a very actively used
module, indicating that it is viable and likely maintained.

In addition, you can access the GitHub page and check out the issues to see how
involved the developer(s) is with those reporting concerns or whether there are issues
that make the module not a good choice (such as a security issue).

There’s no question that the OAuth module is most likely both the most actively sup‐
ported and best-of-breed module. That’s not to say there aren’t other good options,

76 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

but until you’re more familiar with Node, you’ll probably want to stick with the most
frequently used Node modules.

Speaking of commonly used modules, the npm website also lists, on the very first
page, the most popular Node modules in use today. The site also contains a list of the
most-starred modules, as well as the modules most depended upon. The latter set of
modules are those that are installed as dependencies for other modules. In the follow‐
ing five sections, I’m covering three modules you’ll find on both lists: Async,
Commander, and Underscore. These are in addition to other modules I use through‐
out the book.

Better Callback Management with Async
The application in Example 2-11, in Chapter 2, is an asynchronous pattern, where
each function is called in turn and passes its results to the next function, and the
entire chain stops only if an error occurs. There are several such patterns, though
some are variations of others, and not everyone uses the exact same terminology.

The example also demonstrated a major problem with the use of callbacks: the pyra‐
mid of doom effect as the nested callbacks progressively push out to the right.

One of the most commonly used modules to work around this effect is the Async
module. It replaces the typical callback pattern with more linear and manageable
ones. Among the asynchronous patterns Async supports are:

waterfall

Functions are called in turn, and results of all are passed as an array to the last
callback (also called series and sequence by others).

series

Functions are called in turn and, optionally, results are passed as an array to the
last callback.

parallel

Functions are run in parallel and when completed, results are passed to the last
callback (though the result array isn’t part of the pattern in some interpretations
of the parallel pattern).

whilst

Repeatedly calls one function, invoking the last callback only if a preliminary test
returns false or an error occurs.

queue

Calls functions in parallel up to a given limit of concurrency, and new functions
are queued until one of the functions finishes.

Discovering Node Modules and Three Must-Have Modules | 77

https://www.npmjs.com/browse/star
https://www.npmjs.com/browse/star
https://www.npmjs.com/browse/depended

until

Repeatedly calls one function, invoking the last callback only if a post-process
test returns false or an error occurs.

auto

Functions are called based on requirements, each function receiving the results of
previous callbacks.

iterator

Each function calls the next, with the ability to individually access the next
iterator.

apply

A continuation function with arguments already applied combined with other
control flow functions.

nextTick

Calls the callback in the next loop of an event loop—based on process.next
Tick in Node.

The Async module also provides functionality for managing collections, such as its
own variation of forEach, map, and filter, as well as other utility functions, includ‐
ing ones for memoization. However, what we’re interested in here are its facilities for
handling control flow.

Async has a GitHub repository.

Install Async using npm. If you want to install it globally, use the -g flag. If you want
to update your dependencies, use --save or --save-dev:

npm install async

As mentioned earlier, Async provides control flow capability for a variety of asyn‐
chronous patterns, including serial, parallel, and waterfall. As an example, the
pattern of the example in Chapter 2 matches with Async’s waterfall, so we’ll be
using the async.waterfall method. In Example 3-5, I used async.waterfall to
open and read a data file using fs.readFile, perform the synchronous string substi‐
tution, and then write the string back to the file using fs.writeFile. Pay particular
attention to the callback function used with each step in the application.

78 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

https://github.com/caolan/async

Example 3-5. Using async.waterfall to read, modify, and write a file’s contents
asynchronously

var fs = require('fs'),
 async = require('async');

async.waterfall([
 function readData(callback) {
 fs.readFile('./data/data1.txt', 'utf8', function(err, data){
 callback(err,data);
 });
 },
 function modify(text, callback) {
 var adjdata=text.replace(/somecompany\.com/g,'burningbird.net');
 callback(null, adjdata);
 },
 function writeData(text, callback) {
 fs.writeFile('./data/data1.txt', text, function(err) {
 callback(err,text);
 });
 }
], function (err, result) {
 if (err) {
 console.error(err.message);
 } else {
 console.log(result);
 }
});

The async.waterfall takes two parameters: an array of tasks and an optional final
callback function. Each asynchronous task function is an element of the async.water
fall array, and each function requires a callback as the last of its parameters. It is this
callback function that allows us to chain the asynchronous callback results without
having to physically nest the functions. However, as you can see in the code, each
function’s callback is handled as we would normally handle it if we were using nested
callbacks—other than the fact that we don’t have to test the errors in each function.
Async looks for an error object as the first parameter in each callback. If we pass an
error object in the callback, the process is ended at this point, and the final callback
routine is called. The final callback is when we can process the error or the final
result.

Example 3-5 uses named functions, whereas the Async documenta‐
tion shows anonymous functions. Named functions can simplify
debugging and error handling, but both work equally well.

Discovering Node Modules and Three Must-Have Modules | 79

The processing is very similar to what we had in Chapter 2 but without the nesting
(and having to test for an error in each function). It may seem more complicated, and
I wouldn’t recommend its use for such simple nesting, but look what it can do with a
more complex nested callback. Example 3-6 duplicates the exact functionality from
Chapter 2, but without the callback nesting and excessive indenting.

Example 3-6. Get objects from directory, test to look for files, read file test, modify, and
write back out log results

var fs = require('fs'),
 async = require('async'),
 _dir = './data/';

var writeStream = fs.createWriteStream('./log.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0666});

async.waterfall([
 function readDir(callback) {
 fs.readdir(_dir, function(err, files) {
 callback(err,files);
 });
 },
 function loopFiles(files, callback) {
 files.forEach(function (name) {
 callback (null, name);
 });
 },

 function checkFile(file, callback) {
 fs.stat(_dir + file, function(err, stats) {
 callback(err, stats, file);
 });
 },
 function readData(stats, file, callback) {
 if (stats.isFile())
 fs.readFile(_dir + file, 'utf8', function(err, data){
 callback(err,file,data);
 });
 },
 function modify(file, text, callback) {
 var adjdata=text.replace(/somecompany\.com/g,'burningbird.net');
 callback(null, file, adjdata);
 },
 function writeData(file, text, callback) {
 fs.writeFile(_dir + file, text, function(err) {
 callback(err,file);
 });
 },
 function logChange(file, callback) {

80 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

 writeStream.write('changed ' + file + '\n', 'utf8',
 function(err) {
 callback(err);
 });
 }
], function (err) {
 if (err) {
 console.error(err.message);
 } else {
 console.log('modified files');
 }
});

Every last bit of functionality is present from the Chapter 2 example. The fs.readdir
method is used to get an array of directory objects. The Node forEach method (not
the Async forEach) is used to access each specific object. The fs.stats method is
used to get the stats for each object. stats is used to check for files, and when a file
is found, it’s opened and its data accessed. The data is then modified, and passed on
to be written back to the file via fs.writeFile. The operation is logged in the logfile
and a successful completion is echoed to the console.

Note that more data is passed in some of the callbacks. Most of the functions need the
filename as well as the text, so this is passed in the last several methods. Any amount
of data can be passed in the methods, as long as the first parameter is the error object
(or null, if no error object) and the last parameter in each function is the callback
function. We don’t have to check for an error in each asynchronous task function,
because Async tests the error object in each callback, stops processing, and calls the
final callback function if an error is found.

The other Async control flow methods, such as async.parallel and
async.serial, perform in a like manner, with an array of tasks as the first method
parameter and a final optional callback as the second. How they process the asyn‐
chronous tasks differs, though, as you would expect.

The async.parallel method calls all of the asynchronous functions at once, and
when they are all finished, calls the optional final callback. Example 3-7 uses
async.parallel to read in the contents of three files in parallel. However, rather than
an array of functions, this example uses an alternative approach that Async supports:
passing in an object with each asynchronous task listed as a property of the object.
The results are then printed out to the console when all three tasks have finished.

Example 3-7. Opening three files in parallel and reading in their contents

var fs = require('fs'),
 async = require('async');

async.parallel({

Discovering Node Modules and Three Must-Have Modules | 81

 data1 : function (callback) {
 fs.readFile('./data/fruit1.txt', 'utf8', function(err, data){
 callback(err,data);
 });
 },
 data2 : function (callback) {
 fs.readFile('./data/fruit2.txt', 'utf8', function(err, data){
 callback(err,data);
 });
 },
 data3 : function readData3(callback) {
 fs.readFile('./data/fruit3.txt', 'utf8', function(err, data){
 callback(err,data);
 });
 },

}, function (err, result) {
 if (err) {
 console.log(err.message);
 } else {
 console.log(result);
 }
});

The results are returned as an array of objects, with each result tied to each of the
properties. If the three data files in the example had the following content:

• fruit1.txt: apples
• fruit2.txt: oranges
• fruit3.txt: peaches

the result of running Example 3-7 is:

{ data1: 'apples\n', data2: 'oranges\n', data3: 'peaches\n' }

I’ll leave the testing of the other Async control flow methods as a reader exercise. Just
remember that when you’re working with the Async control flow methods, all you
need is to pass a callback to each asynchronous task and to call this callback when
you’re finished, passing in an error object (or null) and whatever data you need.

Command-Line Magic with Commander
Commander provides support for command-line options. These are the flags we pro‐
vide when running an application, such as the ubiquitous -h or --help for how to use
a utility or application.

Install it via npm:

82 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

npm install commander

And include it using require:

var program = require('commander');

To use it, chain option calls listing out all of the various options supported for the
application. In the following code, the application supports two default options—-V

or --version for version and -h or --help for help—as well as two custom option: -s
or --source for source website, and -f or --file for a filename:

var program = require('commander');

program
 .version ('0.0.1')
 .option ('-s, --source [web site]', 'Source web site')
 .option ('-f, --file [file name]', 'File name')
 .parse(process.argv);

console.log(program.source);
console.log(program.file);

We provide the custom options, while Commander provides the default version and
help. If you run the application using:

node options -h

Commander prints out the available options:

 Usage: options [options]

 Options:

 -h, --help output usage information
 -V, --version output the version number
 -s, --source [web site] Source web site
 -f, --file [file name] File name

Short options can be concatenated, such as -sf, and Commander can handle it. It
also takes a multiwork option, such as --file-name, and uses Camel-casing with the
result: program.fileName.

Commander also supports coercion (type casting):

.option('-i, --integer <n>', 'An integer argument', parseInt)

regular expressions:

.option('-d --drink [drink]', 'Drink', /^(coke|pepsi|izze)$/i)

as well as a variadic argument in the last option, which means it will take any number
of arguments. Perhaps your application can support multiple keywords, of unknown
number. You can create a Command option for this using:

Discovering Node Modules and Three Must-Have Modules | 83

var program = require('commander');

program
 .version('0.0.1')
 .command('keyword <keywork> [otherKeywords...]')
 .action(function (keyword, otherKeywords) {
 console.log('keyword %s', keyword);
 if (otherKeywords) {
 otherKeywords.forEach(function (oKey) {
 console.log('keyword %s', oKey);
 });
 }
 });

program.parse(process.argv);

The following command line:

node options2 keyword one two three

results in the following printout:

keyword one
keyword two
keyword three

Download Commander

If you want to download Commander directly, you can do so at its
GitHub repository. Commander is especially useful for command-
line applications, as demonstrated in Chapter 6.

The Ubiquitous Underscore
Install the Underscore module with:

npm install underscore

According to the developers, Underscore is a utility-belt library for Node. It provides
a lot of extended JavaScript functionality that we’re used to with third-party libraries,
such as jQuery or Prototype.js.

Underscore is so named because, traditionally, its functionality is accessed with an
underscore (_), similar to jQuery’s $. Here’s an example:

var _ = require('underscore');
_.each(['apple','cherry'], function (fruit) { console.log(fruit); });

Of course, the problem with the underscore is that this character has a specific mean‐
ing in REPL, as you’ll see in the next chapter. No worries, though—we can use
another variable, us:

84 | Chapter 3: Basics of Node Modules and Node Package Manager (npm)

www.allitebooks.com

https://github.com/tj/commander.js
http://www.allitebooks.org

var us = require('underscore');
us.each(['apple','cherry'], function(fruit) { console.log(fruit); });

Underscore provides expanded functionality for arrays, collections, functions,
objects, chaining, and general utility. Fortunately, there’s also excellent documentation
for all of its functionality, available at its website, so I’ll forgo detailing any of it here.

However, I do want to mention one nice capability: a controlled way to extend
Underscore with your own utility functions via the mixin function. We can quickly
try this method, and the others, in a REPL session:

> var us = require('underscore');
> us.mixin({
... betterWithNode: function(str) {
..... return str + ' is better with Node';
..... }
... });
> console.log(us.betterWithNode('chocolate'));
chocolate is better with Node

You’ll see the term mixin used in several Node modules. It’s based
on a pattern where properties of one object are added (“mixed in”)
to another.

Underscore isn’t the only top-rated utility module. Another is lodash. Unless you’ve
worked with one or the other, I’d check both out. The lodash website contains com‐
plete documentation for this useful module.

Discovering Node Modules and Three Must-Have Modules | 85

http://underscorejs.org/
http://underscorejs.org/
https://lodash.com/docs

CHAPTER 4

Interactive Node with REPL
and More on the Console

While you’re exploring the use of Node and figuring out the code for your custom
module or Node application, you don’t have to type JavaScript into a file and run it
with Node to test your code. Node also comes with an interactive component known
as REPL, or read-eval-print loop.

REPL (pronounced “repple”) supports simplified line editing and a small set of basic
commands. Whatever you type into REPL is, for the most part, processed no differ‐
ently than if you had typed the JavaScript into a file and run the file using Node. You
can actually use REPL to code your entire application—literally testing the applica‐
tion on the fly.

In this chapter, I’ll cover how to use REPL, as well as some interesting quirks of REPL
and how to work with them. These workarounds include replacing the underlying
mechanism that persists commands, as well as using some command-line editing.
And if the built-in REPL doesn’t provide exactly what you need for an interactive
environment, there’s also an API to create your own custom REPL.

REPL is an essential Node development tool, and so is the console. We’re using the
console in most applications in the book, but there’s more to this helpful object than
just logging messages.

REPL: First Looks and Undefined Expressions
To begin REPL, simply type node without providing any Node application file, like so:

$ node

87

REPL then provides a command-line prompt—an angle bracket (>)—by default.
Anything you type from this point on is processed by the underlying V8 JavaScript
engine.

REPL is very simple to use. Just start typing in your JavaScript, like you’d add it to a
file:

> a = 2;
2

The tool prints out the result of whatever expression you just typed. In this session
excerpt, the value of the expression is 2. In the following, the expression result is an
array with three elements:

> b = ['a','b','c'];
['a', 'b', 'c']

To access the last expression, use the underscore/underline special variable (_). In the
following, a is set to 2, and the resulting expression is incremented by 1, and then 1
again:

> a = 2;
2
> ++_;
3
> ++_;
4

You can even access properties or call methods on the underscored expression:

> ['apple','orange','lime']
['apple', 'orange', 'lime']
> _.length
3
> 3 + 4
7
> _.toString();
'7'

You can use the var keyword with REPL in order to access an expression or value at a
later time, but you might get an unexpected result. For instance, consider the follow‐
ing line in REPL:

var a = 2;

It doesn’t return the value 2; it returns a value of undefined. The reason is that the
result of the expression is undefined since variable assignment doesn’t return a result
when evaluated.

Consider the following instead, which is what’s happening, more or less, under the
hood in REPL:

88 | Chapter 4: Interactive Node with REPL and More on the Console

console.log(eval('a = 2'));
console.log(eval('var a = 2'));

Typing the preceding line into a file and running that file using Node returns:

2
undefined

There is no result from the second call to eval; hence, the value returned is unde
fined. REPL is a read-eval-print loop, with emphasis on the eval.

You can use the variable in REPL, just as you would in a Node application:

> var a = 2;
undefined
> a++;
2
> a++;
3

The latter two command lines do have results, which are printed out by REPL.

I’ll demonstrate how to create your own custom REPL—one that
doesn’t output undefined—in “Custom REPL” on page 96.

To end the REPL session, either press Ctrl-C twice, or Ctrl-D once. We’ll cover other
ways to end the session later, in “REPL Commands” on page 94.

Benefits of REPL: Getting a Closer Understanding of
JavaScript Under the Hood
Here’s a typical demonstration of REPL:

> 3 > 2 > 1;
false

This code snippet is a good example of how REPL can be useful. At first glance, we
might expect the expression just typed to evaluate to true, since 3 is greater than 2,
which is greater than 1. However, in JavaScript, relational operators are evaluated left
to right, and each expression’s result is returned for the next evaluation.

A better way of looking at what’s happening with the preceding code snippet is this
REPL session:

Benefits of REPL: Getting a Closer Understanding of JavaScript Under the Hood | 89

> 3 > 2 > 1;
false
> 3 > 2;
true
> true > 1;
false

Now the result makes more sense. What’s happening is that the expression 3 > 2 is
evaluated, returning true. But then the value of true is compared to the numeric 1.
JavaScript provides automatic data type conversion, after which true and 1 are equiv‐
alent values. Hence, true is not greater than 1, and the result is false.

REPL’s helpfulness is in enabling us to discover these little interesting quirks in Java‐
Script and our code. Hopefully, after testing our code in REPL, we don’t have unex‐
pected side effects in our applications (such as expecting a result of true but getting a
result of false).

Multiline and More Complex JavaScript
You can type the same JavaScript into REPL just like you’d type it into a file, including
require statements to import modules. A session to try out the Query String (qs)
module is repeated in the following text:

$ node
> qs = require('querystring');
{ unescapeBuffer: [Function],
 unescape: [Function],
 escape: [Function],
 encode: [Function],
 stringify: [Function],
 decode: [Function],
 parse: [Function] }
> val = qs.parse('file=main&file=secondary&test=one').file;
['main', 'secondary']

Since we didn’t use the var keyword, the expression result is printed out—in this
instance, it is the interface for the querystring object. How’s that for a bonus? Not
only are you getting access to the object, but you’re also learning more about the
object’s interface while you’re at it. However, if you want to forgo the potentially
lengthy output of text, use the var keyword:

> var qs = require('querystring');

You’ll be able to access the querystring object with the qs variable with either
approach.

In addition to being able to incorporate external modules, REPL gracefully handles
multiline expressions, providing a textual indicator of code that’s nested following an
opening curly brace ({):

90 | Chapter 4: Interactive Node with REPL and More on the Console

> var test = function (x, y) {
... var val = x * y;
... return val;
... };
undefined
> test(3,4);
12

REPL displays repeating dots to indicate that everything that’s being typed follows an
open curly brace and hence the command isn’t finished yet. It does the same for an
open parenthesis, too:

> test(4,
... 5);
20

Increasing levels of nesting generates more dots; this is necessary in an interactive
environment, where you might lose track of where you are as you type:

> var test = function (x, y) {
... var test2 = function (x, y) {
..... return x * y;
..... }
... return test2(x,y);
... }
undefined
> test(3,4);
12
>

You can type in, or copy and paste in, an entire Node application and run it from
REPL. I trimmed the actual display values for the Server, shown in bold, both because
they’re so long, and because they’ll most likely change by the time you read this:

> var http = require('http');
undefined
> http.createServer(function (req, res) {
...
... // content header
... res.writeHead(200, {'Content-Type': 'text/plain'});
...
... res.end("Hello person\n");
... }).listen(8124);
{ domain:
 { domain: null,
 _events: { error: [Function] },
 _maxListeners: undefined,
 members: [] },
 _
...
 httpAllowHalfOpen: false,
 timeout: 120000,
 _pendingResponseData: 0,

Multiline and More Complex JavaScript | 91

 _connectionKey: '6:null:8124' }
> console.log('Server running at http://127.0.0.1:8124/');
Server running at http://127.0.0.1:8124/
Undefined

You can access this application from a browser no differently than if you had typed
the text into a file and run it using Node.

The “downside” of not assigning an expression to the variable is that you are going to
get what could be a long object display in the midst of your application. However, one
of my favorite uses of REPL is to get a quick look at objects. For instance, the Node
core object global is sparsely documented at the Node.js website. To get a better look,
I opened up a REPL session and passed the object to the console.log method like so:

> console.log(global)

I could have done the following, which has a similar result, with the addition of the gl
variable (trimmed, for space):

> gl = global;
...
_: [Circular],
 gl: [Circular] }

Just printing out global also provides the same information:

> global

I’m not replicating what was displayed in REPL. I’ll leave that for you to try on your
own installation, since the interface for global is so large. The important point to
take away from this exercise is that we can, at any time, quickly and easily get a look
at an object’s interface. It’s a handy way of remembering what a method is called or
what properties are available.

There’s more on global in Chapter 2.

You can use the up and down arrow keys to traverse through the commands you’ve
typed into REPL. This can be a handy way of reviewing what you’ve done, as well as a
way of editing what you’ve typed, though in a somewhat limited capacity.

Consider the following session in REPL:

> var myFruit = function(fruitArray,pickOne) {
... return fruitArray[pickOne - 1];
... }
undefined
> fruit = ['apples','oranges','limes','cherries'];

92 | Chapter 4: Interactive Node with REPL and More on the Console

['apples', 'oranges', 'limes', 'cherries']
> myFruit(fruit,2);
'oranges'
> myFruit(fruit,0);
undefined
> var myFruit = function(fruitArray,pickOne) {
... if (pickOne <= 0) return 'invalid number';
... return fruitArray[pickOne - 1];
... };
undefined
> myFruit(fruit,0);
'invalid number'
> myFruit(fruit,1);
'apples'

Though it’s not demonstrated in this printout, when I modified the function to check
the input value, I actually arrowed up through the content to the beginning function
declaration, and then hit Enter to restart the function. I added the new line, and then
again used the arrow keys to repeat previously typed entries until the function was
finished. I also used the up arrow key to repeat the function call that resulted in an
undefined result.

It seems like a lot of work just to avoid retyping something so simple, but consider
working with regular expressions, such as the following:

> var ssRe = /^\d{3}-\d{2}-\d{4}$/;
undefined
> ssRe.test('555-55-5555');
true
> var decRe = /^\s*(\+|-)?((\d+(\.\d+)?)|(\.\d+))\s*$/;
undefined
> decRe.test(56.5);
true

I’m absolutely useless when it comes to regular expressions, and have to tweak them
several times before they’re just right. Using REPL to test regular expressions is very
attractive. However, retyping long regular expressions would be a monstrous amount
of work.

Luckily, all we have to do with REPL is arrow up to find the line where the regular
expression was created, tweak it, hit Enter, and continue with the next test.

In addition to the arrow keys, you can also use the Tab key to autocomplete a com‐
mand if there’s no confusion as to what you’re completing. As an example, type va at
the command line and then press Tab; REPL lists out both var and valueOf, both of
which can complete the typing. However, typing querys and hitting Tab returns the
only available option, querystring. You can also use the Tab key to autocomplete any
global or local variable. Table 4-1 offers a quick summary of keyboard commands
that work with REPL.

Multiline and More Complex JavaScript | 93

Table 4-1. Keyboard control in REPL

Keyboard entry What it does
Ctrl-C Terminates current command. Pressing Ctrl-C twice forces an exit.

Ctrl-D Exits REPL.

Tab Autocompletes global or local variable.

Up arrow Traverses up through command history.

Down arrow Traverses down through command history.

Underscore (_) References result of last expression.

If you’re concerned about spending a lot of time coding in REPL with nothing to
show for it when you’re done, no worries: you can save the results of the current con‐
text with the .save command. It and the other REPL commands are covered in the
next section.

REPL Commands
REPL has a simple interface with a small set of useful commands. In the preceding
section, I mentioned .save. The .save command saves your inputs in the current
object context into a file. Unless you specifically created a new object context or used
the .clear command, the context should comprise all of the input in the current
REPL session:

> .save ./dir/session/save.js

Only your inputs are saved, as if you had typed them directly into a file using a text
editor.

Here is the complete list of REPL commands and their purposes:

.break

If you get lost during a multiline entry, typing .break will start you over again.
You’ll lose the multiline content, though.

.clear

Resets the context object and clears any multiline expression. This command
basically starts you over again.

.exit

Exits REPL.

.help

Displays all available REPL commands.

.save

Saves the current REPL session to a file.

94 | Chapter 4: Interactive Node with REPL and More on the Console

.load

Loads a file into the current session (.load /path/to/file.js).

If you’re working on an application using REPL as an editor, here’s a hint: save your
work often using .save. Though current commands are persisted to history, trying to
re-create your code from history would be a painful exercise.

Speaking of persistence and history, now let’s go over how to customize both with
REPL.

REPL and rlwrap
The Node.js website documentation for REPL mentions setting up an environmental
variable so you can use REPL with rlwrap. What is rlwrap, and why would you use it
with REPL?

The rlwrap utility is a wrapper that adds GNU readline library functionality to
command lines that allow increased flexibility with keyboard input. It intercepts key‐
board input and provides additional functionality, such as enhanced line editing, as
well as a persistent history of commands.

You’ll need to install rlwrap and readline to use this facility with REPL, and most
flavors of Unix provide an easy package installation. For instance, in my own Ubuntu
system, installing rlwrap was this simple:

apt-get install rlwrap

Mac users should use the appropriate installer for these applications. Windows users
have to use a Unix environmental emulator, such as Cygwin.

Here’s a quick and visual demonstration of using REPL with rlwrap to change the
REPL prompt to purple:

NODE_NO_READLINE=1 rlwrap -ppurple node

If I always want my REPL prompt to be purple, I can add an alias to my bashrc file:

alias node="NODE_NO_READLINE=1 rlwrap -ppurple node"

To change both the prompt and the color, I’d use the following:

NODE_NO_READLINE=1 rlwrap -ppurple -S "::> " node

Now my prompt would be:

::>

but in purple.

The especially useful component of rlwrap is its ability to persist history across REPL
sessions. By default, we have access to command-line history only within a REPL ses‐
sion. By using rlwrap, the next time we access REPL, we’ll have access not only to a

Multiline and More Complex JavaScript | 95

history of commands within the current session, but also to a history of commands in
past sessions (and other command-line entries). In the following session output, the
commands shown were not typed in, but were instead pulled from history with the
up arrow key, after I had exited REPL and then re-entered it:

::> e = ['a','b'];
['a', 'b']
::> 3 > 2 > 1;
false

As helpful as rlwrap is, we still end up with undefined every time we type in an
expression that doesn’t return a value. However, we can adjust this, and other func‐
tionality, just by creating our own custom REPL, discussed next.

Custom REPL
Node provides an API that we can use to create a custom REPL. To do so, first we
need to include the REPL module (repl):

var repl = require("repl");

To create a new REPL, we call the start method on the repl object. The syntax for
this method is:

repl.start(options);

The options object takes several values; the ones I want to focus on are:

prompt

Default is >.

input

Readable stream; default is process.stdin.

output

writable stream; default is process.stdout.

eval

Default is an async wrapper for eval.

useGlobal

Default is false to start a new context rather than use the global object.

useColors

Whether writer function should use colors. Defaults to REPL’s terminal value.

ignoreUndefined

Default is false: don’t ignore the undefined responses.

96 | Chapter 4: Interactive Node with REPL and More on the Console

terminal

Set to true if stream should be treated like a tty (terminal), including support for
ANSI/VT100 escape codes.

writer

Function to evaluate each command, and return formatting. Defaults to
util.inspect.

replMode

Whether REPL runs in strict mode, default, or hybrid.

Starting in Node 5.8.0, repl.start() no longer requires an
options object.

I find the undefined expression result in REPL to be unedifying, so I created my own
REPL. I also redefined the prompt and set the mode to strict, which means each line
executed is done so under “use strict.”

var repl = require('repl');

repl.start({
 prompt: 'my repl> ',
 replMode: repl.REPL_MODE_STRICT,
 ignoreUndefined: true,
});

I ran the file, repl.js, using Node:

node repl

I can use the custom REPL just like I use the built-in version, except now I have a
different prompt and no longer get the annoying undefined after the first variable
assignment. I do still get the other responses that aren’t undefined:

my repl> let ct = 0;
my repl> ct++;
0
my repl> console.log(ct);
1
my repl> ++ct;
2
my repl> console.log(ct);
2

In my code, I wanted the defaults used for all but the listed properties. Not listing any
other property in the options object causes each to use the default.

Multiline and More Complex JavaScript | 97

You can replace the eval function with your custom REPL. The only requirement is
that it has a specific format:

function eval(cmd, callback) {
 callback(null, result);
}

The input and output options are interesting. You can run multiple versions of
REPL, taking input from both the standard input (the default), as well as sockets. The
documentation for REPL at the Node.js site provides an example of a REPL listening
in on a TCP socket, using the following code:

var net = require("net"),
 repl = require("repl");

connections = 0;

repl.start({
 prompt: "node via stdin> ",
 input: process.stdin,
 output: process.stdout
});

net.createServer(function (socket) {
 connections += 1;
 repl.start({
 prompt: "node via Unix socket> ",
 input: socket,
 output: socket
 }).on('exit', function() {
 socket.end();
 })
}).listen("/tmp/node-repl-sock");

net.createServer(function (socket) {
 connections += 1;
 repl.start({
 prompt: "node via TCP socket> ",
 input: socket,
 output: socket
 }).on('exit', function() {
 socket.end();
 });
}).listen(5001);

When you run the application, you get the standard input prompt where the Node
application is running. However, you can also access REPL via TCP. I used PuTTY as
a Telnet client to access this TCP-enabled version of REPL. It does work…to a point. I
had to issue a .clear first, the formatting is off, and when I tried to use the under‐
score to reference the last expression, Node didn’t know what I was talking about. I

98 | Chapter 4: Interactive Node with REPL and More on the Console

also tried with the Windows Telnet client, and the response was even worse. However,
using my Linux Telnet client worked without a hitch.

The problem here, as you might expect, is Telnet client settings. However, I didn’t
pursue it further, because running REPL from an exposed Telnet socket is not some‐
thing I plan to implement, and not something I would recommend, either—at least,
not without heavy security. It’s like using eval() in your client-side code, and not
scrubbing the text your users send you to run—but worse.

You could keep a running REPL and communicate via a Unix socket with something
like the GNU Netcat utility:

nc -U /tmp/node-repl-sock

You can type in commands no differently than typing them in using stdin. Be aware,
though, if you’re using either a TCP or Unix socket, that any console.log commands
are printed out to the server console, not to the client:

console.log(someVariable); // actually printed out to server

An application option that I consider to be more useful is to create a REPL applica‐
tion that preloads modules. In the application in Example 4-1, after the REPL is
started, the third-party modules of Request (powerful HTTP client), Underscore
(utility library), and Q (promise management) modules are loaded and assigned to
context properties.

Example 4-1. Creating a custom REPL that preloads modules

var repl = require('repl');
var context = repl.start({prompt: '>> ',
 ignoreUndefined: true,
 replMode: repl.REPL_MODE_STRICT}).context;

// preload in modules
context.request = require('request');
context.underscore = require('underscore');
context.q = require('q');

Running the application with Node brings up the REPL prompt, where we can then
access the modules:

>> request('http://blipdebit.com/phoenix5a.png')
.pipe(fs.createWriteStream('bird.png'))

The core Node modules don’t need to be specifically included; just access them by
their module name directly.

If you want to run the REPL application like an executable in Linux, add the follow‐
ing line as the first line in the application:

Multiline and More Complex JavaScript | 99

#!/usr/local/bin/node

Modify the file to be an executable and run it:

$ chmod u+x replcontext.js
$./replcontext.js
>>

Stuff Happens—Save Often
Node’s REPL is a handy interactive tool that can make our development tasks a little
easier. REPL allows us not only to try out JavaScript before including it in our files,
but also to actually create our applications interactively and then save the results
when we’re finished.

Another useful REPL feature is that it enables us to create a custom REPL so that we
can eliminate the unhelpful undefined responses, preload modules, change the
prompt or the eval routine we use, and more.

I also strongly recommend that you look into using REPL with rlwrap in order to
persist commands across sessions. This could end up being a major time saver. Plus,
who among us doesn’t like additional editing capability?

As you explore REPL further, there’s one very important thing to keep in mind from
this chapter: stuff happens. Save often.

If you’ll be spending a lot of time developing in REPL, even with the use of rlwrap to
persist history, you’re going to want to frequently save your work. Working in REPL
is no different than working in other editing environments, so I’ll repeat: stuff hap‐
pens—save often.

The Necessity of the Console
There are few examples in this book that don’t make use of the console. The console
is a way of printing out values, checking operations, verifying the asynchronous
nature of an application, and providing some kind of feedback.

For the most part, we’re using console.log() and just printing out messages. But
there’s more to the console than a server version of the alert box in the browser.

Console Message Types, Console Class, and Blocking
In most of the examples in the book, we’re using console.log() because we’re only
interested in feedback while we’re experimenting with Node. This function outputs
the message to stdout, typically the terminal. When you start putting together Node
applications for a production environment, though, you’re going to want to make use
of other console messaging functions.

100 | Chapter 4: Interactive Node with REPL and More on the Console

The console.info() function is equivalent to console.log(). Both write to stdout;
both output a newline character as part of the message. The console.error() func‐
tion differs in that it outputs the message (again, with a newline character) to stderr,
rather than stdout:

console.error("An error occurred...");

The console.warn() function does the same.

Both types of messaging appear in the terminal, so you might wonder what the differ‐
ence is. In actuality, there really is no difference. To understand that, we need to look
more closely at the console object.

Using a Logging Module

You’re not limited to the built-in console object for logging. There
are more sophisticated tools available, such as the Bunyan and
Winston modules.

First of all, the console object is a global object instantiated from the Console class.
We can, if we wish, actually create our own version of the console using this same
class. And we can do so in two different ways.

To create a new instance of Console, we either need to import the Console class or
access it via the global console object. Both of the following result in a new console-
like object:

// using require
var Console = require('console').Console;

var cons = new Console(process.stdout, process.stderr);
cons.log('testing');

// using existing console object
var cons2 = new console.Console(process.stdout, process.stderr);

cons2.error('test');

Notice how in both instances, the process.stdout and process.stderr properties
are passed as writable stream instances for writing log messages and error messages,
respectively. The console global object is created in just this manner.

I covered process.stdout and process.stderror in Chapter 2. What we know
about both is that they map to the stdout and stderr file descriptors in the environ‐
ment, and that they’re different from most streams in Node in that they typically
block—they’re synchronous. The only time they’re not synchronous is when the
streams are directed at a pipe. So, for the most part, the console object blocks for

The Necessity of the Console | 101

https://github.com/trentm/node-bunyan
https://github.com/winstonjs/winston

both console.log() and console.error(). However, this isn’t an issue unless you’re
directing a large amount of data at the stream.

So why use console.error() when an error occurs? Because in environments where
the two streams are different, you want to ensure the proper behavior. If you’re in an
environment where log messages don’t block but an error does, you want to ensure a
Node error does block. In addition, when you run a Node application, you can direct
the output for console.log() and console.error() to different files using
command-line redirection. The following directs the console.log() messages to a
logfile, and the errors to an error file:

node app.js 1> app.log 2> error.log

The following Node application:

// log messages
console.log('this is informative');
console.info('this is more information');

// error messages
console.error('this is an error');
console.warn('but this is only a warning');

directs the first two lines to app.log, and the second two to error.log.

To return to the Console class, you can duplicate the functionality of the global con
sole object by using the Console class and passing in process.stdout and pro
cess.stderr. You can also create a new console-like object that directs the output to
different streams, such as log and error files. The Console documentation provided
by the Node Foundation provides just such an example:

var output = fs.createWriteStream('./stdout.log');
var errorOutput = fs.createWriteStream('./stderr.log');
// custom simple logger
var logger = new Console(output, errorOutput);
// use it like console
var count = 5;
logger.log('count: %d', count);
// in stdout.log: count 5

The advantage to using this type of object is that you can use the global console for
general feedback, reserving the newly created object for more formal reporting.

Process and Streams

As noted, the process object is covered in Chapter 2, and streams
are covered in Chapter 6.

102 | Chapter 4: Interactive Node with REPL and More on the Console

Formatting the Message, with Help from util.format() and
util.inspect()
All four console functions, log(), warn(), error(), and info(), can take any data
type, including an object. Non-object values that aren’t a string are coerced to a
string. If the data type is an object, be aware that Node only prints out two levels of
nesting. If you want more, you should use JSON.stringify() on the object, which
then prints out a more readable indented tree:

var test = {
 a : {
 b : {
 c : {
 d : 'test'
 }
 }
 }
}

// only two levels of nesting are printed out
console.log(test);

// three levels of nesting are printed
var str = JSON.stringify(test, null, 3);

console.log(str);

The output of the application is:

{ a: { b: { c: [Object] } } }
{
 "a": {
 "b": {
 "c": {
 "d": "test"
 }
 }
 }
}

If you use a string, you can use printf-like formatting with the string for all four func‐
tions:

var val = 10.5;
var str = 'a string';

console.log('The value is %d and the string is %s', val, str);

This approach is advantageous if you’re working with data passed as function argu‐
ments or collected from a web request. The type of formatting allowed is based on the

The Necessity of the Console | 103

formatting supported for the util.format() utilities module, which you could also
use directly to create the string:

var util = require('util');

var val = 10.5,
 str = 'a string';

var msg = util.format('The value is %d and the string is %s',val,str);
console.log(msg);

Though if you’re only using the one function, it’s simpler to just use the formatting in
console.log(). Allowable format values are:

%s

string

%d

number (both integer and float)

%j

JSON. Replaced with ['circular'] if the argument contains circular references

%%

to use a literal percentage sign (%)

Extra arguments are converted to strings and concatenated to the output. If there are
too few arguments, the placeholder itself is printed out:

var val = 3;

// results in 'val is 3 and str is %s'
console.log('val is %d and str is %s', val);

The four functions covered are not the only ones used to provide feedback. There’s
also console.dir().

The console.dir() function differs from the other feedback functions in that what‐
ever object is passed to it is passed, in turn, to util.inspect(). This Utilities module
function provides more finite control over how an object is displayed via a secondary
options object. Like util.format(), it can also be used directly. An example is:

var test = {
 a : {
 b : {
 c : {
 d : 'test'
 }
 }
 }
}

104 | Chapter 4: Interactive Node with REPL and More on the Console

var str = require('util').inspect(test, {showHidden: true, depth: 4 });
console.log(str);

The object is inspected and the result is returned as a string based on what is passed
in the options object. Options are:

• showHidden: to display non-enumerable or symbolic properties (default is false)
• depth: how many times to recurse to inspect object (default is 2)
• colors: if true, output is styled with ANSI color codes (default is false)
• customInspect: if false, then custom inspect functions defined on the objects

being inspected won’t be called (default is true)

The color mapping can be defined globally using the util.inspect.styles object.
You can modify the global colors, too. Use console.log() to print out the object
properties:

var util = require('util');

console.log(util.inspect.styles);
console.log(util.inspect.colors);

The application in Example 4-2 modifies the object being printed to add a date, a
number, and a boolean. In addition, the color value for the boolean is changed from
yellow to blue, to differentiate it from the number (by default, they’re both yellow).
The object is printed out using various methods: after processing with
util.inspect(), using console.dir() with same options, using the basic con
sole.log() function, and using the JSON.stringify() function on the object.

Example 4-2. Different formatting options for printing out an object

var util = require('util');

var today = new Date();

var test = {
 a : {
 b : {
 c : {
 d : 'test'
 },
 c2 : 3.50
 },
 b2 : true
 },
 a2: today
}

util.inspect.styles.boolean = 'blue';

The Necessity of the Console | 105

// output with util.inspect direct formatting
var str = util.inspect(test, {depth: 4, colors: true });
console.log(str);

// output using console.dir and options
console.dir(test, {depth: 4, colors: true});

// output using basic console.log
console.log(test);

// and JSON stringify
console.log(JSON.stringify(test, null, 4));

The result is shown in Figure 4-1 so you can see the color effects. I use a white back‐
ground for my terminal window, with black text.

Figure 4-1. Capture of terminal window showing different formats for string output

The console.dir() function supports three of the four
util.inspect() options: showHidden, depth, and colors. It
doesn’t support customInspect. If set to true, this option indicates
that the object is actually supplying its own inspection function.

106 | Chapter 4: Interactive Node with REPL and More on the Console

Providing Richer Feedback with console and a Timer
Returning to the console object, one additional approach that can provide a more in-
depth picture of what’s happening with an application is to add a timer and output a
begin and end time.

The two console functions we’re using for this functionality are console.time() and
console.timeEnd(), passing a timer name to both.

In the following code snippet, the code is using a longer-lasting loop so that enough
time passes for the timer functions to register a time difference.

console.time('the-loop');

for (var i = 0; i < 10000; i++) {
 ;
}

console.timeEnd('the-loop');

Even with a largish loop, the time involved will barely register. How long depends on
the load in the machine, as well as the process. But the timer functionality isn’t limi‐
ted to synchronous events. Being able to use a specific name with the timer means we
can use the functionality with asynchronous events.

Here, I modify the Hello World application from Chapter 1, adding in a start to the
timer at the beginning of the application, ending it for each web request, and then re-
starting it. It times the gaps in time between each request. Sure, we could use a Date()
function to do a more representative timer, but what’s the fun of that?

var http = require('http');

console.time('hello-timer');
http.createServer(function (request, response) {
 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
 console.timeEnd('hello-timer');
 console.time('hello-timer');
}).listen(8124);

console.log('Server running at http://127.0.0.1:8124/');

In all seriousness, what the code demonstrates is that you can incorporate the timer
into asynchronous operations, thanks to the ability to individually name the timers.

The Necessity of the Console | 107

CHAPTER 5

Node and the Web

Node isn’t yet at the point where it can replace the fairly ubiquitous Apache/PHP
killer combination, but it is gaining in popularity, especially considering the ease in
creating cross-platform applications and the support it has among the big tech
companies.

In this chapter, we’ll explore Node’s webby roots, including a more in-depth look at
the HTTP module, as well as try our hand at creating a very simple static web server.
We’ll also look at core Node modules that simplify the web development experience.

The HTTP Module: Server and Client
Don’t expect to use the HTTP module to re-create a web server with the sophistica‐
tion of Apache or Nginx. As the Node documentation notes, it’s low-level, focusing
on stream handling and message parsing. Still, it provides the foundational support
for more sophisticated functionality, such as Express, covered in Chapter 10.

The HTTP module supports several objects, including http.Server, which is what’s
returned when you use the http.createServer() function demonstrated in Chap‐
ter 1. In that example, we embedded a callback function to handle the web request,
but we can also use separate events, since http.Server inherits from EventEmitter.

109

var http = require('http');

var server = http.createServer().listen(8124);

server.on('request', function(request,response) {

 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
});

console.log('server listening on 8214');

We can also listen for other events, such as when a connection is made (connect), or
the client requests an upgrade (upgrade). The latter occurs when the client asks for an
upgrade to the version of HTTP or to a different protocol.

HTTP Innards

For those who want to know a little more about the innards of
HTTP, the HTTP.Server class is actually an implementation of the
TCP-based Net.Server, which is covered in Chapter 7. TCP pro‐
vides the transportation layer, while HTTP provides the application
layer.

The callback function used when responding to a web request supports two parame‐
ters: request and response. The second parameter, the response, is an object of type
http.ServerReponse. It’s a writable stream with support for several functions, includ‐
ing response.writeHead() to create the response header, response.write() to write
the response data, and response.end() to end the response.

Readable and Writeable Streams

Chapter 6 covers both readable and writeable streams.

The first parameter, the request, is an instance of the IncomingMessage class, which
is a readable stream. Among some of the information you can access from the request
is the following:

request.headers

The request/response header objects

request.httpVersion

HTTP request version

110 | Chapter 5: Node and the Web

request.method

Only for a http.Server request, and returns HTTP verb (GET or POST)

request.rawHeaders

Raw headers

request.rawTrailers

Raw trailers

To see the difference between request.headers and request.rawHeaders, print
them out using console.log() within the request. Note that values are given as prop‐
erties with request.headers, but as array elements for request.rawHeaders, with
the property in the first array element and the value in the second, in case you want to
access individual values:

 console.log(request.headers);
 console.log(request.rawHeaders);

 // pulling host
 console.log(request.headers.host);
 console.log(request.rawHeaders[0] + ' is ' + request.rawHeaders[1]);

In the Node documentation, note that some of the IncomingMessage properties (sta
tusCode and statusMessage) are only accessible for a response (not a request)
obtained from an HTTP.ClientRequest object. In addition to creating a server that
listens for requests, you can also create a client that makes requests. You do so with
the ClientRequest class, which you instantiate using the http.request() function.

To demonstrate both types of functionality, server and client, I’m going to take exam‐
ple code for creating a client from the Node documentation and modify it to access a
server that’s local to the client. In the client, I’m creating a POST method to send the
data, which means I need to modify my server to read this data. This is where the
readable stream part of IncomingMessage comes in. Instead of listening for a request
event, the application listens for one or more data events, which it uses to get chunks
(yes, that’s actually a technical term) of data in the request. The application continues
getting chunks until it receives an end event on the request object. It then uses
another helpful Node module, Query String (covered in more detail in “Parsing the
Query with Query String” on page 125), to parse the data, and print it out to the con‐
sole. Only then does it send back the response.

The code for the modified server is shown in Example 5-1. Note it’s very similar to
what you’ve tried previously, except for the new event handling for POSTed data.

The HTTP Module: Server and Client | 111

Example 5-1. Server that listens for a POST and processes posted data

var http = require('http');
var querystring = require('querystring');

var server = http.createServer().listen(8124);

server.on('request', function(request,response) {

 if (request.method == 'POST') {
 var body = '';

 // append data chunk to body
 request.on('data', function (data) {
 body += data;

 });

 // data transmitted
 request.on('end', function () {
 var post = querystring.parse(body);
 console.log(post);
 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
 });
 }
});
console.log('server listening on 8214');

The code for the new client is shown in Example 5-2. Again, it uses http.ClientRe
quest, which is an implementation of a writable stream, as apparent from the
req.write() method used in the example.

The code is almost a direct copy of the code in the Node documentation example
except for the server we’re accessing. Since both the server and client are on the same
machine, we’re using localhost as the host. In addition, we’re not specifying the
path property in the options, because we’re accepting the default of /. The headers for
the request are set to a content type of application/x-www-form-urlencoded, used
with POSTed data. Also note that the client receives data back from the server via the
response, which is the only argument in the http.request() function’s callback
function. The POSTed data is again pulled as chunks from the response, but this time,
each chunk is printed out to the console as soon as it is received. Since the returned
message is so short, only one data event is triggered.

The actual POSTed request isn’t handled asynchronously because we’re initiating an
action, not blocking while waiting on an action.

112 | Chapter 5: Node and the Web

Example 5-2. HTTP client POSTing data to a server

var http = require('http');
var querystring = require('querystring');

var postData = querystring.stringify({
 'msg' : 'Hello World!'
});

var options = {
 hostname: 'localhost',
 port: 8124,
 method: 'POST',
 headers: {
 'Content-Type': 'application/x-www-form-urlencoded',
 'Content-Length': postData.length
 }
};

var req = http.request(options, function(res) {
 console.log('STATUS: ' + res.statusCode);
 console.log('HEADERS: ' + JSON.stringify(res.headers));
 res.setEncoding('utf8');

 // get data as chunks
 res.on('data', function (chunk) {
 console.log('BODY: ' + chunk);
 });

 // end response
 res.on('end', function() {
 console.log('No more data in response.')
 })
});

req.on('error', function(e) {
 console.log('problem with request: ' + e.message);
});

// write data to request body
req.write(postData);
req.end();

Pop open a second terminal, start the server in the first, and then run the client in the
second. The client basically says hello to the server, which responds by saying hello
back.

All of this, just to have two processes say hello to each other. But you’ve also managed
to implement two-way client/server communication, as well as have a chance to work
with POSTed data, instead of just GETs. And you were introduced to all but one of

The HTTP Module: Server and Client | 113

the HTTP module’s classes: http.ClientRequest, http.Server, http.IncomingMes
sage, and http.ServerResponse.

The only class we haven’t looked at is http.Agent, which is used for pooling sockets.
Node maintains a pool of connection sockets for handling requests that were made
using http.request() or http.get(). The latter request is a simplified request, for a
GET request that has no body. If the application is making a lot of requests, they can
get bottlenecked because of the limited pool. The way around this is to disable con‐
nection pooling by setting the agent to false in the outgoing request properties. In
Example 5-2, this would require changing the options to the following (the change is
bolded):

var options = {
 hostname: 'localhost',
 port: 8124,
 method: 'POST',
 headers: {
 'Content-Type': 'application/x-www-form-urlencoded',
 'Content-Length': postData.length
 },
 agent: false
};

You can also change the maximum socket pool, using agent.maxFreeSockets. By
default, it’s set to 256. Be aware, though, that changing the outgoing request connec‐
tion pool could have adverse effects on memory and other resource use.

We’ll get a chance to work with even more sophisticated communications in Chap‐
ter 7, but for now, let’s return to what it means to actually create an HTTP server that
returns something more than “hi there.”

What’s Involved in Creating a Static Web Server
We have all the functionality we need to build a simple router or to serve static files
built directly into Node. But being able to do so and doing so easily are two different
things.

When thinking of what’s necessary to build a simple but functional static file server,
we might come up with the following set of steps:

1. Create an HTTP server and listen for requests.
2. When a request arrives, parse the request URL to determine the location for the

file.
3. Check to make sure the file exists.
4. If the file doesn’t exist, respond accordingly.

114 | Chapter 5: Node and the Web

5. If the file does exist, open the file for reading.
6. Prepare a response header.
7. Write the file to the response.
8. Wait for the next request.

We’ll only need core modules to perform all of these functions (with one exception,
as we’ll see later in this section). Creating an HTTP server and reading files requires
the HTTP and File System modules. In addition, we’ll want to define a global vari‐
able for the base directory, or use the predefined __dirname (more on this in the
upcoming sidebar “Why Not Use __dirname?” on page 123).

The top of the application has the following code at this point:

var http = require('http'),
 fs = require('fs'),
 base = '/home/examples/public_html';

We created a web server in Chapter 1’s Hello World example, and we’ll build on that
for this chapter’s work. The http.createServer() function creates the server, with a
callback with two values: the web request and the response we’ll create. The applica‐
tion can get the document requested by directly accessing the HTTP request object’s
url property. To double-check the response compared to requests, we’ll also throw in
a console.log of the requested file’s path name. This is in addition to the con
sole.log message that’s written when the server is first started:

var http = require('http'),
 fs = require('fs'),
 base = '/home/examples/public_html';

http.createServer(function (req, res) {

 pathname = base + req.url;
 console.log(pathname);

}).listen(8124);

console.log('Server web running at 8124');

Running the application starts up a web server that listens for web requests on the
8124 port.

What’s Involved in Creating a Static Web Server | 115

About the Ports We Use
When you access a website using a browser, you don’t usually have to provide a port
number. The reason is that there are two well-known ports—80 for HTTP requests,
and 443 for HTTPS—that browsers incorporate automatically into the request. Wiki‐
pedia maintains a list of all well-known ports.

We’re listening on the 8214 port, because the default web port of 80 is typically being
managed by whatever is the primary web server in your development environment—
whether it’s Ngnix, Apache, lighttpd, the newer Caddy, or a production Node
application.

We could use the well-known port of 80, but ports under 1024 require root (adminis‐
tration) permission. Not even Apache provides server instances that run as root.
Apache itself runs as root, but spawns child threads that run with more restricted per‐
mission levels. You really don’t want to run web servers with root permissions.

You can tweak server internals, such as iptables, to redirect port 1024 access to port
80, but this isn’t an approach I would take. A better approach is to set up your web
service (Apache, Ngnix, lighttpd, or Caddy), and have it proxy requests to that web
server. I’ll cover how to use Apache as proxy for Node applications in more detail in
 “Using Apache to Proxy a Node Application” on page 124.

Testing the application with an index.html file (for instance, http://blipdebit.com:8124/
index.html) will result in something like the following printout (depending on your
particular environment):

/home/examples/public_html/index.html

Of course, the browser is left hanging, since we didn’t prepare a response, but we’ll get
to that next.

We could test to see if a requested file is available before opening and reading it. The
fs.stat() function returns an error if the file doesn’t exist.

116 | Chapter 5: Node and the Web

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers#Well-known_ports

File Removed After Check

One hazard with using fs.stat() is that something can cause the
file to go away between the status check and the actual file opening.
Another approach is to just open the file directly, which will return
an error if the file is missing. The issue, though, with using some‐
thing like fs.open() directly and then passing a file descriptor to
fs.createReadStream() is that they don’t provide information
about whether the file is a directory or file (in addition to whether
it’s missing or locked). So, I use fs.stat() but also check for an
error when I open the read stream, which allows me more control
of the error handling.

Speaking of reading from the file, we might try to use fs.readFile() to read the file
contents. The problem with fs.readFile(), though, is that it wants to read the file
completely into memory before making it available. Documents served over the Web
can be quite large. In addition, there can be many requests for a document at any
given time. Something like fs.readFile() just won’t scale.

Instead of using fs.readFile(), the application creates a read stream via the fs.crea
teReadStream() method, using the default settings. Then it’s a simple matter to just
pipe the file contents directly to the HTTP response object. Since the stream sends an
end signal when it’s finished, we don’t need to use the end method call with the read
stream:

 res.setHeader('Content-Type', 'test/html');

 // create and pipe readable stream
 var file = fs.createReadStream(pathname);
 file.on("open", function() {
 // 200 status - found, no errors
 res.statusCode = 200;
 file.pipe(res);
 });
 file.on("error", function(err) {
 res.writeHead(403);
 res.write('file missing, or permission problem');
 console.log(err);
 });

The read stream has two events of interest: open and error. The open event is emitted
when the stream is ready, and the error if a problem occurs. What kind of error? The
file could have vanished between the status check, the permissions could prevent
access, or the file could be a subdirectory. Since we don’t know what happened at this
point, we’re just giving a general 403 error, which covers most of the potential prob‐
lems. We’re writing a message, which may or may not display, depending on how the
browser responds to the error.

What’s Involved in Creating a Static Web Server | 117

The application calls the pipe method in the callback function for the open event.

At this point, the static file server looks like the application in Example 5-3.

Example 5-3. A simple static file web server

var http = require('http'),
 fs = require('fs'),
 base = '/home/examples/public_html';

http.createServer(function (req, res) {

 pathname = base + req.url;
 console.log(pathname);

 fs.stat(pathname, function(err,stats) {
 if (err) {
 console.log(err);
 res.writeHead(404);
 res.write('Resource missing 404\n');
 res.end();
 } else {
 res.setHeader('Content-Type', 'text/html');

 // create and pipe readable stream
 var file = fs.createReadStream(pathname);

 file.on("open", function() {
 res.statusCode = 200;
 file.pipe(res);
 });

 file.on("error", function(err) {
 console.log(err);
 res.writeHead(403);
 res.write('file missing or permission problem');
 res.end();
 });

 }
 });
}).listen(8124);

console.log('Server running at 8124');

I tested it with a simple HTML file, which has nothing more than an img element,
and the file loaded and displayed properly:

<!DOCTYPE html>
<head>
 <title>Test</title>
 <meta charset="utf-8" />

118 | Chapter 5: Node and the Web

</head>
<body>

</body>

I also tried it with a file that doesn’t exist. The error is caught when I used fs.stat(),
returning a 404 message to the browser, and printing an error about no such file or
directory found to the console.

I next tried it with a file where all read permissions had been removed. This time, the
read stream caught the error, sending a message about not being able to read the file
to the browser and an error about permissions to the console. I also returned a more
appropriate HTTP status of 403 for the permission-denied file.

Lastly, I tried the server application with another example file I had, which contained
an HTML5 video element:

<!DOCTYPE html>
<head>
 <title>Video</title>
 <meta charset="utf-8" />
</head>
<body>
 <video id="meadow" controls>
 <source src="videofile.mp4" />
 <source src="videofile.ogv" />
 <source src="videofile.webm" />
 </video>
</body>

Though the file would open and the video would display when I tried the page with
Chrome, the video element did not work when I tested the page with Internet
Explorer 10. Looking at the console output provided the reason:

Server running at 8124/
/home/examples/public_html/html5media/chapter1/example2.html
/home/examples/public_html/html5media/chapter1/videofile.mp4
/home/examples/public_html/html5media/chapter1/videofile.ogv
/home/examples/public_html/html5media/chapter1/videofile.webm

Though IE10 is capable of playing the MP4 video, it tests all three of the videos
because the content type of the response header is text/html for each. Though other
browsers will ignore the incorrect content type and display the media correctly, IE 10
does not—appropriately, in my opinion, because I may not have quickly found the
error in the application otherwise.

Microsoft has since adapted the handling of the content type in its newer Edge
browser, and does display the appropriate video. Still, we want this application to do
the right thing. It has to be modified to test for the file extension for each file and

What’s Involved in Creating a Static Web Server | 119

then return the appropriate MIME type in the response header. We could code this
functionality ourselves, but I’d rather make use of an existing module: Mime.

You can install Mime using npm: npm install mime. The GitHub
site has it.

The Mime module can return the proper MIME type given a filename (with or
without path), and can also return file extensions given a content type. The Mime
module is included:

 var mime = require('mime');

The returned content type is used in the response header, and also output to the con‐
sole, so we can check the value as we test the application:

 // content type
 var type = mime.lookup(pathname);
 console.log(type);
 res.setHeader('Content-Type', type);

Now when we access the file with the video element in IE10, the video file works. For
all browsers, the proper content-type setting is returned.

What doesn’t work, though, is when we access a directory instead of a file. When this
happens, an error is output to the console:

{ [Error: EISDIR, illegal operation on a directory] errno: 28, code: 'EISDIR' }

What happens with the browsers, though, varies. Edge displays a general 403 error, as
shown in Figure 5-1, while Firefox and Chrome each display my generic “something
is wrong” message. But there is a difference between not being able to access a subdir‐
ectory and something being wrong with the file.

120 | Chapter 5: Node and the Web

https://github.com/broofa/node-mime
https://github.com/broofa/node-mime

Figure 5-1. Disallowed directory access in Edge

We not only need to check if the resource being accessed exists, but we also need to
check whether it’s a file or a directory. If it’s a directory being accessed, we can either
display its contents or we can output an error—it’s the developer’s choice.

There’s still one more change. The base path I’m using works great on my Linux
server, but it’s going to have issues if I try it out on my Windows machine. For one, I
don’t have a /home/examples/public_html directory on my Windows machine. For
another, my Windows machine supports the backslash (\), not the forward slash.

To ensure the application works in both environments, I first create the directory
structure in Windows. Secondly, I use the core Path module to normalize the path
string so it works in both environments. The path.normalize() function takes a
string and returns either the same string, if it’s already normalized for the environ‐
ment, or a transformed string.

var pathname = path.normalize(base + req.url);

Now the application works in both of my machines.

More on the Path module in Chapter 6.

What’s Involved in Creating a Static Web Server | 121

The final version of a minimal static file server, in Example 5-4, uses fs.stats to
check for the existence of the requested object and whether it’s a file. If the resource
doesn’t exist, an HTTP status of 404 is returned. If the resource exists but it’s a direc‐
tory, an HTTP error status code of 403—forbidden—is returned. The same occurs if
the file is locked, but the message changes. In all cases, the request response is more
appropriate.

Example 5-4. Final version of minimal static file server

var http = require('http'),
 url = require('url'),
 fs = require('fs'),
 mime = require('mime'),
 path = require('path');

var base = '/home/examples/public_html';

http.createServer(function (req, res) {

 pathname = path.normalize(base + req.url);
 console.log(pathname);

 fs.stat(pathname, function(err, stats) {
 if (err) {
 res.writeHead(404);
 res.write('Resource missing 404\n');
 res.end();
 } else if (stats.isFile()) {
 // content type
 var type = mime.lookup(pathname);
 console.log(type);
 res.setHeader('Content-Type', type);

 // create and pipe readable stream
 var file = fs.createReadStream(pathname);
 file.on("open", function() {
 // 200 status - found, no errors
 res.statusCode = 200;
 file.pipe(res);
 });
 file.on("error", function(err) {
 console.log(err);
 res.statusCode = 403;
 res.write('file permission');
 res.end();
 });
 } else {
 res.writeHead(403);
 res.write('Directory access is forbidden');
 res.end();

122 | Chapter 5: Node and the Web

 }
 });
}).listen(8124);
console.log('Server running at 8124');

The following is the console output for accessing a web page that contains both image
and video file links using Firefox:

/home/examples/public_html/video.html
text/html
/home/examples/public_html/phoenix5a.png
image/png
/home/examples/public_html/videofile.mp4
video/mp4
/home/examples/public_html/favicon.ico
image/x-icon
/home/examples/public_html/favicon.ico
image/x-icon

Note the proper handling of the content types—not to mention the automatic favicon
access both Firefox and Chrome attach to page requests.

You get a better feel for how the read stream works when you load a page that has a
video element and begin to play it. The browser grabs the read stream output at a
speed it can manage, filling its own internal buffer, and then pauses the output. If you
close the server while the video content is playing, the video continues to play up to
the point where it exhausts its current video buffer. The video element then goes
blank because the read stream is no longer available. It’s actually a little fascinating to
see how well everything works with so little effort on our part.

Why Not Use __dirname?
In some of the examples in this book, I hardcode the base location for web docu‐
ments, typically as /home/examples/public_html. You might be wondering why I’m not
using __dirname.

In Node, you can use the predefined __dirname as a way of specifying the current
working directory for a Node application. However, in this chapter’s examples, I’m
accessing files located separately from my Node application, which is why I’m not
using it. Except in this circumstance, you should use __dirname. It provides a way to
test applications and then move them to production without having to change the
value of a base location variable.

Use __dirname in the following manner:

var pathname = __dirname + req.url;

Note the double underscore in __dirname.

What’s Involved in Creating a Static Web Server | 123

Though the application works when tested with several different documents, it’s not
perfect. It doesn’t handle many other types of web requests, it doesn’t handle security
or caching, and it doesn’t properly handle the video requests. One web page applica‐
tion I tested that uses HTML video also makes use of the HTML5 video element API
to output the state of the video load process. This application didn’t get the informa‐
tion it needed to work.

There are many little gotchas that can trip us when it comes to creating a static file
server, which is why people use more complex systems, such as Express, which I
introduce in Chapter 9.

Using Apache to Proxy a Node Application
I don’t think anyone sees Node replacing the more established web servers, such as
Apache, in the near future. But having Node handle some functionality while the
server handles the rest is a viable option. Since Apache is still the most popular server,
I’m focusing on it in this section.

The thing is, how do we run a Node server at the same time we’re running something
like Apache, and without forcing our users to specify a port? Only one web server can
answer requests on port 80, the default port. And it’s true that if we provide an API
for web browsers, the port number can be somewhat hidden, but what if we want to
use both Apache and Node at the same time without port conflict?

Other Production Issues

Keeping Node running forever and recovering from a crash are
other issues, and are covered in Chapter 11.

The simplest approach to running a Node application with Apache is to have Apache
proxy the Node service’s requests. This means all requests to the Node application go
through Apache first.

This is both a good and not-so-good solution. The good is it’s extremely simple, and
we have a very robust, well-known web server fielding the requests before our Node
application gets hit. Apache provides security and other functionality that would be
extremely difficult to implement in a Node application. The not-so-good is that
Apache spawns a new thread for every request, and there are only so many threads to
go around.

Still, most sites run on Apache and manage to get by without slowing to a crawl.
Unless you’re about to become a major player, this is a good option.

To have Apache proxy for Node, you first of all have to enable Apache proxying. Issue
the following commands at the command line:

124 | Chapter 5: Node and the Web

a2enmod proxy
a2enmod proxy_http

Then, in the subdomain, add the proxying. For instance, when I used my server, I set
up shelleystoybox.com as a host for my Node application:

<VirtualHost ipaddress:80>
 ServerAdmin shelleyp@burningbird.net
 ServerName shelleystoybox.com

 ErrorLog path-to-logs/error.log
 CustomLog path-to-logs/access.log combined

 ProxyRequests off

 <Location />
 ProxyPass http://ipaddress:2368/
 ProxyPassReverse http://ipaddress:2368/
 </Location>
</VirtualHost>

Change the subdomain, administrator email, port, and IP address to match your
environment. Then it’s a matter of loading the new subdomain:

a2ensite shelleystoybox.com
service apache2 reload

again, changing the subdomain to match your environment.

Accessing Site via Port

Using the proxy doesn’t prevent people from accessing the site
explicitly using the port. You can prevent this, but it takes advanced
server tinkering. For instance, in my Ubuntu server, I could modify
the iptables:

iptables -A input -i eth0 -p tcp --dport 2368 -j DROP

But doing so does require server administrative skills.

Parsing the Query with Query String
We had a chance to use the Query String module earlier in the chapter. Its sole pur‐
pose is to prepare and process query strings.

When you receive a query string, you can convert it to an object using query
string.parse(), as demonstrated in Example 5-1. The default query string separa‐
tor ('&') can be overridden in an optional second function parameter, and the
default assignment ('=') can be overridden in the third parameter. The fourth
optional parameter contains a decodeURIComponent, which is querystring.une
scape() by default. Change it if the query string won’t be UTF-8. However, it’s likely

Parsing the Query with Query String | 125

your query strings will use the standard separator, and assignment, and be UTF-8, so
you can accept the defaults.

To see how the querystring.parse() function works, consider the following query:

somedomain.com/?value1=valueone&value1=valueoneb&value2=valuetwo

The querystring.parse() function would return the following object:

{
 value1: ['valueone','valueoneb'],
 value2: 'valuetwo'
}

When preparing a query string to send, as demonstrated in Example 5-2, use query
string.stringify(), passing in the object to encode. So, if you have an object like
the one we just parsed, pass that to querystring.stringify(), and you’ll get the
properly formatted query string to transmit. In Example 5-2, querystring.string
ify() returned:

msg=Hello%20World!

Notice how the space is escaped. The querystring.stringify() function takes the
same optional parameters, with the exception of the last option’s object. In this case,
you’d provide a custom encodeURIComponent, which is stringify.escape() by
default.

DNS Resolution
It’s unlikely most of your applications are going to need any direct DNS services, but
if they do, this type of functionality is provided in the core DNS module.

We’ll look at two of the DNS module functions: dns.lookup() and dns.resolve().
The dns.lookup() function can be used to give the first returned IP address a
domain name. In the following code, the example returns the first found IP address
for oreilly.com:

dns.lookup('oreilly.com', function(err,address,family) {
 if (err) return console.log(err);

 console.log(address);
 console.log(family);
});

The address is the returned IP address, and the family value is either 4 or 6, depend‐
ing on whether the address is IPv4 or IPv6. You can also specify an options object:

family

A number, 4 or 6, representing the type of address you want (IPv4 or IPv6)

126 | Chapter 5: Node and the Web

hints

Supported getaddrinfo flags, a number

all

If true, returns all addresses (default is false)

I was curious about all the IP addresses, so I modified the code to get all addresses.
When I did so, though, I eliminated the family parameter, which is undefined when
accessing all of the addresses. I get back an array of applicable IP address objects, with
IP address and family:

dns.lookup('oreilly.com', {all: true}, function(err,family) {
 if (err) return console.log(err);

 console.log(family);
});

returns:

[{ address: '209.204.146.71', family: 4 },
 { address: '209.204.146.70', family: 4 }]

The dns.resolve() function resolves a hostname into record types. The types (as
strings) are:

A

Default IPv4 address

AAAA

IPv6 address

MX

Mail exchange record

TXT

Text records

SRV

SRV records

PTR

Used for reverse IP lookup

NS

Name server

CNAME

Canonical name records

DNS Resolution | 127

SOA

Start of authority record

In the following, I’m using dns.resolve() to get all of the MX records for
oreilly.com:

dns.resolve('oreilly.com','MX', function(err,addresses) {
 if (err) return err;
 console.log(addresses);
});

which then returns:

[{ exchange: 'aspmx.l.google.com', priority: 1 },
 { exchange: 'alt1.aspmx.l.google.com', priority: 5 },
 { exchange: 'aspmx2.googlemail.com', priority: 10 },
 { exchange: 'alt2.aspmx.l.google.com', priority: 5 },
 { exchange: 'aspmx3.googlemail.com', priority: 10 }]

128 | Chapter 5: Node and the Web

CHAPTER 6

Node and the Local System

Node’s File System module is used throughout the book. There are few resources
more essential to applications than those from the filesystem. The only other resour‐
ces more widely used are the network resources, which are covered in Chapters 5 and
7.

What’s terrific about Node is that the File System works, for the most part, the same
way across different operating systems. Node also works hard to ensure other func‐
tionality built on the technology is operating-system-agnostic. Sometimes it succeeds,
and sometimes we need a little help from third-party modules.

This chapter provides a more formal introduction to the File System. In addition, it
looks more closely at OS-specific functionality and differences. Lastly, we look at two
modules, ReadLine and ZLib, which provide interactive command-line communica‐
tion, as well as compression capabilities, respectively.

Exploring the Operating System
Some technologies manage to hide every last bit of operating system differences,
while others require significant work to manage OS-specific quirks. Node falls some‐
where in between. For the most part, you can create an application and it runs every‐
where. But there are certain functionalities where OS differences intrude. As I
mentioned at the beginning of the chapter, sometimes Node handles them well and
sometimes you need a helpful third-party module.

Accessing information directly about the operating system comes to us via the OS
core module. It’s one of the useful tools that helps us create cross-platform-capable
applications. It also helpfully provides information about the current environment’s
resource usage and capability.

129

Access to the OS module begins with require:

var os = require('os');

The OS module’s functionality is informative only. For instance, if you want to ensure
cross-platform capability, you can discover the end-of-line character supported in the
system, discover if the system is big-endian (BE) or little-endian (LE), and get direct
access to the temporary folder and home directories:

var os = require('os');

console.log('Using end of line' + os.EOL + 'to insert a new line');
console.log(os.endianness());
console.log(os.tmpdir());
console.log(os.homedir());

Both my Ubuntu server and my Windows 10 machine are LE, and the EOL character
works as expected in both (the second part of the line begins on a new line). The only
difference is the temporary folder directory and home directories, naturally.

The Temporary Folder

The temporary folder is where files are temporarily stored. The
contents are deleted when the system is restarted, or at other
intervals.

The OS module also provides a way to check out the resources available for the cur‐
rent machine.

console.log(os.freemem());
console.log(os.loadavg());
console.log(os.totalmem());

The os.loadavg() function is specific to Unix; it just returns zeros for Windows. It’s
the 1-, 5-, and 15-minute load averages, which reflect system activity. To get a per‐
centage, multiply the three numbers by 100. The memory functions os.freemen()
and os.totalmem() return memory in bytes.

Another function, os.cpus(), returns information about the machine’s CPUs. It
returns the number of milliseconds the CPU spent in user, nice, sys, idle, and irq.
If you’re not familiar with the concepts, the user value is the amount of time the CPU
spent running user space processes, idle is how often the CPU was idle, and sys is
how much time the CPU spent on system processes (kernel). The nice value reflects
how much of the user space processes were niced: priority adjusted so the process
doesn’t run as frequently. The irq is an interrupt request for service at the hardware
level.

130 | Chapter 6: Node and the Local System

The CPU times aren’t as helpful as knowing percentages. We can determine these by
adding all the values and then finding out each percentage. We can also make use of
third-party modules that provide the percentages, as well as other information.
Microsoft provides a nice write-up on how this can work in Azure, but the informa‐
tion and modules listed should work in all environments.

Streams and Pipes
Streaming technology appears all throughout the Node core, providing functionality
for HTTP, as well as other forms of networking. It also provides File System function‐
ality, which is why I’m covering it before we dig more deeply into the File System
module.

The Stream object is an abstract interface, which means you’re not going to be
directly creating streams. Instead, you’ll be working with various objects that imple‐
ment Stream, such as an HTTP request, File System read or write stream, ZLib com‐
pression, or process.stdout. The only time you’ll actually implement the Stream
API is if you’re creating a custom stream. Since that’s beyond an introductory text, I’ll
leave that for a follow-up exercise. For now, we’ll focus on how streams exposed in
other functionality generally behave.

Because so many objects in Node implement the stream interface, there is basic func‐
tionality available in all streams in Node:

• You can change the encoding for the stream data with setEncoding.
• You can check whether the stream is readable, writable, or both.
• You can capture stream events, such as data received or connection closed, attach‐

ing callback functions for each.
• You can pause and resume the stream.
• You can pipe data from a readable stream to a writable stream.

Note the item about streams being readable, writable, or both. The latter stream type
is known as a duplex stream. There’s also a variation of the duplex stream, known as a
transform, for when the input and output are causally related. We’ll look at this type
of stream when I cover ZLib compression, later in the chapter.

A readable stream starts out in a paused mode, which means no data is sent until
some form of explicit read (stream.read()) or command for the stream to resume
(stream.resume()) occurs. However, the stream implementations we use, such as the
File System’s readable stream, are switched to flowing mode as soon as we code for a
data event (the way to get access to the data in a readable stream). In flowing mode,
the data is accessed and sent to the application as soon as it’s available.

Streams and Pipes | 131

https://blogs.msdn.microsoft.com/azureossds/2015/08/23/finding-memory-leaks-and-cpu-usage-in-azure-node-js-web-app/

Readable streams support several events, but in most of our readable stream usage,
we’re interested in three events: data, end, and error. The data event is sent when
there’s a new chunk of data ready to be utilized, and the end event is sent when all of
the data has been consumed. The error event is sent when an error occurs, of course.
We saw a readable stream in action with Example 5-1 in Chapter 5, and we’ll see it in
action later with File System.

A writable stream is a destination data that is being sent (written) to. Among the
events we’ll listen for is error, and also finish, when an end() method is called and
all the data has been flushed. Another possible event is drain, when an attempt to
write data returns false. We used a writable stream when we created an HTTP client
in Example 5-2 in Chapter 5, and we’ll also see it in action with the File System mod‐
ule covered in “A Formal Introduction to the File System” on page 133.

A duplex stream has elements of both the readable and writable stream. A transform
stream is a duplex stream except that—unlike duplex streams, where internal input
and output buffers exist independently from one another—a transform stream
directly connects the two, with an intermediate step transforming the data. Under the
hood, transform streams must implement a function, _transform(), that takes
incoming data, does something with it, and pushes it to the output.

To better understand a transform stream, we need to take a closer look at functional‐
ity supported in all streams: the pipe() function. We saw it used in Example 5-1,
when a readable stream directly piped the contents of a file to the HTTP response
object:

// create and pipe readable stream
 var file = fs.createReadStream(pathname);
 file.on("open", function() {
 file.pipe(res);
 });

What the pipe does is take the data out of the file (the stream) and outputs it to the
http.ServerResponse object. In the Node documentation, we learn that this object
implements the writable stream interface, and we’ll see later that fs.createRead
Stream() returns a fs.ReadStream, which is an implementation of a readable stream.
One of the methods a readable stream supports is pipe() to a writable stream.

Later, we’ll look at an example of using the Zlib module to compress a file, but for
now, a quick peek. It’s an excellent demonstration of a transform stream.

132 | Chapter 6: Node and the Local System

var gzip = zlib.createGzip();
var fs = require('fs');
var inp = fs.createReadStream('input.txt');
var out = fs.createWriteStream('input.txt.gz');

inp.pipe(gzip).pipe(out);

The input is a readable stream, and the output a writable stream. The content of one
is piped to the other, but first it goes through a compression routine. That’s the trans‐
form.

A Formal Introduction to the File System
Node’s File System module (fs) provides all the functionality you need to work with a
machine’s filesystem, regardless of operating system. We’ve seen it in use all through‐
out the book. Now we’ll take a look more formally at the functionality.

First, as the Node documentation states, the File System is a set of wrappers that
works with POSIX functions. What this means is that it supports POSIX-
standardized (cross-platform-compatible) filesystem access functionality that works
out of the box in all supported operating systems. So your application can work in OS
X, Linux, and Windows, as well as the newer environments such as Android, and
microcomputers like Raspberry Pi.

The File System module provides synchronized versions of functions, as well as the
Node-traditional asynchronous versions. Whether this is a good idea or not is moot,
as they exist and we’re free to use them or not.

The asynchronous functions take an error-first callback as last argument, while the
synchronous functions immediately throw an error if one occurs. You can use the tra‐
ditional try...catch with synchronous File System functions, while accessing the
error object with the asynchronous versions. In the rest of this section, I’m focusing
solely on the asynchronous functions. Just be aware, though, that synchronous ver‐
sions of the functions do exist.

In addition to numerous functions, the File System supports four classes:

fs.FSWatcher

Supports events for watching for file changes

fs.ReadStream

A readable stream

fs.WriteStream

A writable stream

fs.Stats

Information returned from the *stat functions

A Formal Introduction to the File System | 133

The fs.Stats Class
The fs.Stats object is returned if you use fs.stat(), fs.lstat(), and fs.fstat().
It can be used to check whether a file (or directory) exists, but it also returns informa‐
tion such as whether a filesystem object is a file or a directory, a UNIX domain
socket, permissions associated with the file, when an object was last accessed or
modified, and so on. Node provides some functions for accessing information, such
as fs.isFile() and fs.isDirectory() to determine if the object is a file or direc‐
tory. You can also access the stats data directly, using the following:

var fs = require('fs');
var util = require('util');

fs.stat('./phoenix5a.png', function(err,stats) {
 if (err) return console.log(err);
 console.log(util.inspect(stats));
});

You’ll get back a data structure similar to the following in Linux:

{ dev: 2048,
 mode: 33204,
 nlink: 1,
 uid: 1000,
 gid: 1000,
 rdev: 0,
 blksize: 4096,
 ino: 1419012,
 size: 219840,
 blocks: 432,
 atime: Thu Oct 22 2015 19:46:41 GMT+0000 (UTC),
 mtime: Thu Oct 22 2015 19:46:41 GMT+0000 (UTC),
 ctime: Mon Oct 26 2015 13:38:03 GMT+0000 (UTC),
 birthtime: Mon Oct 26 2015 13:38:03 GMT+0000 (UTC) }

This is basically a dump of the POSIX stat() function, which returns the status of a
file. The dates are pretty intuitive, but the other values may be confusing. The size is
in bytes, the blksize is the size of the block in the operating system, and blocks is
the number of object blocks. Both of the latter values are undefined in Windows.

One of the more interesting components is the mode. This value contains the object’s
permissions. The problem is it’s not entirely readable.

This is where I call for a helper function, or in Node’s case, a helper module. The stat-
mode module is a purposed module that takes the stat object returned from a func‐
tion such as fs.stat() and allows us to directly query values. Example 6-1
demonstrates how to use it to extract useful file permission information.

134 | Chapter 6: Node and the Local System

Example 6-1. Getting file permissions using stat-mode

var fs = require('fs');
var Mode = require('stat-mode');

fs.stat('./phoenix5a.png', function(err,stats) {
 if (err) return console.log(err);

 // get permissions
 var mode = new Mode(stats);

 console.log(mode.toString());
 console.log('Group execute ' + mode.group.execute);
 console.log('Others write ' + mode.others.write);
 console.log('Owner read ' + mode.owner.read);
});

The following is the output for the given file:

-rw-rw-r--
Group execute false
Others write false
Owner read true

The File System Watcher
It’s not uncommon for an application to “listen” for file or directory changes, and
then perform some task when a change occurs. The fs.FSWatcher is the interface
that handles this in Node. Unfortunately, as Node developers note, it’s inconsistent
across platforms and not all that useful.

We’re going to ignore it and the associated fs.watch() that returns the
object. Instead, we’re going to look at a third-party module. At two-million-plus
downloads of Chokidar a month, this module is one of the more heavily utilized (not
to mention that it’s incorporated into the popular application Gulp).

Install it using (adding -g for global):

npm install chokidar

The following code will add a watcher on the current directory. It checks for directory
changes, including changes to files. It performs a recursive watch, picking up any new
subdirectories contained under the parent and new files in those subdirectories. The
raw event picks up all events, while the other event handlers look for higher-level
events.

A Formal Introduction to the File System | 135

https://github.com/paulmillr/chokidar

var chokidar = require('chokidar');

var watcher = chokidar.watch('.', {
 ignored: /[\/\\]\./,
 persistent: true
});

var log = console.log.bind(console);

watcher
 .on('add', function(path) { log('File', path, 'has been added'); })
 .on('unlink', function(path) { log('File', path, 'has been removed'); })
 .on('addDir', function(path) { log('Directory', path, 'has been added'); })
 .on('unlinkDir', function(path) {
 log('Directory', path, 'has been removed'); })
 .on('error', function(error) { log('Error happened', error); })
 .on('ready', function() { log('Initial scan complete. Ready for changes.'); })
 .on('raw', function(event, path, details) {
 log('Raw event info:', event, path, details); });

watcher.on('change', function(path, stats) {
 if (stats) log('File', path, 'changed size to', stats.size);
});

Adding and removing files or directories shows up in the console, as does changing
the file size. The unlink() and unlinkDir() functions reflect that “removal” means
the objects are no longer linked to the current directory. If this is the last link to the
files/subdirectories, they’re deleted.

Catching all the raw events could lead to rather bloated output. Still, do check them
out when first playing with Chokidar.

File Read and Write
Include the module before use:

var fs = require('fs');

Most of the examples that use the File System throughout the book use the non-
streamed read and write methods. We can take two approaches for reading from or
writing to a file using this non-streamed functionality.

The first read/write approach is to use the very simple fs.readFile() or fs.write
File() methods (or their synchronous counterparts). These functions open the file,
do their read or write, and then close the file. In the following code, a file is opened
for writing, truncating its contents if there are any. Once the write is finished, the file
is opened for reading, and the contents are read and printed out to the console.

var fs = require('fs');

fs.writeFile('./some.txt','Writing to a file',function(err) {

136 | Chapter 6: Node and the Local System

 if (err) return console.error(err);
 fs.readFile('./some.txt','utf-8', function(data,err) {
 if (err) return console.error(err);
 console.log(data);
 });
});

Since input and output to a file is via the buffer, by default, I read the file in using the
'utf-8' option as the second argument to the fs.readFile() function. I could also
just convert the buffer to a string.

The second read/write approach is to open a file and assign a file descriptor (fd). Use
the file descriptor to write and/or read from the file. The advantage to this approach
is that you have more finite control over how the file is opened and what you can do
with it when it is.

In the following code, a file is created, written to, and then read. The second parame‐
ter to the fs.open() function is the flag that determines what actions can be taken
with the file, in this case a value of 'a+', to open the file for appending and/or read‐
ing, and create the file if it doesn’t exist. The third parameter sets the file’s permissions
(both reading and writing allowed).

"use strict";

var fs = require('fs');

fs.open('./new.txt','a+',0x666, function(err, fd) {
 if (err) return console.error(err);
 fs.write(fd, 'First line', 'utf-8', function(err,written, str) {
 if (err) return console.error(err);
 var buf = new Buffer(written);
 fs.read(fd, buf, 0, written, 0, function (err, bytes, buffer) {
 if (err) return console.error(err);
 console.log(buf.toString('utf8'));
 });
 });
});

The file descriptor is returned in the callback and then used with the fs.write()
function. A string is written to the file, beginning at position 0. Note, though, that
according to the Node documentation, the data is always written to the end of the file
in Linux (the positional indicator is ignored) when the file is opened in append mode.

The callback function for fs.write() returns an error (if any occur), the number of
bytes written, and the string that was written. Lastly, a fs.read() is used to read the
line back into a buffer, which is then written out to the console.

Of course, we wouldn’t read a line we just wrote, but the example does demonstrate
the three primary types of methods used with this approach to reading and writing to
a file. You can also directly manipulate a directory in addition to a file.

A Formal Introduction to the File System | 137

Directory Access and Maintenance
You can create a directory, remove it, or read the files in it. You can also create a sym‐
bolic link or unlink a file, which results in it being deleted (as long as no program has
it open). If you want to truncate the file (set it to zero bytes), you can use truncate()
instead. This leaves the file but removes the content.

To demonstrate some of the directory capability, in the following code the files in the
current directory are listed out, and if any are compressed (extension of .gz), they’re
unlinked. The task is simplified through the Path module, covered in “Resource
Access with Path” on page 141.

'use strict';

var fs = require('fs');
var path = require('path');

fs.readdir ('./',function(err, files) {
 for (let file of files) {
 console.log(file);
 if (path.extname(file) == '.gz') {
 fs.unlink('./' + file);
 }
 }
});

File Streams
We’ve been working with readable and writable streams, but I want to take a little
time to provide a more in-depth introduction.

You can create a readable stream using fs.createReadStream(), passing in a path
and options object, or specifying a file description in the options and leaving the
path null. The same applies to a writable stream, created using fs.createWrite
Stream(). Both support an options object. By default, the readable stream is created
with the following options:

{ flags: 'r',
 encoding: null,
 fd: null,
 mode: 0o666,
 autoClose: true
}

If you want to use a file descriptor, you can set it in the options. The autoClose
option automatically closes the file once the read is finished. If you want to read a
section of the file, you can set a begin and end (in bytes) using start and end in the
options. You can specify a 'utf8' or other encoding, but you can also set this later,
using setEncoding().

138 | Chapter 6: Node and the Local System

Streams Are Documented in Multiple Places

The setEncoding() function you can call on a readable stream cre‐
ated using fs.createReadStream() is actually documented in the
Stream section of the Node documentation. If you’re working with
Node streams, be aware that documentation is spread about and
you might have to dig a bit for it.

I’ll provide an example of File System readable streams in a bit, but first let’s look at
the options for the File System’s writable stream, created with fs.createWrite
Stream(). Its default options are:

{ flags: 'w',
 defaultEncoding: 'utf8',
 fd: null,
 mode: 0o666 }

Again, you can use a file descriptor rather than a path. And encoding in a writable
stream is set with defaultEncoding, rather than encoding. If you want to write start‐
ing at a specific position after the beginning of the file, you can do so by setting the
start option. The end option isn’t specified because the end is whatever the end is
once you’ve written the new content.

Now let’s put this all together. In Example 6-2, I’ll open a file for modification using a
writable stream. All the modification will do is insert a string into a specific position
in the file. I’ll use a file descriptor in this example, which means when the application
calls fs.createWriteStream(), it doesn’t initiate a file open at the same time that it
creates a writable stream.

Example 6-2. Modifying an existing file by inserting a string

var fs = require('fs');

fs.open('./working.txt', 'r+',function (err, fd) {
 if (err) return console.error(err);

 var writable = fs.createWriteStream(null,{fd: fd, start: 10,
 defaultEncoding: 'utf8'});

 writable.write(' inserting this text ');

});

Note that the file is opened with the r+ flag. This allows the application to both read
and modify the file.

In Example 6-3, I’ll open the same file, but this time I’ll read the contents. I use the
default r flag, since I’m only reading from the file. And I’m reading all of the contents.

A Formal Introduction to the File System | 139

I do, however, change the encoding to utf8, using setEncoding(). In Example 6-2, I
changed the encoding for the write to utf8 by adjusting the defaultEncoding flag.

Example 6-3. Reading contents from a file using a stream

var fs = require('fs');

var readable =
 fs.createReadStream('./working.txt').setEncoding('utf8');

var data = '';
readable.on('data', function(chunk) {
 data += chunk;
});

readable.on('end', function() {
 console.log(data);
});

Running the read application before and after the application that modifies the file
shows the modification. Running the read application the first time returns the con‐
tents of working.txt:

Now let's pull this all together, and read and write with a stream.

A second time returns:

Now let's inserting this text and read and write with a stream.

Now, it would save us all a lot of time if we could just open a file for reading and pipe
the results to a writable stream. We can, easily, using the readable stream’s pipe()
function. However, we can’t modify the results midstream because the writable
stream is just that: writable. It’s not a duplex stream or, specifically, a transform
stream that can somehow modify the contents. But you can copy the contents from
one file to another.

var fs = require('fs');

var readable =
 fs.createReadStream('./working.txt');

var writable = fs.createWriteStream('./working2.txt');

readable.pipe(writable);

We’ll see a true transform stream later, in “Compression/Decompression with ZLib”
on page 144.

140 | Chapter 6: Node and the Local System

Resource Access with Path
The Node Path utility module is a way of transforming and extracting data from file‐
system paths. It also provides an environmentally neutral way of dealing with filesys‐
tem paths, so you don’t have to code one module for Linux and another for Windows.

We saw the extraction capability earlier when we extracted the file extension from a
file while traversing files in a directory:

'use strict';

var fs = require('fs');
var path = require('path');

fs.readdir ('./',function(err, files) {
 for (let file of files) {
 console.log(file);
 if (path.extname(file) == '.gz') {
 fs.unlink('./' + file);
 }
 }
});

If you’re interested in getting the base name for the file, use the following code:

'use strict';

var fs = require('fs');
var path = require('path');

fs.readdir ('./',function(err, files) {
 for (let file of files) {
 let ext = path.extname(file);
 let base = path.basename(file, ext);
 console.log ('file ' + base + ' with extension of ' + ext);
 }
});

The second argument to the path.basename() function results in just the filename
being returned, without the extension.

An example of the environmental neutrality capability in Path is the path.delimeter
property. This is the delimiter that’s system-specific. In Linux, it’s a colon (:), while in
Windows, it’s a semicolon (;). If we wanted to split out the values in the PATH environ‐
mental variable in an application that can work in both operating systems, we’d use
path.delimeter:

var path = require('path');

console.log(process.env.PATH);
console.log(process.env.PATH.split(path.delimiter));

Resource Access with Path | 141

Now the last works in both environments, returning an array of PATH variables.

Another difference is whether the system uses a forward slash (/) or a backslash (\).
In Chapter 5, I created a simple web server that used a filesystem path to serve a
resource in response to a web request. In my Windows machine file paths are separa‐
ted with the backslash, whereas in my Linux machine they’re separated by the for‐
ward slash. I was able to get the application to work in both environments by using
path.normalize():

 pathname = path.normalize(base + req.url);

The key to the Path module isn’t that it does amazing string transformations we can’t
do with the String object or RegExp. What it does is transform filesystem paths in an
agnostic (operating-system-neutral) manner.

If you want to parse a filesystem path into its components, you can use the
path.parse() function. The results differ, rather significantly, depending on the
operating system. In Windows, when I use require.main.filename or the short‐
hand __filename (the path and name of the application I’m executing) as the argu‐
ment, I get the following:

{ root: 'C:\\',
 dir: 'C:\\Users\\Shelley',
 base: 'work',
 ext: '.js',
 name: 'path1' }

In my Ubuntu-based server, I get the following:

{ root: '/',
 dir: '/home/examples/public_html/learnnode2',
 base: 'path1.js',
 ext: '.js',
 name: 'path1' }

Creating a Command-Line Utility
In a Unix environment, you can easily create a Node application that you can run
directly without having to use the node command.

Windows Command-Line Utilities

To create a Windows command-line utility, you’ll need to create a
batch file that contains a call to Node in addition to the application.

To demonstrate, I’ll use the Commander module, covered in Chapter 3, and a child
process to access ImageMagick, a powerful graphics tool.

142 | Chapter 6: Node and the Local System

Child Process

Child processes are covered in Chapter 8.

In my application, I’m using ImageMagick to take an existing image file and add a
Polaroid effect, saving the result to a new file. As shown in Example 6-4, I use
Commander to handle the command-line argument processing and to provide help
in using the utility.

Example 6-4. Node as command-line utility application

#!/usr/bin/env node

var spawn = require('child_process').spawn;
var program = require('commander');

program
 .version ('0.0.1')
 .option ('-s, --source [file name]', 'Source graphic file name')
 .option ('-f, --file [file name]', 'Resulting file name')
 .parse(process.argv);

if ((program.source === undefined) || (program.file === undefined)) {
 console.error('source and file must be provided');
 process.exit();
}

var photo = program.source;
var file = program.file;

// conversion array
var opts = [
photo,
"-bordercolor", "snow",
"-border", "20",
"-background","gray60",
"-background", "none",
"-rotate", "6",
"-background", "black",
"(", "+clone", "-shadow", "60x8+8+8", ")",
"+swap",
"-background", "none",
"-thumbnail", "240x240",
"-flatten",
file];

var im = spawn('convert', opts);

Creating a Command-Line Utility | 143

im.stderr.on('data', (data) => {
 console.log(`stderr: ${data}`);
});

im.on('close', (code) => {
 console.log(`child process exited with code ${code}`);
});

To convert it to a command-line utility, I place the following line at the top of the file:

#!/usr/bin/env node

The characters “#!” are called a shebang. What follows is the application that should
be used to execute the file, in this case Node. The subdirectory is the path where the
application resides.

The file is saved without the .js extension. It’s also converted into an executable via
chmod:

chmod a+x polaroid

Now I can run the utility using the following:

./polaroid -h

to get help for the utility (thanks to Commander), or:

./polaroid -s phoenix5a.png -f phoenix5apolaroid.png

to create a new image with a Polaroid effect. The utility doesn’t work in Windows, but
where it does work, it works well.

Creating a command-line utility is not the same thing as creating a standalone appli‐
cation. The latter implies that you can install the application without having Node (or
other dependencies) preinstalled.

Creating a Standalone Application with NW.js

At this time, the only functionality I know that can create a stand‐
alone Node application is Intel’s NW.js (formerly named node-
webkit). You can use it to package your files and then run the
package using NW.js, which provides the “innards” to make the
whole thing work.

Compression/Decompression with ZLib
The ZLib module provides compression/decompression functionality. It’s also based
on a transform stream, which is immediately apparent when you see the example the
Node documentation provides for compressing a file. I modified it slightly to work
with a large file.

144 | Chapter 6: Node and the Local System

https://github.com/nwjs/nw.js

var zlib = require('zlib');
var fs = require('fs');

var gzip = zlib.createGzip();

var inp = fs.createReadStream('test.png');
var out = fs.createWriteStream('test.png.gz');

inp.pipe(gzip).pipe(out);

The input stream is directly connected to the output with the gzip compression in the
middle, transforming the content—in this case, compressing the PNG file.

Zlib provides support to use zlib compression or deflate, which is a more complex,
controllable compression algorithm. Note that, unlike zlib where you can uncom‐
press the file using the gunzip (or unzip) command-line utility, you don’t have that
opportunity with deflate. You’ll have to use Node or some other functionality to
uncompress a file that was compressed with deflate.

To demonstrate the functionality to both compress and uncompress a file, we’ll create
two command-line utilities: compress and uncompress. The first will compress a file
using gzip or deflate as an option. Since we’re dealing with options, we’ll also use
the Commander module to handle command-line options:

var zlib = require('zlib');
var program = require('commander');
var fs = require('fs');

program
 .version ('0.0.1')
 .option ('-s, --source [file name]', 'Source File Name')
 .option ('-f, --file [file name]', 'Destination File name')
 .option ('-t, --type <mode>', /^(gzip|deflate)$/i)
 .parse(process.argv);

var compress;
if (program.type == 'deflate')
 compress = zlib.createDeflate();
else
 compress = zlib.createGzip();

var inp = fs.createReadStream(program.source);
var out = fs.createWriteStream(program.file);

inp.pipe(compress).pipe(out);

The utility applications are interesting and useful (especially in a Windows environ‐
ment, which doesn’t have native access to this type of compression functionality), but
a popular use for compression technologies is in web requests. The Node documenta‐
tion contains examples for using Zlib functionality with web requests. There are also

Compression/Decompression with ZLib | 145

several examples for retrieving a compressed file using the Request module (covered
in Chapter 5) and the http.request() function.

Instead of retrieving a compressed file, I’m going to demonstrate how to send a com‐
pressed file through to a server which will then decompress it. I’m adapting the server
and client applications from Examples 5-1 and 5-2 but modifying the code to com‐
press a large PNG file and send it through via an HTTP request, where the server will
then decompress the data and save the file.

The server code is given in Example 6-5. Note that the data being sent is retrieved as
an array of chunks, which eventually are used to create a new Buffer using
buffer.concat(). Since we’re dealing with a Buffer and not a stream, I can’t use the
pipe() function. Instead, I’ll use the Zlib convenience function, zlib.unzip, passing
in the Buffer and a callback function. The callback function has an error and a result
as arguments. The result is also a Buffer, which is written out to a newly created writ‐
able stream using the write() function. To ensure separate instances of the file, I use
a timestamp to modify the filename.

Example 6-5. Creating a web server that accepts compressed data and decompresses it to
a file

var http = require('http');
var zlib = require('zlib');
var fs = require('fs');

var server = http.createServer().listen(8124);

server.on('request', function(request,response) {

 if (request.method == 'POST') {
 var chunks = [];

 request.on('data', function(chunk) {
 chunks.push(chunk);
 });

 request.on('end', function() {
 var buf = Buffer.concat(chunks);
 zlib.unzip(buf, function(err, result) {
 if (err) {
 response.writeHead(500);
 response.end();
 return console.log('error ' + err);
 }
 var timestamp = Date.now();
 var filename = './done' + timestamp + '.png';
 fs.createWriteStream(filename).write(result);
 });

146 | Chapter 6: Node and the Local System

 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Received and undecompressed file\n');
 });
 }
});

console.log('server listening on 8214');

The key in the client code, given in Example 6-6, is to ensure that the proper
Content-Encoding is given in the header. It should be 'gzip,deflate'. The
Content-Type is also changed to 'application/javascript'.

Example 6-6. Client that compresses a file and pipes it to a web request

var http = require('http');
var fs = require('fs');
var zlib = require('zlib');

var gzip = zlib.createGzip();

var options = {
 hostname: 'localhost',
 port: 8124,
 method: 'POST',
 headers: {
 'Content-Type': 'application/javascript',
 'Content-Encoding': 'gzip,deflate'
 }
};

var req = http.request(options, function(res) {
 res.setEncoding('utf8');
 var data = '';
 res.on('data', function (chunk) {
 data+=chunk;
 });

 res.on('end', function() {
 console.log(data)
 })

});

req.on('error', function(e) {
 console.log('problem with request: ' + e.message);
});

// stream gzipped file to server
var readable = fs.createReadStream('./test.png');
readable.pipe(gzip).pipe(req);

Compression/Decompression with ZLib | 147

The client opens the file to be compressed and pipes it to a Zlib compression trans‐
form stream, which then pipes the result to the web request (which is a writable
stream). We’re dealing purely with streams in this code, so we can use the pipe()
functionality we used earlier. We can’t use it with the server because the data is trans‐
mitted as buffer chunks.

Buffering the file in memory can be a scaling problem, so another approach is to save
the uncompressed file, uncompress it, and then delete the temporary uncompressed
file. I’ll leave that for an off-book exercise.

Pipes and ReadLine
We’ve been using pipes in Chapter 5 and this chapter, and one of the simplest demon‐
strations of a pipe is to open a REPL session and type in the following:

> process.stdin.resume();
> process.stdin.pipe(process.stdout);

Everything you type from this point on is echoed back to you.

If you want to keep the output stream open for continued data, pass an option,
{ end: false }, to the output stream:

process.stdin.pipe(process.stdout, { end : false });

REPL’s line-by-line processing is actually implemented with the last core module we’ll
look at in this chapter: Readline. Merely importing Readline also starts a seemingly
neverending communication thread. You include the Readline module with code like
the following:

var readline = require('readline');

Be aware, though, that once you include this module, the Node program doesn’t ter‐
minate until you close the interface.

The Node site documentation contains an example of how to begin and terminate a
Readline interface, which I have adapted in Example 6-7. The application asks a ques‐
tion as soon as you run it and then outputs the answer. It also listens for any “com‐
mand,” which is really any line that terminates with \n. If the command is .leave, it
leaves the application; otherwise, it just repeats the command and prompts the user
for more. A Ctrl-C or Ctrl-D key combination also causes the application to termi‐
nate, albeit less gracefully.

148 | Chapter 6: Node and the Local System

Example 6-7. Using Readline to create a simple, command-driven user interface

var readline = require('readline');

// create a new interface
var rl = readline.createInterface(process.stdin, process.stdout);

// ask question
rl.question(">>What is the meaning of life? ", function(answer) {
 console.log("About the meaning of life, you said " + answer);
 rl.setPrompt(">> ");
 rl.prompt();
});

// function to close interface
function closeInterface() {
 rl.close();
 console.log('Leaving Readline');
}

// listen for .leave
rl.on('line', function(cmd) {
 if (cmd.trim() == '.leave') {
 closeInterface();
 return;
 }
 console.log("repeating command: " + cmd);
 rl.prompt();
});

rl.on('close', function() {
 closeInterface();
});

Here’s an example session:

>>What is the meaning of life? ===
About the meaning of life, you said ===
>>This could be a command
repeating command: This could be a command
>>We could add eval in here and actually run this thing
repeating command: We could add eval in here and actually run this thing
>>And now you know where REPL comes from
repeating command: And now you know where REPL comes from
>>And that using rlwrap replaces this Readline functionality
repeating command: And that using rlwrap replaces this Readline functionality
>>Time to go
repeating command: Time to go
>>.leave
Leaving Readline...
Leaving Readline...

Pipes and ReadLine | 149

This should look familiar. Remember from Chapter 4 that we can use rlwrap to over‐
ride the command-line functionality for REPL. We use the following to trigger its use:

env NODE_NO_READLINE=1 rlwrap node

And now we know what the flag is triggering—it’s instructing REPL not to use Node’s
Readline module for command-line processing, and to use rlwrap instead.

150 | Chapter 6: Node and the Local System

CHAPTER 7

Networking, Sockets, and Security

The core of a Node application invariably relies on two primary infrastructure com‐
ponents: networks and security. And you can’t talk about networks without also dis‐
cussing sockets.

I group networks and security because once you start moving beyond a single, iso‐
lated machine, security should be paramount in your mind at all times. Every time
you finish a new piece of the application, the first question you should ask yourself is:
is this secure? No amount of graceful coding can compensate for letting crap in.

Servers, Streams, and Sockets
Much of the Node core API is related to creating services that listen to specific types
of communications. In Chapters 1 and 5 we used the HTTP module to create web
servers listening for HTTP requests. Other modules can create a Transmission Con‐
trol Protocol (TCP) server, a Transport Layer Security (TLS) server, and a User Data‐
gram Protocol (UDP) socket. I’ll cover TLS later in the chapter, but in this section I
want to introduce the TCP and UDP Node core functionality. First, though, a quick
look at sockets.

Sockets and Streams
A socket is an endpoint in a communication, and a network socket is an endpoint in a
communication between applications running on two different computers on the net‐
work. The data flows between the sockets in what’s known as a stream. The data in the
stream can be transmitted as binary data in a buffer, or in Unicode as a string. Both
types of data are transmitted as packets: parts of the data split off into similar-sized
pieces. There is a special kind of packet, a finish packet (FIN), that is sent by a socket
to signal that the transmission is done.

151

Think of two people talking by walkie-talkie. The walkie-talkies are the endpoints, the
sockets of the communication. When two or more people want to speak to each other,
they have to tune into the same radio frequency. Then when one person wants to
communicate with the other, they push a button on the walkie-talkie, and connect to
the appropriate person using some form of identification. They also use the word
“over” to signal that they’re no longer talking, but listening instead. The other person
pushes the talk button on their walkie-talkie, acknowledges the communication, and
again uses “over” to signal when they are done and in listening mode. The communi‐
cation continues until one person signals “over and out,” which means that the com‐
munication is finished. Only one person can talk at a time.

Walkie-talkie communication streams are known as half-duplex, because communica‐
tion can only occur in one direction at a time. Full-duplex communication streams
allow two-way communication.

The concepts also apply to Node streams. We’ve already worked with half- and full-
duplex streams in Chapter 6. The streams used to write to and read from files were
examples of half-duplex streams: the streams supported either the readable interface
or the writable interface but not both at the same time. The zlib compression stream
is an example of a full-duplex stream, allowing simultaneous reading and writing.

Now we’re taking what we’ve learned and applying it to networked (TCP) as well as
encrypted (Crypto) streams. We’ll look at Crypto later in the chapter, but first let’s
dive into TCP.

TCP Sockets and Servers
TCP provides the communication platform for most Internet applications such as
web service and email. It provides a way of reliably transmitting data between client
and server sockets. TCP provides the infrastructure on which the application layer,
such as HTTP, resides.

We can create a TCP server and client just as we did with HTTP, with some differ‐
ences. When creating a TCP server, rather than passing a requestListener to the
server creation function, with its separate response and request objects, the TCP call‐
back function’s sole argument is an instance of a socket that can both send and
receive.

To better demonstrate how TCP works, Example 7-1 contains the code to create a
TCP server. Once the server socket is created, it listens for two events: when data is
received and when the client closes the connection. It then prints out the data it
received to the console and repeats the data back to the client.

The TCP server also attaches an event handler for both the listening event and an
error. In previous chapters, I just plopped a console.log() message after the server
was created, following pretty standard practice in Node. However, since the listen()

152 | Chapter 7: Networking, Sockets, and Security

event is asynchronous, technically this practice is incorrect—the message prints out
technically before the listen event has happened. Instead, you can incorporate a mes‐
sage in the callback function for the listen function, or you can do what I’m doing
here, which is attach an event handler to the listening event and correctly providing
feedback.

In addition, I’m also providing more sophisticated error handling modeled after that
in the Node documentation. The application is processing an error event, and if the
error is because the port is currently in use, it waits a small amount of time and tries
again. For other errors—such as accessing a port like 80, which requires special privi‐
leges—the full error message is printed out to the console.

Example 7-1. A simple TCP server, with a socket listening for client communication on
port 8124

var net = require('net');
const PORT = 8124;

var server = net.createServer(function(conn) {
 console.log('connected');

 conn.on('data', function (data) {
 console.log(data + ' from ' + conn.remoteAddress + ' ' +
 conn.remotePort);
 conn.write('Repeating: ' + data);
 });

 conn.on('close', function() {
 console.log('client closed connection');
 });

}).listen(PORT);

server.on('listening', function() {
 console.log('listening on ' + PORT);
});

server.on('error', function(err){
 if (err.code == 'EADDRINUSE') {
 console.warn('Address in use, retrying...');
 setTimeout(() => {
 server.close();
 server.listen(PORT);
 }, 1000);
 }
 else {
 console.error(err);
 }
});

Servers, Streams, and Sockets | 153

When creating the TCP socket, you can pass in an optional parameters object, con‐
sisting of two values: pauseOnConnect and allowHalfOpen. The default value for both
is false:

{ allowHalfOpen: false,
pauseOnConnect: false }

Setting allowHalfOpen to true instructs the socket not to send a FIN when it receives
a FIN packet from the client. Doing this keeps the socket open for writing (not read‐
ing). To close the socket, you must use the end() function. Setting pauseOnConnect
to true allows the connection to be passed, but no data is read. To begin reading data,
call the resume() method on the socket.

To test the server, you can use a TCP client application such as the netcat utility (nc)
in Linux or OS X, or an equivalent Windows application. Using netcat, the following
connects to the server application at port 8124, writing data from a text file to the
server:

 nc burningbird.net 8124 < mydata.txt

In Windows, there are TCP tools, such as SocketTest, that you can use for testing.

Rather than using a tool to test the server, you can create your own TCP client appli‐
cation. The TCP client is just as simple to create as the server, as shown in
Example 7-2. The data is transmitted as a buffer, but we can use setEncoding() to
read it as a utf8 string. The socket’s write() method is used to transmit the data. The
client application also attaches listener functions to two events: data, for received
data, and close, in case the server closes the connection.

Example 7-2. The client socket sending data to the TCP server

var net = require('net');
var client = new net.Socket();
client.setEncoding('utf8');

// connect to server
client.connect ('8124','localhost', function () {
 console.log('connected to server');
 client.write('Who needs a browser to communicate?');
});

// when receive data, send to server
process.stdin.on('data', function (data) {
 client.write(data);
});

// when receive data back, print to console
client.on('data',function(data) {
 console.log(data);

154 | Chapter 7: Networking, Sockets, and Security

http://sockettest.sourceforge.net/

});

// when server closed
client.on('close',function() {
 console.log('connection is closed');
});

The data being transmitted between the two sockets is typed in at the terminal and
transmitted when you press Enter. The client application sends the text you type, and
the TCP server writes out to the console when it receives it. The server repeats the
message back to the client, which in turn writes the message out to its console. The
server also prints out the IP address and port for the client using the socket’s remo
teAddress and remotePort properties. Following is the console output for the server
after several strings were sent from the client:

Hey, hey, hey, hey-now.
 from ::ffff:127.0.0.1 57251
Don't be mean, we don't have to be mean.
 from ::ffff:127.0.0.1 57251
Cuz remember, no matter where you go,
 from ::ffff:127.0.0.1 57251
there you are.
 from ::ffff:127.0.0.1 57251

The connection between the client and server is maintained until you kill one or the
other using Ctrl-C. Whichever socket is still open receives a close event that’s printed
out to the console. The server can also serve multiple connections from multiple cli‐
ents, since all the relevant functions are asynchronous.

IPv4 Mapped to IPv6 Addresses

The sample output from running the client/server TCP applica‐
tions in this section demonstrate an IPv4 address mapped to IPv6,
with the addition of ::ffff.

Instead of binding to a port with the TCP server, we can bind directly to a socket. To
demonstrate this capability, I modified the TCP server from the earlier examples, but
instead of binding to a port, the new server binds to a Unix socket, as shown in
Example 7-3. The Unix socket is a pathname somewhere on your server. The read
and write permissions can be used to finitely control application access, which makes
the approach more advantageous than Internet sockets.

I also had to modify the error handling to unlink the Unix socket if the application is
restarted and the socket is already in use. In a production environment, you’d want to
make sure no other clients are using the socket before you do something so abrupt.

Servers, Streams, and Sockets | 155

Example 7-3. TCP server bound to a Unix socket

var net = require('net');
var fs = require('fs');

const unixsocket = '/somepath/nodesocket';

var server = net.createServer(function(conn) {
 console.log('connected');

 conn.on('data', function (data) {
 conn.write('Repeating: ' + data);
 });

 conn.on('close', function() {
 console.log('client closed connection');
 });

}).listen(unixsocket);

server.on('listening', function() {
 console.log('listening on ' + unixsocket);
});

// if exit and restart server, must unlink socket
server.on('error',function(err) {
 if (err.code == 'EADDRINUSE') {
 fs.unlink(unixsocket, function() {
 server.listen(unixsocket);
 });
 } else {
 console.log(err);
 }
});

process.on('uncaughtException', function (err) {
 console.log(err);
});

I also used process as an added precaution against an exception that isn’t managed
by the application being thrown.

Check If Another Instance of the Server Is Running

Before unlinking the socket, you can check to see if another
instance of the server is running. A solution at Stack Overflow pro‐
vides an alternative clean-up technique that accounts for this situa‐
tion.

156 | Chapter 7: Networking, Sockets, and Security

http://stackoverflow.com/questions/16178239/gracefully-shutdown-unix-socket-server-on-nodejs-running-under-forever

The client application is shown in Example 7-4. It’s not that much different than the
earlier client that communicated with the port. The only difference is adjusting for
the connection point.

Example 7-4. Connecting to the Unix socket and printing out received data

var net = require('net');
var client = new net.Socket();
client.setEncoding('utf8');

// connect to server
client.connect ('/somepath/nodesocket', function () {
 console.log('connected to server');
 client.write('Who needs a browser to communicate?');
});

// when receive data, send to server
process.stdin.on('data', function (data) {
 client.write(data);
});

// when receive data back, print to console
client.on('data',function(data) {
 console.log(data);
});

// when server closed
client.on('close',function() {
 console.log('connection is closed');
});

“Guards at the Gate” on page 159 covers the SSL version of HTTP,
HTTPS, along with Crypto and TLS/SSL.

UDP/Datagram Socket
TCP requires a dedicated connection between the two endpoints of the communica‐
tion. UDP is a connectionless protocol, which means there’s no guarantee of a con‐
nection between the two endpoints. For this reason, UDP is less reliable and robust
than TCP. On the other hand, UDP is generally faster than TCP, which makes it more
popular for real-time uses, as well as technologies such as Voice over Internet Proto‐
col (VoIP), where the TCP connection requirements could adversely impact the qual‐
ity of the signal.

Servers, Streams, and Sockets | 157

Node core supports both types of sockets. In the last section, I demonstrated the TCP
functionality. Now, it’s UDP’s turn.

The UDP module identifier is dgram:

require ('dgram');

To create a UDP socket, use the createSocket method, passing in the type of
socket—either udp4 or udp6. You can also pass in a callback function to listen for
events. Unlike messages sent with TCP, messages sent using UDP must be sent as buf‐
fers, not strings.

Example 7-5 contains the code for a demonstration UDP client. In it, data is accessed
via process.stdin and then sent as is via the UDP socket. Note that we don’t have to
set the encoding for the string, since the UDP socket accepts only a buffer, and the
process.stdin data is a buffer. We do, however, have to convert the buffer to a string,
using the buffer’s toString method, in order to get a meaningful string for echoing
the data via console.log().

Example 7-5. A datagram client that sends messages typed into the terminal

var dgram = require('dgram');

var client = dgram.createSocket("udp4");

process.stdin.on('data', function (data) {
 console.log(data.toString('utf8'));
 client.send(data, 0, data.length, 8124, "examples.burningbird.net",
 function (err, bytes) {
 if (err)
 console.error('error: ' + err);
 else
 console.log('successful');
 });
});

The UDP server, shown in Example 7-6, is even simpler than the client. All the server
application does is create the socket, bind it to a specific port (8124), and listen for
the message event. When a message arrives, the application prints it, as well as the IP
address and sender port, using console.log. No encoding is necessary to print out
the message—it’s automatically converted from a buffer to a string.

We didn’t have to bind the socket to a port. However, without the binding, the socket
would attempt to listen in on every port.

158 | Chapter 7: Networking, Sockets, and Security

Example 7-6. A UDP socket server, bound to port 8124, listening for messages

var dgram = require('dgram');

var server = dgram.createSocket("udp4");

server.on ("message", function(msg, rinfo) {
 console.log("Message: " + msg + " from " + rinfo.address + ":"
 + rinfo.port);
});

server.bind(8124);

I didn’t call the close method on either the client or the server after sending/receiv‐
ing the message: no connection is being maintained between the client and server—
just the sockets capable of sending a message and receiving communication.

Guards at the Gate
Security in web applications goes beyond ensuring that people don’t have access to
the application server. Security can be complex, and even a little intimidating. Luckily
when it comes to Node applications, several of the components we need for security
have already been created. We just need to plug them in, in the right place and at the
right time.

Setting Up TLS/SSL
Secure, tamper-resistant communication between a client and server occurs over
Secure Sockets Layer (SSL) and its upgrade, Transport Layer Security (TLS). TLS/SSL
provides the underlying encryption for HTTPS, which I cover in the next section.
However, before we can develop for HTTPS, we have to do some environmental
setup.

A TLS/SSL connection requires a handshake between client and server. During the
handshake, the client (typically a browser) lets the server know what kind of security
functions it supports. The server picks a function and then sends an SSL certificate,
which includes a public key. The client confirms the certificate and generates a ran‐
dom number using the server’s key, sending it back to the server. The server then uses
its private key to decrypt the number, which in turn is used to enable the secure com‐
munication.

For all this to work, you’ll need to generate both the public and private key as well as
the certificate. For a production system, the certificate would be signed by a trusted
authority, such as a domain registrar, but for development purposes you can make
use of a self-signed certificate. Doing so generates a rather significant warning in the

Guards at the Gate | 159

browser for anyone accessing the application, but since the development site isn’t
being accessed by users, this shouldn’t be an issue.

Preventing Self-Signed Certificate Warnings

If you’re using a self-signed certificate, you can avoid browser
warnings if you access the Node application via localhost (i.e.,
https://localhost:8124). You can also avoid using self-signed certifi‐
cates without the cost of a commercial signing authority by using
Lets Encrypt, currently in open beta. The site provides documenta‐
tion for setting up the certificate.

The tool used to generate the necessary files is OpenSSL. If you’re using Linux, it
should already be installed; there’s a binary installation for Windows, and Apple is
pursuing its own Crypto library. In this section, I’m just covering setting up a Linux
environment.

To start, type the following at the command line:

openssl genrsa -des3 -out site.key 2048

The command generates the private key, encrypted with Triple-DES and stored in
privacy-enhanced mail (PEM) format, making it ASCII-readable.

You’ll be prompted for a password, which you’ll need for the next task, creating a
certificate-signing request (CSR).

When generating the CSR, you’ll be prompted for the password you just created.
You’ll also be asked a lot of questions, including the country designation (such as US
for United States), your state or province, city name, company name and organiza‐
tion, and email address. The question of most importance is the one asking for the
Common Name. This is asking for the hostname of the site—for example, burning‐
bird.net or yourcompany.com. Provide the hostname where the application is being
served. In my example code, I created a certificate for examples.burningbird.net.

openssl req -new -key site.key -out site.csr

The private key wants a passphrase. The problem is, every time you start up the server
you’ll have to provide this passphrase. Having to provide this passphrase is an issue in
a production system. In the next step, you’ll remove the passphrase from the key.
First, rename the key:

mv site.key site.key.org

Then type:

openssl rsa -in site.key.org -out site.key

160 | Chapter 7: Networking, Sockets, and Security

https://letsencrypt.org/
https://letsencrypt.org/howitworks/
https://letsencrypt.org/howitworks/

If you do remove the passphrase, make sure your server is secure by ensuring that the
file is readable only by trusted users/groups.

The next task is to generate the self-signed certificate. The following command cre‐
ates one that’s good for 365 days:

openssl x509 -req -days 365 -in site.csr -signkey site.key -out final.crt

Now you have all the components you need in order to use TLS/SSL and HTTPS.

Working with HTTPS
Web pages that ask for user login or credit card information should be served as
HTTPS. If they aren’t, your data is being transmitted in the open and easily scooped
up. HTTPS is a variation of the HTTP protocol that’s combined with SSL to ensure
that the website is who and what we think it is, that the data is encrypted during
transit, and the data arrives intact and without any tampering.

Adding support for HTTPS is similar to adding support for HTTP, with the addition
of an options object that provides the public encryption key and the signed certifi‐
cate. The default port for an HTTPS server differs, too: HTTP is served via port 80 by
default, while HTTPS is served via port 443.

Avoiding the Port Number

One advantage to using SSL with your Node application is that the
default port for HTTPS is 443, which means you don’t have to
specify the port number when accessing the application, and you
won’t conflict with your Apache or other web server. Unless you’re
also utilizing HTTPS with your non-Node web server, of course.

Example 7-7 demonstrates a very basic HTTPS server. It does little beyond sending a
variation of our traditional Hello World message to the browser.

Example 7-7. Creating a very simple HTTPS server

var fs = require("fs"),
 https = require("https");

var privateKey = fs.readFileSync('site.key').toString();
var certificate = fs.readFileSync('final.crt').toString();

var options = {
 key: privateKey,
 cert: certificate
};

https.createServer(options, function(req,res) {

Guards at the Gate | 161

 res.writeHead(200);
 res.end("Hello Secure World\n");
}).listen(443);

The public key and certificate are opened and their contents read synchronously. The
data is attached to the options object, passed as the first parameter in the https.crea
teServer method. The callback function for the same method is the one we’re used
to, with the server request and response object passed as parameters.

When you run the Node application, you’ll need to do so with root permissions.
That’s because the server is running bound to the default of port 443. Binding to any
port less than 1024 requires root privilege. You can run it using another port, such as
3000, and it works fine except that when you access the site, you’ll need to use the
port:

https://examples.burningbird.net:3000

Accessing the page demonstrates what happens when we use a self-signed certificate,
as shown in Figure 7-1. It’s easy to see why a self-signed certificate should be used
only during testing. Accessing the page using localhost also disables the security
warning.

Figure 7-1. This is what happens when you use Edge to access a website using HTTPS
with a self-signed certificate

The browser address bar demonstrates another way that the browser signals that the
site’s certificate can’t be trusted, as shown in Figure 7-2. Rather than displaying a lock

162 | Chapter 7: Networking, Sockets, and Security

indicating that the site is being accessed via HTTPS, it displays a lock with a red x
showing that the certificate can’t be trusted. Clicking the icon opens an information
window with more details about the certificate.

Figure 7-2. More information about the certificate is displayed when the lock icon is
clicked, as demonstrated in Chrome

Again, using a trusted certificate authority for a signed certificate eliminates all of
these rather intimidating warnings. And since we now have no-cost options for the
certificate, you might consider implementing HTTPS for all of your web-facing appli‐
cations, not just those dealing with payments or passwords.

The Crypto Module
Node provides a module used for cryptography, Crypto, which is an interface for
OpenSSL functionality. This includes wrappers for OpenSSL’s hash, HMAC, cipher,
decipher, sign, and verify functions. The Node component of the technology is
actually rather simple to use, but there is a strong underlying assumption that the
Node developer knows and understands OpenSSL and what all the various functions
are.

Become Familiar with OpenSSL

I cannot recommend strongly enough that you spend time becom‐
ing familiar with OpenSSL before working with Node’s Crypto
module. You can explore OpenSSL’s documentation, and you can
also access a free book on OpenSSL, OpenSSL Cookbook, by Ivan
Ristić.

Guards at the Gate | 163

https://www.openssl.org/docs/
https://www.feistyduck.com/books/openssl-cookbook/

I’m covering a relatively straightforward use of the Crypto module to create a pass‐
word hash using OpenSSL’s hash functionality. The same type of functionality can
also be used to create a hash for use as a checksum to ensure that data that’s stored or
transmitted hasn’t been corrupted in the process.

MySQL

The example in this section makes use of MySQL. For more infor‐
mation on the node-mysql module used in this section, see the
module’s GitHub repository. If you don’t have access to MySQL,
you can store the username, password, and salt in a local file and
modify the example accordingly.

You can use the Crypto module’s createHash method to create a password hash for
storing in a database. An example is the following, which creates the hash using the
sha1 algorithm, uses the hash to encode a password, and then extracts the digest of
the data to store in the database:

var hashpassword = crypto.createHash('sha1')
 .update(password)
 .digest('hex');

The digest encoding is set to hexadecimal. Encoding is binary, by default, and base64
can also be used.

Encrypting Password or Storing a Hash

Storing encrypted passwords is better than storing the passwords
as plain text, but passwords can be cracked if an agency or individ‐
ual has the encryption key. Storing the password as a hash is a safer
approach, albeit one that can’t be reversed. If a person loses a pass‐
word, the system allows them to reset it rather than attempt to
recover it. For more on this topic, check out “Safely Storing User
Passwords: Hashing vs. Encrypting”.

Many applications use a hash for this purpose. However, there’s a problem with stor‐
ing plain hashed passwords in a database, a problem that goes by the innocuous name
of rainbow table.

Put simply, a rainbow table is basically a table of precomputed hash values for every
possible combination of characters. So even if you have a password that you’re sure
can’t be cracked—and let’s be honest, most of us rarely do—chances are that sequence
of characters has a place somewhere in a rainbow table, which makes it much simpler
to determine what your password is.

164 | Chapter 7: Networking, Sockets, and Security

https://github.com/felixge/node-mysql
http://www.darkreading.com/safely-storing-user-passwords-hashing-vs-encrypting/a/d-id/1269374
http://www.darkreading.com/safely-storing-user-passwords-hashing-vs-encrypting/a/d-id/1269374

The way around the rainbow table is with salt (no, not the crystalline variety), a
unique generated value that is concatenated to the password before encryption. It can
be a single value that is used with all the passwords and stored securely on the server.
A better option, though, is to generate a unique salt for each user password and then
store it with the password. True, the salt can also be stolen at the same time as the
password, but it would still require the person attempting to crack the password to
generate a rainbow table specifically for the one and only password—adding
immensely to the complexity of cracking any individual password.

Example 7-8 is a simple application that takes a username and password passed as
command-line arguments, generates the password hash, and then stores both as a
new user in a MySQL database table. I’m using MySQL rather than any other database
because it is ubiquitous on most systems, and a system with which most people are
familiar.

To follow along with the example, use the node-mysql module by installing it as
follows:

npm install node-mysql

The table is created with the following SQL:

CREATE TABLE user (userid INT NOT NULL AUTO_INCREMENT, PRIMARY KEY(userid),
username VARCHAR(400) NOT NULL, passwordhash VARCHAR(400) NOT NULL,
salt DOUBLE NOT NULL);

The salt consists of a date value multiplied by a random number and rounded. It’s
concatenated to the password before the password hash is created. All the user data is
then inserted into the MySQL user table.

Example 7-8. Using Crypto’s createHash method and a salt to encrypt a password

var mysql = require('mysql'),
 crypto = require('crypto');

var connection = mysql.createConnection({
 host: 'localhost',
 user: 'username',
 password: 'userpass'
 });

connection.connect();

connection.query('USE nodedatabase');

var username = process.argv[2];
var password = process.argv[3];

var salt = Math.round((Date.now() * Math.random())) + '';

Guards at the Gate | 165

var hashpassword = crypto.createHash('sha512')
 .update(salt + password, 'utf8')
 .digest('hex');
// create user record
connection.query('INSERT INTO user ' +
 'SET username = ?, passwordhash = ?, salt = ?
 [username, hashpassword, salt], function(err, result) {
 if (err) console.error(err);
 connection.end();
});

Following the code from the top, first a connection is established with the database.
Next, the database with the newly created table is selected. The username and pass‐
word are pulled in from the command line, and then the crypto magic begins.

The salt is generated and passed into the function to create the hash using the sha512
algorithm. Functions to update the password hash with the salt and set the hash
encoding are chained to the function to create the hash. The newly encrypted pass‐
word hash is then inserted into the newly created table along with the username.

The application to test a username and password, shown in Example 7-9, queries the
database for the password hash and salt based on the username. It uses the salt to,
again, generate the hash. Once the password hash has been re-created, it’s compared
to the password stored in the database. If the two don’t match, the user isn’t validated.
If they match, then the user’s in.

Example 7-9. Checking a username and password

var mysql = require('mysql'),
 crypto = require('crypto');

var connection = mysql.createConnection({
 user: 'username',
 password: 'userpass'
 });

connection.query('USE nodedatabase');

var username = process.argv[2];
var password = process.argv[3];

connection.query('SELECT password, salt FROM user WHERE username = ?',
 [username], function(err, result, fields) {
 if (err) return console.error(err);

 var newhash = crypto.createHash('sha512')
 .update(result[0].salt + password, 'utf8')
 .digest('hex');

 if (result[0].password === newhash) {

166 | Chapter 7: Networking, Sockets, and Security

 console.log("OK, you're cool");
 } else {
 console.log("Your password is wrong. Try again.");
 }
 connection.end();
});

Trying out the applications, we first pass in a username of Michael, with a password
of apple*frk13*:

node password.js Michael apple*frk13*

We then check the same username and password:

node check.js Michael apple*frk13*

and get back the expected result:

OK, you're cool

Trying it again, but with a different password:

node check.js Michael badstuff

we get back the expected result again:

Your password is wrong. Try again

The crypto hash can also be used in a stream. As an example, consider a checksum,
which is an algorithmic way of determining if data has transmitted successfully. You
can create a hash of the file, and pass this along with the file when transmitting it. The
person who downloads the file can then use the hash to verify the accuracy of the
transmission. The following code uses the pipe() function and the duplex nature of
the Crypto functions to create such a hash.

var crypto = require('crypto');
var fs = require('fs');
var hash = crypto.createHash('sha256');
hash.setEncoding('hex');

var input = fs.createReadStream('main.txt');
var output = fs.createWriteStream('mainhash.txt');

input.pipe(hash).pipe(output);

You can also use md5 as the algorithm in order to generate a MD5 checksum, which is
popular in most environments and applications because it’s faster, though not as
secure.

var hash = crypto.createHash('md5');

Guards at the Gate | 167

CHAPTER 8

Child Processes

Operating systems provide access to a great deal of functionality, but much of it is
only accessible via the command line. It would be nice to be able to access this func‐
tionality from a Node application. That’s where child processes come in.

Node allows us to run a system command within a child process and listen in on its
input/output. This includes being able to pass arguments to the command, and even
pipe the results of one command to another. The next several sections explore this
functionality in more detail.

All but the last examples demonstrated in this chapter use Unix
commands. They work on a Linux system and should also work in
OS X. They won’t, however, work in a Windows Command
window.

child_process.spawn
There are four different techniques you can use to create a child process. The most
common one is using the spawn method. This technique launches a command in a
new process, passing in any arguments. Pipes are established between the parent
application and the child process for stdin, stdout, and stderr.

In the following, we create a child process to call the Unix pwd command to print the
current directory. The command takes no arguments:

169

var spawn = require('child_process').spawn,
 pwd = spawn('pwd');

pwd.stdout.on('data', function (data) {
 console.log('stdout: ' + data);
});

pwd.stderr.on('data', function (data) {
 console.error('stderr: ' + data);
});

pwd.on('close', function (code) {
 console.log('child process exited with code ' + code);
});

Notice the events that are captured on the child process’s stdout and stderr. If no
error occurs, any output from the command is transmitted to the child process’s
stdout, triggering a data event on the process. If an error occurs, such as in the fol‐
lowing where we’re passing an invalid option to the command:

var spawn = require('child_process').spawn,
 pwd = spawn('pwd', ['-g']);

then the error gets sent to stderr, which prints out the error to the console:

stderr: pwd: invalid option -- 'g'
Try `pwd --help' for more information.

child process exited with code 1

The process exited with a code of 1, which signifies that an error occurred. The exit
code varies depending on the operating system and error. When no error occurs, the
child process exits with a code of 0.

The earlier code demonstrated sending output to the child process’s stdout and
stderr, but what about stdin? The Node documentation for child processes includes
an example of directing data to stdin. It’s used to emulate a Unix pipe (|) whereby the
result of one command is immediately directed as input to another command. I
adapted the example in order to demonstrate one use of the Unix pipe—being able to
look through all subdirectories, starting in the local directory, for a file with a specific
word (in this case, test) in its name:

find . -ls | grep test

Example 8-1 implements this functionality as child processes. Note that the first com‐
mand, which performs the find, takes two arguments, whereas the second one takes
just one: a term passed in via user input from stdin. Also note that the grep child
process’s stdout encoding is changed via setEncoding. Otherwise, when the data is
printed out, it would be printed out as a buffer.

170 | Chapter 8: Child Processes

Example 8-1. Using child processes to find files in subdirectories with a given search
term, “test”

var spawn = require('child_process').spawn,
 find = spawn('find',['.','-ls']),
 grep = spawn('grep',['test']);

grep.stdout.setEncoding('utf8');

// pipe find output to grep input
find.stdout.pipe(grep.stdin);

// now run grep and output results
grep.stdout.on('data', function (data) {
 console.log(data);
});

// error handling for both
find.stderr.on('data', function (data) {
 console.log('grep stderr: ' + data);
});
grep.stderr.on('data', function (data) {
 console.log('grep stderr: ' + data);
});

// and exit handling for both
find.on('close', function (code) {
 if (code !== 0) {
 console.log('find process exited with code ' + code);
 }
});

grep.on('exit', function (code) {
 if (code !== 0) {
 console.log('grep process exited with code ' + code);
 }
});

When you run the application, you’ll get a listing of all files in the current directory
and any subdirectories that contain test in their filename.

The Node documentation contains a warning that some programs use line-buffered
I/O internally. This could result in the data that is being sent to the program not
being immediately consumed. What this means for us is that, with some child pro‐
cesses, the data is buffered in blocks before processing. The grep child process is one
such process.

In the current example, the output from the find process is limited, so the input to the
grep process does not exceed the block size (typically 4096, but it can differ based on
system and individual settings).

child_process.spawn | 171

More on stdio Buffering

For a more in-depth look at buffering, check out “How to fix stdio
buffering” and its companion piece “Buffering in standard
streams”.

We can turn off line buffering for grep by using the --line-buffered option. In the
following application—using the process status (ps) command to examine running
processes, and then searching for instances of apache2—line buffering is turned off
for grep, and data is printed out immediately rather than when the buffer is full:

var spawn = require('child_process').spawn,
 ps = spawn('ps', ['ax']),
 grep = spawn('grep', ['--line-buffered', 'apache2']);

ps.stdout.pipe(grep.stdin);

ps.stderr.on('data', function (data) {
 console.log('ps stderr: ' + data);
});

ps.on('close', function (code) {
 if (code !== 0) {
 console.log('ps process exited with code ' + code);
 }
});

grep.stdout.on('data', function (data) {
 console.log('' + data);
});

grep.stderr.on('data', function (data) {
 console.log('grep stderr: ' + data);
});

grep.on('close', function (code) {
 if (code !== 0) {
 console.log('grep process exited with code ' + code);
 }
});

Now the output isn’t buffered, and outputs immediately.

The child_process.spawn() command does not run the command in a shell by
default. However, beginning with Node 5.7.0 and higher, you can specify the
shell option, and the child process will then generate a shell for the process. Later, in
“Running a Child Process Application in Windows” on page 176, I’ll demonstrate
how this works within a Node application designed to work in Windows. There are
also other options, including the following (which is not a complete list; check Node
documentation for a comprehensive and up-to-date list):

172 | Chapter 8: Child Processes

https://www.perkin.org.uk/posts/how-to-fix-stdio-buffering.html
https://www.perkin.org.uk/posts/how-to-fix-stdio-buffering.html
http://www.pixelbeat.org/programming/stdio_buffering/
http://www.pixelbeat.org/programming/stdio_buffering/

• cwd: change working directory
• env: an array of environment key/value pairs
• detached: prepare the child to run separate from the parent
• stdio: array of child’s stdio options

The detached option, like shell, has interesting differences in a Windows environ‐
ment compared to a non-Windows environment. Again, we’ll look into the option in
section “Running a Child Process Application in Windows” on page 176.

The child_process.spawnSync() is a synchronous version of the same function.

child_process.exec and child_process.execFile
In addition to spawning a child process, you can also use child_process.exec() and
child_process.execFile() to run a command.

The child_process.exec() method is similar to child_process.spawn() except
that spawn() starts returning a stream as soon as the program executes, as noted in
Example 8-1. The child_process.exec() function, like child_process.execFile(),
buffers the results. However, exec() spawns a shell to process the application,
unlike child_process.execFile(), which directly runs the process. This makes
child_process.execFile() more efficient than either child_process.spawn() with
the shell option set or child_process.exec().

The first parameter in child_process.exec() or child_process.execFile() is
either the command (for exec()) or the file and its location (execFile()); the second
parameter is options for the command; and the third is a callback function. The call‐
back function takes three arguments: error, stdout, and stderr. The data is buffered
to stdout if no error occurs.

If the executable file contains:

#!/usr/bin/node

console.log(global);

the following application prints out the buffered results:

var execfile = require('child_process').execFile,
 child;

child = execfile('./app', function(error, stdout, stderr) {
 if (error == null) {
 console.log('stdout: ' + stdout);
 }
});

which could also be accomplished using child_process.exec():

child_process.spawn | 173

var exec = require('child_process').exec,
 child;

child = exec('./app', function(error, stdout, stderr) {
 if (error) return console.error(error);
 console.log('stdout: ' + stdout);

});

The difference is that child_process.exec() spawns a shell, whereas the child_pro
cess.execFile() function does not.

The child_process.exec() function takes three parameters: the command, an
options object, and a callback. The options object takes several values, including
encoding and the uid (user id) and gid (group identity) of the process. In Chapter 6,
I created an application that copies a PNG file and adds a Polaroid effect. It uses a
child process (spawn) to access ImageMagick, a powerful command-line graphics
tool. To run it using child_process.exec(), use the following, which incorporates a
command-line argument:

var exec = require('child_process').exec,
 child;

child = exec('./polaroid -s phoenix5a.png -f phoenixpolaroid.png',
 {cwd: 'snaps'}, function(error, stdout, stderr) {
 if (error) return console.error(error);
 console.log('stdout: ' + stdout);
});

The child_process.execFile() has an additional parameter: an array of command-
line options to pass to the application. The equivalent application using this function
is:

var execfile = require('child_process').execFile,
 child;

child = execfile('./snapshot',
 ['-s', 'phoenix5a.png', '-f', 'phoenixpolaroid.png'],
 {cwd: 'snaps'}, function(error, stdout, stderr) {
 if (error) return console.error(error);
 console.log('stdout: ' + stdout);
});

Note that the command-line arguments are separated into different array elements
with the value for each argument following the argument.

Because child_process.execFile() does not spawn a shell it can’t be used in some
circumstances. Node documentation notes you can’t use I/O redirection and file glob‐
bing using pathname expansion (via regular expression or wildcard). However, if
you’re attempting to run a child process (or application) interactively, then use

174 | Chapter 8: Child Processes

child_process.execFile() rather than child_process.exec(). The following code,
created by Node Foundation member Colin Ihrig, demonstrates this nicely:

'use strict';
const cp = require('child_process');
const child = cp.execFile('node', ['-i'], (err, stdout, stderr) => {
 console.log(stdout);
});

child.stdin.write('process.versions;\n');
child.stdin.end();

The application starts up an interactive Node session, asks for the process versions,
and then ends the input.

There are synchronous versions—child_process.execSync() and child_pro

cess.execFileSync()—of both functions.

child_process.fork
The last child process method is child_process.fork(). This variation of spawn() is
for spawning Node processes.

What sets the child_process.fork() process apart from the others is that there’s an
actual communication channel established to the child process. Note, though, that
each process requires a whole new instance of V8, which takes both time and mem‐
ory.

One use of child_process.fork() is to spin off functionality to completely separate
Node instances. Let’s say you have a server on one Node instance, and you want to
improve performance by integrating a second Node instance for answering server
requests. The Node documentation features just such an example using a TCP server.
Could it also be used to create parallel HTTP servers? Yes, and by using a similar
approach.

I want to thank Jiale Hu for giving me the idea when I saw his dem‐
onstration of parallel HTTP servers in separate instances. Jiale uses
a TCP server to pass on the socket endpoints to two separate child
HTTP servers.

Similar to what is demonstrated in the Node documentation for master/child parallel
TCP servers, in the master in my example, I create the HTTP server and then use the
child_process.send() function to send the server to the child process.

var cp = require('child_process'),
 cp1 = cp.fork('child2.js'),
 http = require('http');

child_process.spawn | 175

var server = http.createServer();

server.on('request', function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('handled by parent\n');
});

server.on('listening', function () {
 cp1.send('server', server);
});

server.listen(3000);

The child process receives the message with the HTTP server via the process object.
It listens for the connection event and, when it receives it, triggers the connection
event on the child HTTP server, passing to it the socket that forms the connection
endpoint.

var http = require('http');

var server = http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('handled by child\n');
});

process.on('message', function (msg, httpServer) {
 if (msg === 'server') {
 httpServer.on('connection', function (socket) {
 server.emit('connection', socket);
 });
 }
});

If you test the application by accessing the domain with the 3000 port, you’ll see that
sometimes the parent HTTP server handles the request, and sometimes the child
server does. If you check for running processes, you’ll see two: one for the parent, and
one for the child.

Node Cluster

The Node Cluster module is based on child_process.fork(), in
addition to other functionality.

Running a Child Process Application in Windows
Earlier I warned you that child processes that invoke Unix system commands won’t
work with Windows, and vice versa. I know this sounds obvious, but not everyone

176 | Chapter 8: Child Processes

knows that, unlike with JavaScript in browsers, Node applications can behave differ‐
ently in different environments.

Aside from operating system and command differences, when working in Windows,
you either need to use child_process.exec()—which spawns a shell in order to run
the application—or use the shell option with newer versions of child_pro

cess.spawn(). Otherwise, you’ll need to invoke whatever command you want to run
via the Windows command interpreter cmd.exe.

As an example of using the shell option with child_process.spawn(), the following
application prints out the directory contents in a Windows machine:

var spawn = require('child_process').spawn,
 pwd = spawn('echo', ['%cd%'], {shell: true});

pwd.stdout.on('data', function (data) {
 console.log('stdout: ' + data);
});

pwd.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
});

pwd.on('close', function (code) {
 console.log('child process exited with code ' + code);
});

The echo command echos out the result of the Windows cd command, which prints
out the current directory. If I didn’t set the shell option to true, it would have failed.

A similar result can be obtained with child_process.exec(). Note, though, that I
didn’t need to use the echo command with child_process.exec(), as the output is
buffered with the latter function:

var exec = require('child_process').exec,
 pwd = exec('cd');

pwd.stdout.on('data', function (data) {
 console.log('stdout: ' + data);
});

pwd.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
});

pwd.on('close', function (code) {
 console.log('child process exited with code ' + code);
});

Example 8-2 demonstrates the third option: running a Windows command using the
approach where the command we’re running is cmd, for the Windows cmd.exe appli‐

Running a Child Process Application in Windows | 177

cation; whatever follows in the argument is what’s executed in the command shell. In
the application, Windows cmd.exe is used to create a directory listing, which is then
printed out to the console via the data event handler.

Example 8-2. Running a child process application in Windows

var cmd = require('child_process').spawn('cmd', ['/c', 'dir\n']);

cmd.stdout.on('data', function (data) {
 console.log('stdout: ' + data);
});

cmd.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
});

cmd.on('exit', function (code) {
 console.log('child process exited with code ' + code);
});

The /c flag passed as the first argument to cmd.exe instructs it to carry out the com‐
mand and then terminate. The application doesn’t work without this flag. You espe‐
cially don’t want to pass in the /K flag, which tells cmd.exe to execute the application
and then remain, because then your application won’t terminate.

The equivalent using child_process.exec() is:

var cmd = require('child_process').exec('dir');

We can run a cmd or bat file using child_process.execFile(), just as we can run a
file in a Unix-like environment. Given the following bat file (my.bat):

@echo off
REM Next command generates a list of program files
dir

run the file with the following application:

var execfile = require('child_process').execFile,
 child;

child = execfile('my.bat', function(error, stdout, stderr) {
 if (error == null) {
 console.log('stdout: ' + stdout);
 }
});

178 | Chapter 8: Child Processes

CHAPTER 9

Node and ES6

Most of the examples in the book use JavaScript that has been widely available for
many years. And it’s perfectly acceptable code, as well as very familiar to people who
have been coding with the language in a browser environment. One of the advantages
to developing in a Node environment, though, is you can use more modern Java‐
Script, such as ECMAScript 2015 (or ES6, as most people call it), and even later ver‐
sions, and not have to worry about compatibility with browser or operating system.
Many of the new language additions are an inherent part of the Node functionality.

In this chapter, we’re going to take a look at some of the newer JavaScript capabilities
that are implemented, by default, with the versions of Node we’re covering in this
book. We’ll look at how they can improve a Node application, and we’ll look at the
gotchas we need to be aware of when we use the newer functionality.

List of Supported ES6 Functionality

I’m not covering all the ES6 functionality supported in Node—just
the currently implemented bits that I’ve seen frequently used in
Node applications, modules, and examples. For a list of E6 shipped
features, see the Node documentation.

Strict Mode
JavaScript strict mode has been around since ECMAScript 5, but its use directly
impacts on the use of ES6 functionality, so I want to take a closer look at it before
diving into the ES6 features.

Strict mode is turned on when the following is added to the top of the Node
application:

"use strict";

179

https://nodejs.org/en/docs/es6/

You can use single or double quotes.

There are other ways to force strict mode on all of the application’s dependent mod‐
ules, such as the --strict_mode flag, but I recommend against this. Forcing strict
mode on a module is likely to generate errors or have unforeseen consequences. Just
use it in your application or modules, where you control your code.

Strict mode has significant impacts on your code, including throwing errors if you
don’t define a variable before using it, a function parameter can only be declared
once, you can’t use a variable in an eval expression on the same level as the eval call,
and so on. But the one I want to specifically focus on in this section is that you can’t
use octal literals in strict mode.

In previous chapters, when setting the permissions for a file, you can’t use an octal
literal for the permission:

"use strict";

var fs = require('fs');

fs.open('./new.txt','a+',0666, function(err, fd) {
 if (err) return console.error(err);
 fs.write(fd, 'First line', 'utf-8', function(err,written, str) {
 if (err) return console.error(err);
 var buf = new Buffer(written);
 fs.read(fd, buf, 0, written, 0, function (err, bytes, buffer) {
 if (err) return console.error(err);
 console.log(buf.toString('utf8'));
 });
 });
});

In strict mode, this code generates a syntax error:

fs.open('./new.txt','a+',0666, function(err, fd) {
 ^^^^

SyntaxError: Octal literals are not allowed in strict mode.

You can convert the octal literal to a safe format by replacing the leading zero with
0o —a zero following by a lowercase o. The strict mode application works if you set
the file permission using 0o666 rather than 0666:

fs.open('./new.txt','a+',0o666, function(err, fd) {

The fs.open() function also accepts the octal value as a string:

fs.open('./new.txt','a+','0666', function(err, fd) {

But this syntax is frowned on, so use the previously mentioned format.

180 | Chapter 9: Node and ES6

Strict mode is also necessary in order to use some ES6 extensions. If you want to use
ES6 classes, discussed later in the chapter, you must use strict mode. If you also want
to use let, discussed next, you must use strict mode.

Discussing Octal Literals

If you’re interested in exploring the roots for the octal literal con‐
version, I recommend reading an ES Discuss thread on the subject,
“Octal literals have their uses (you Unix haters skip this one)”.

let and const
A limitation with JavaScript applications in the past is the inability to declare a vari‐
able at the block level. One of the most welcome additions to ES6 has to be the let
statement. Using it, we can now declare a variable within a block, and its scope is
restricted to that block. When we use var, the value of 100 is printed out in the fol‐
lowing:

if (true) {
 var sum = 100;
}

console.log(sum); // prints out 100

When you use let:

"use strict";

if (true) {
 let sum = 100;
}

console.log(sum);

you get a completely different result:

ReferenceError: sum is not defined

The application must be in strict mode for us to use let.

Aside from block-level scoping, let differs from var in that variables declared with
var are hoisted to the top of the execution scope before any statements are executed.
The following results in undefined being printed out in the console, but no runtime
error occurs:

console.log(test);
var test;

whereas the following code using let results in a runtime ReferenceError stating
that test isn’t defined.

let and const | 181

https://esdiscuss.org/topic/octal-literals-have-their-uses-you-unix-haters-skip-this-one

"use strict";

console.log(test);
let test;

Should you always use let? Some programmers say yes; others, no. You can also use
both and limit the use of var for those variables that need application or function-
level scope, and save let for block-level scope only. Chances are, though, the coding
practices established for your organization will define what you use. Or if you know
that your environment supports it, use let and embrace the E6 side.

Moving on from let, the const statement declares a read-only value reference. If the
value is a primitive, it is immutable. If the value is an object, you can’t assign a new
object or primitive, but you can change object properties.

In the following, if you try to assign a new value to a const, the assignment silently
fails:

const MY_VAL = 10;

MY_VAL = 100;

console.log(MY_VAL); // prints 10

It’s important to note that const is a value reference. If you assign an array or object
to a const, you can change object/array members:

const test = ['one','two','three'];

const test2 = {apples : 1, peaches: 2};

test = test2; //fails

test[0] = test2.peaches;

test2.apples = test[2];

console.log(test); // [2, 'two', 'three']
console.log(test2); // { apples: 'three', peaches: 2 }

Unfortunately, there’s been a significant amount of confusion about const because of
the differing behaviors between primitive and object values, and the actual name
itself, which seems to imply a constant (static) assignment. However, if immutability
is your ultimate aim and you’re assigning an object to the const, you can use
object.freeze() on the object to provide at least shallow immutability.

I have noticed that the Node documentation shows the use of const when importing
modules. While assigning an object to a const can’t prevent its properties from being
modified, it can imply a level of semantics that tells another coder, at a glance, that
this item won’t be reassigned a new value later.

182 | Chapter 9: Node and ES6

More on const and Lack of Immutability

Mathias Bynens, a web standards proponent, has a good in-depth
discussion on const and immutability.

Like let, const has also block-level scope. Unlike let, it doesn’t require strict mode.

You can use let and const in your applications for the same reason you’d use them in
the browser, but I haven’t found any additional benefit specific to Node. Some folks
report better performance with let and const, whereas others have actually noted a
performance decrease. I haven’t found a change at all, but your experience could vary.
As I stated earlier, chances are your development team will have requirements about
which to use and you should defer to these.

Arrow Functions
If you look at the Node API documentation, the most frequently used ES6 enhance‐
ment has to be arrow functions. Arrow functions do two things. First, they provide a
simplified syntax. For instance, in previous chapters, I used the following to create a
new HTTP server:

http.createServer(function (req, res) {

 res.writeHead(200);
 res.write('Hello');
 res.end();

}).listen(8124);

Using an arrow function, I can rewrite this to:

http.createServer((req, res) => {

 res.writeHead(200);
 res.write('Hello');
 res.end();

}).listen(8124);

The function keyword is removed and the fat arrow (=>) is used to represent the
existence of the anonymous function, passing in the given parameters. The simplifi‐
cation can be extended further. For example, the following very familiar function
pattern:

var decArray = [23, 255, 122, 5, 16, 99];
var hexArray = decArray.map(function(element) {
 return element.toString(16);
});

Arrow Functions | 183

https://mathiasbynens.be/notes/es6-const
https://mathiasbynens.be/notes/es6-const

console.log(hexArray); // ["17", "ff", "7a", "5", "10", "63"]

is simplified to:

var decArray = [23, 255, 122, 5, 16, 99];
var hexArray = decArray.map(element => element.toString(16));

console.log(hexArray); // ["17", "ff", "7a", "5", "10", "63"]

The curly brackets, the return statement, and the function keyword are all removed,
and the functionality is stripped to its minimum.

Arrow functions aren’t only syntax simplifications; they also redefine how this is
defined. In JavaScript, before arrow functions, every function defined its own value
for this. So in the following example code, instead of my name printing out to the
console, I get an undefined:

function NewObj(name) {
 this.name = name;
}

NewObj.prototype.doLater = function() {
 setTimeout(function() {
 console.log(this.name);
 }, 1000);
};

var obj = new NewObj('shelley');
obj.doLater();

The reason is this is defined to be the object in the object constructor but the setTi
meout function in the later instance. We get around the problem by using another
variable, typically self, which could be closed over—attached to the given environ‐
ment. The following results in expected behavior, with my name printing out:

function NewObj(name) {
 this.name = name;
}

NewObj.prototype.doLater = function() {
 var self = this;
 setTimeout(function() {
 console.log(self.name);
 }, 1000);
};

var obj = new NewObj('shelley');
obj.doLater();

In an arrow function, this is always set to the value it would normally have within
the enclosing context; in this case, the new object:

184 | Chapter 9: Node and ES6

function NewObj(name) {
 this.name = name;
}

NewObj.prototype.doLater = function() {
 setTimeout(()=> {
 console.log(this.name);
 }, 1000);
};

var obj = new NewObj('shelley');
obj.doLater();

Working Around the Arrow Function Quirks

The arrow function does have quirks, such as how do you return
an empty object, or where are the arguments? Strongloop has a
nice writeup on the arrow functions that discusses the quirks and
the workarounds.

Classes
JavaScript has now joined its older siblings in support for classes. No more interesting
twists to emulate the more familiar class behavior.

Earlier, in Chapter 3, I created a “class,” InputChecker, using the older syntax:

var util = require('util');
var eventEmitter = require('events').EventEmitter;
var fs = require('fs');

exports.InputChecker = InputChecker;

function InputChecker(name, file) {
 this.name = name;
 this.writeStream = fs.createWriteStream('./' + file + '.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0666});
};

util.inherits(InputChecker,eventEmitter);

InputChecker.prototype.check = function check(input) {
 var command = input.toString().trim().substr(0,3);
 if (command == 'wr:') {
 this.emit('write',input.substr(3,input.length));
 } else if (command == 'en:') {
 this.emit('end');
 } else {
 this.emit('echo',input);

Classes | 185

https://strongloop.com/strongblog/an-introduction-to-javascript-es6-arrow-functions/
https://strongloop.com/strongblog/an-introduction-to-javascript-es6-arrow-functions/

 }
};

I modified it slightly to embed the check() function directly into the object defini‐
tion. I then converted the result into an ES6 class, starting with using strict mode,
which is required for using the new class functionality.

Rather than having to use util.inherits() to inherit the prototype methods from
the superconstructor to the constructor, the new class extends the EventEmitter
object’s methods. I added the constructor method for creating and initializing the
new object. In this constructor, I called super() to invoke the functions of the parent
class.

'use strict';

const util = require('util');
const eventEmitter = require('events').EventEmitter;
const fs = require('fs');

class InputChecker extends eventEmitter {

 constructor(name, file) {
 super()
 this.name = name;

 this.writeStream = fs.createWriteStream('./' + file + '.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0o666});
 }

 check (input) {
 let command = input.toString().trim().substr(0,3);
 if (command == 'wr:') {
 this.emit('write',input.substr(3,input.length));
 } else if (command == 'en:') {
 this.emit('end');
 } else {
 this.emit('echo',input);
 }
 }
};

exports.InputChecker = InputChecker;

The check() method isn’t added using the prototype object but is just included in the
class as a method. There’s no use of var or function with check()—you just define the
method. However, all the working logic is the same or very close to the original
object.

The application that uses the new classified (sorry, pun) module is unchanged:

186 | Chapter 9: Node and ES6

var InputChecker = require('./class').InputChecker;

// testing new object and event handling
var ic = new InputChecker('Shelley','output');

ic.on('write', function (data) {
 this.writeStream.write(data, 'utf8');
});
ic.addListener('echo', function(data) {
 console.log(this.name + ' wrote ' + data);
});

ic.on('end', function() {
 process.exit();
});

process.stdin.setEncoding('utf8');
process.stdin.on('data', function(input) {
 ic.check(input);
});

As the code demonstrates, I did not have to place the application into strict mode in
order to use a module that’s defined in strict mode.

Mozilla’s Always Helpful Documentation

The Mozilla Developer Network is always a first-go source on any‐
thing JavaScript, and the new class functionality is no exception.
They provide a very nice reference for this new functionality.

Promises with Bluebird
During the early stages of Node development, the creators debated whether to go
with callbacks or promises. Callbacks won, which pleased some folks and disappoin‐
ted others.

Promises are now part of ES6, and you can certainly use them in your Node applica‐
tions. However, if you want to use ES6 promises with the Node core functionality,
you’ll either need to implement the support from scratch or use a module to provide
this support. Though I’ve tried to avoid using third-party modules as much as possi‐
ble in this book, in this case I recommend using the module. In this section, we’ll look
at using a very popular promises module: Bluebird.

Promises with Bluebird | 187

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Performance Enhanced with Bluebird

Another reason to use Bluebird is performance. The author of
Bluebird explains why in StackExchange.

Rather than nested callbacks, ES6 promises feature branching, with success handled
by one branch, failure by another. The best way to demonstrate it is by taking a typi‐
cal Node filesystem application and then promisfying it—converting the callback
structure to promises.

Using native callbacks, the following application opens a file and reads in the con‐
tents, makes a modification, and then writes it to another file.

var fs = require('fs');
fs.readFile('./apples.txt','utf8', function(err,data) {
 if (err) {
 console.error(err.stack);
 } else {

 var adjData = data.replace(/apple/g,'orange');

 fs.writeFile('./oranges.txt', adjData, function(err) {

 if (err) console.error(err);
 });
 }
});

Even this simple example shows nesting two levels deep: reading the file in and then
writing the modified content.

Now, we’ll use Bluebird to promisify the example.

In the code I’m using, the Bluebird promisifyAll() function is used to promisify all
of the File System functions. Instead of readFile(), we’ll then use readFileAsync(),
which is the version of the function that supports promises.

var promise = require('bluebird');
var fs = promise.promisifyAll(require('fs'));

fs.readFileAsync('./apples.txt','utf8')
 .then(function(data) {
 var adjData = data.replace(/apple/g, 'orange');
 return fs.writeFileAsync('./oranges.txt', adjData);
 })
 .catch(function(error) {
 console.error(error);
 });

188 | Chapter 9: Node and ES6

http://programmers.stackexchange.com/questions/278778/why-are-native-es6-promises-slower-and-more-memory-intensive-than-bluebird

In the example, when the file contents are read, a successful data operation is handled
with the then() function. If the operation isn’t successful, the catch() function han‐
dles the error. If the read is successful, the data is modified and the promisify version
of writeFile(), writeFileAsync(), is called, writing the data to the file. From the
previous nested callback example, we know that writeFile() just returns an error.
This error would also be handled by the single catch() function.

Though the nested example isn’t large, you can see how much clearer the promise
version of the code is. You can also start to see how the nested problem is resolved—
especially with only one error-handling routine necessary for any number of calls.

What about a more complex example? I modified the previous code to add an addi‐
tional step to create a new subdirectory to contain the oranges.txt file. In the code,
you can see that there are now two then() functions. The first processes the success‐
ful response to making the subdirectory, and the second creates the new file with the
modified data. The new directory is made using the promisifyed mkdirAsync() func‐
tion, which is returned at the end of the process. This is the key to making the prom‐
ises work, because the next then() function is actually attached to the returned
function. The modified data is still passed to the promise function where the data is
being written. Any errors in either the read file or directory-making process are han‐
dled by the single catch().

var promise = require('bluebird');
var fs = promise.promisifyAll(require('fs'));

fs.readFileAsync('./apples.txt','utf8')
 .then(function(data) {
 var adjData = data.replace(/apple/g, 'orange');
 return fs.mkdirAsync('./fruit/');
 })
 .then(function(adjData) {
 return fs.writeFileAsync('./fruit/oranges.txt', adjData);
 })
 .catch(function(error) {
 console.error(error);
 });

How about handling instances where an array of results is returned, such as when
we’re using the File System function readdir() to get the contents of a directory?

That’s where array-handling functions such as map() come in handy. In the following
code, the contents of a directory are returned as an array, and each file in that direc‐
tory is opened, its contents modified and written to a comparably named file in
another directory. The inner catch() function handles errors for reading and writing
files, while the outer one handles the directory access.

Promises with Bluebird | 189

var promise = require('bluebird');
var fs = promise.promisifyAll(require('fs'));

fs.readdirAsync('./apples/').map(filename => {
 fs.readFileAsync('./apples/'+filename,'utf8')
 .then(function(data) {
 var adjData = data.replace(/apple/g, 'orange');
 return fs.writeFileAsync('./oranges/'+filename, adjData);
 })
 .catch(function(error) {
 console.error(error);
 })
 })
 .catch(function(error) {
 console.error(error);
 })

I’ve only touched on the capability of Bluebird and the very real attraction of using
promises in Node. Do take some time to explore the use of both, in addition to the
other ES6 features, in your Node applications.

190 | Chapter 9: Node and ES6

CHAPTER 10

Full-Stack Node Development

Most of this book focuses on the core modules and functionality that make up Node.
I’ve tried to avoid covering third-party modules because Node is still a very dynamic
environment and support for the third-party modules can change quickly and
drastically.

But I don’t think you can cover Node without at least briefly mentioning the wider
context of Node applications, which means you need to be familiar with full-stack
Node development. This means being familiar with data systems, APIs, client-side
development—a whole range of technologies with only one commonality: Node.

The most common form of full-stack development with Node is MEAN—MongoDB,
Express, AngularJS, and Node. However, full-stack development can encompass other
tools, such as MySQL or Redis for database development, and other client-side frame‐
works in addition to AngularJS. The use of Express, though, has become ubiquitous.
You have to become familiar with Express if you’re going to work with Node.

Further Explorations of MEAN

For additional explorations of MEAN, full-stack development, and
Express, I recommend Web Development with Node and Express:
Leveraging the JavaScript Stack (O’Reilly, 2014), by Ethan Brown;
AngularJS: Up and Running (O’Reilly, 2014), by Shyam Seshadri
and Brad Green; and the video Architecture of the MEAN Stack
(O’Reilly, 2015), by Scott Davis.

191

http://shop.oreilly.com/product/0636920032977.do
http://shop.oreilly.com/product/0636920032977.do
http://shop.oreilly.com/product/0636920033486.do
http://shop.oreilly.com/product/0636920039495.do

The Express Application Framework
In Chapter 5, I covered a small subset of the functionality you need to implement a
Node web application. The task to create a Node web app is daunting at best. That’s
why an application framework like Express has become so popular: it provides most
of the functionality with minimal effort.

Express is almost ubiquitous in the Node world, so you’ll need to become familiar
with it. We’re going to look at the most bare-bones Express application we can in this
chapter, but you will need additional training once you’re finished.

Express Now Part of Node.js Foundation

Express has had a rocky start but is now part of the Node.js Foun‐
dation. Future development should be more consistent and its sup‐
port more reliable.

Express provides good documentation, including how to start an application. We’ll
follow the steps the documentation outlines and then expand on the basic applica‐
tion. To start, create a new subdirectory for the application and name it whatever you
want. Use npm to create a package.json file, using app.js as the entry point for the
application. Lastly, install Express, saving it to your dependencies in the package.json
file by using the following command:

npm install express --save

The Express documentation contains a minimal Hello World Express application,
typed into the app.js file:

var express = require('express');
var app = express();

app.get('/', function (req, res) {
 res.send('Hello World!');
});

app.listen(3000, function () {
 console.log('Example app listening on port 3000!');
});

The app.get() function handles all GET web requests, passing in the request and
response objects we’re familiar with from our work in earlier chapters. By convention,
Express applications use the abbreviated forms of req and res. These objects have the
same functionality as the default request and response objects, with the addition of
new functionality provided by Express. For instance, you can use res.write() and

192 | Chapter 10: Full-Stack Node Development

http://expressjs.com/

res.end() to respond to the web request, which we’ve used in past chapters, but you
can also use res.send(), an Express enhancement, to do the same in one line.

Instead of manually creating the application, we can also use the Express application
generator to generate the application skeleton. We’ll use that next, as it provides a
more detailed and comprehensive Express application.

First, install the Express application generator globally:

sudo npm install express-generator -g

Next, run the application with the name you want to call your application. For dem‐
onstration purposes, I’ll use bookapp:

express bookapp

The Express application generator creates the necessary subdirectories. Change into
the bookapp subdirectory and install the dependencies:

npm install

That’s it, you’ve created your first skeleton Express application. You can run it using
the following if you’re using an OS X or Linux environment:

DEBUG=bookapp:* npm start

Run the following if you’re in a Windows Command window:

set DEBUG=bookapp:* & npm start

You could also start the application with just npm start and forgo the debugging.

The application is started and listens for requests on the default Express port of 3000.
Accessing the application via the Web returns a simple web page with the “Welcome
to Express” greeting.

Several subdirectories and files are generated by the application:

├── app.js
├── bin
│ └── www
├── package.json
├── public
│ ├── images
│ ├── javascripts
│ └── stylesheets
│ └── style.css
├── routes
│ ├── index.js
│ └── users.js
└── views
 ├── error.jade
 ├── index.jade
 └── layout.jade

The Express Application Framework | 193

We’ll get into more detail about many of the components, but the public-facing static
files are located in the public subdirectory. As you’ll note, the graphics and CSS files
are placed in this location. The dynamic content template files are located in views.
The routes subdirectory contains the web endpoint applications that listen for web
requests and render web pages.

Jade is Now Pug

Because of trademark violation, the creators of Jade can no longer
use “Jade” as the name for the template engine used with Express
and other applications. However, the process of converting Jade to
Pug is still ongoing. At the time this went to production, the
Express Generator still generates Jade, but attempting to install Jade
as a dependency generates the following error:

Jade has been renamed to pug, please install the latest
version of pug instead of jade

The web site for Pug is still named Jade, but the documentation
and functionality remains the same. Hopefully this will all resolve
itself sooner, rather than later.

The www file in the bin subdirectory is a startup script for the application. It’s a Node
file that’s converted into a command-line application. When you look in the gener‐
ated package.json file, you’ll see it listed as the application’s start script.

{
 "name": "bookapp",
 "version": "0.0.0",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "dependencies": {
 "body-parser": "~1.13.2",
 "cookie-parser": "~1.3.5",
 "debug": "~2.2.0",
 "express": "~4.13.1",
 "jade": "~1.11.0",
 "morgan": "~1.6.1",
 "serve-favicon": "~2.3.0"
 }
}

You install other scripts to test, restart, or otherwise control your application in the
bin subdirectory.

To begin a more in-depth view of the application we’ll look at the application’s entry
point, the app.js file.

194 | Chapter 10: Full-Stack Node Development

https://github.com/pugjs

When you open the app.js file, you’re going to see considerably more code than the
simple application we looked at earlier. There are several more modules imported,
most of which provide the middleware support we’d expect for a web-facing applica‐
tion. The imported modules also include application-specific imports, given under
the routes subdirectory:

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

var routes = require('./routes/index');
var users = require('./routes/users');

var app = express();

The modules and their purposes are:

express

The Express application

path

Node core module for working with file paths

serve-favicon

Middleware to serve the favicon.ico file from a given path or buffer

morgon

An HTTP request logger

cookie-parser

Parses cookie header and populates req.cookies

body-parser

Provides four different types of request body parsers (but does not handle multi‐
part bodies)

Each of the middleware modules works with a vanilla HTTP server as well as
Express.

The Express Application Framework | 195

What Is Middleware?

Middleware is the intermediary between the system/operating sys‐
tem/database and the application. With Express, the middleware is
part of a chain of applications, each of which does a certain func‐
tion related to an HTTP request—either processing it, or perform‐
ing some manipulation on the request for future middleware
applications. The set of middleware that works with Express is
quite comprehensive.

The next section of code in app.js mounts the middleware (makes it available in the
application) at a given path via the app.use() function. The order in which the mid‐
dleware is mounted is important so if you add additional middleware functionality,
be sure that it is in relation to other middleware according to the developer recom‐
mendations.

The code snippet also includes code that defines the view engine setup, which I’ll get
to in a moment.

196 | Chapter 10: Full-Stack Node Development

http://expressjs.com/en/resources/middleware.html

// view engine setup
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

// uncomment after placing your favicon in /public
//app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));

The last call to app.use() references one of the few built-in Express middleware,
express.static, which is used to handle all static files. If a web user requests an
HTML, JPEG, or other static file, express.static processes the request. All static
files are served relative to the path specified when the middleware is mounted, in this
case, in the public subdirectory.

Returning to the app.set() function calls defining the views engine in the code snip‐
pet, you’ll use a template engine that helps map the data to the delivery. One of the
most popular, Jade, is integrated by default, but others such as Mustache and EJS can
be used just as easily. The engine setup defines the subdirectory where the template
files (views) are located and which view engine to use (Jade).

Reminder: Jade is Now Pug

As mentioned earlier in the chapter, Jade is now Pug. Check with
both the Express documentation, and Pug, in order to update
examples to work with the newly named template engine
As this book went to production, I modified the generated pack‐
age.json file to replace the Jade module with Pug:

<p>"pug": "2.0.0-alpha8",</p>

And in the app.js file, replace the jade reference with pug:
app.set('view engine', 'pug');

And the application seemed to work without problem.

In the views subdirectory, you’ll find three files: error.jade, index.jade, and layout.jade.
These will get you started, though you’ll need to provide much more when you start
integrating data into the application. The content for the generated index.jade file is
given here:

extends layout

block content
 h1= title
 p Welcome to #{title}

The Express Application Framework | 197

https://github.com/pugjs

The line that reads extends layout incorporates the Jade syntax from the layout.jade
file. You’ll recognize the HTML header (h1) and paragraph (p) elements. The h1
header is assigned the value passed to the template as title, which is also used in the
paragraph element. How these values get rendered in the template requires us to
return to the app.js file for the next bit of code:

app.use('/', routes);
app.use('/users', users);

These are the application-specific endpoints, which is the functionality that responds
to client requests. The top-level request ('/') is satisfied by the index.js file in the
routes subdirectory, the users, by the users.js file.

In the index.js file, we’re introduced to the Express router, which provides the
response-handling functionality. As the Express documentation notes, the router
behavior fits the following pattern:

app.METHOD(PATH, HANDLER)

The method is the HTTP method, and Express supports several, including the famil‐
iar get, post, put, and delete, as well as the possibly less familiar merge, search,
head, options, and so on. That path is the web path, and the handler is the function
that processes the request. In index.js, the method is get, the path is the application
root, and the handler is a callback function passing request and response:

var express = require('express');
var router = express.Router();

/* GET home page. */
router.get('/', function(req, res, next) {
 res.render('index', { title: 'Express' });
});

module.exports = router;

The data (local variables) and view meet in the res.render() function call. The view
used is the index.jade file we looked at earlier, and you can see that the value for the
title attribute in the template is passed as data to the function. In your copy, try
changing “Express” to whatever you’d like and reloading the page to see the modifica‐
tion.

The rest of the app.js file is error handling, and I’ll leave that for you to explore on
your own. This is a quick and very abbreviated introduction to Express, but hopefully
even with this simple example, you’re getting a feel for the structure of an Express
application.

198 | Chapter 10: Full-Stack Node Development

Incorporating Data

I’ll toot my horn and recommend my book, the JavaScript Cook‐
book (O’Reilly, 2010) if you want to learn more about incorporating
data into an Express application. Chapter 14 demonstrates extend‐
ing an existing Express application to incorporate a MongoDB
store, as well as incorporating the use of controllers, for a full
model-view-controller (MVC) architecture.

MongoDB and Redis Database Systems
In Chapter 7, Example 7-8 featured an application that inserted data into a MySQL
database. Though sketchy at first, support for relational databases in Node applica‐
tions has grown stronger, with robust solutions such as the MySQL driver for Node,
and newer modules such as the Tedious package for SQL Server access in a Microsoft
Azure environment.

Node applications also have access to several other database systems. In this section
I’m going to briefly look at two: MongoDB, which is very popular in Node develop‐
ment, and Redis, a personal favorite of mine.

MongoDB
The most popular database used in Node applications is MongoDB. MongoDB is a
document-based database. The documents are encoded as BSON, a binary form of
JSON, which probably explains its popularity among JavaScript developers. With
MongoDB, instead of a table row, you have a BSON document; instead of a table, you
have a collection.

MongoDB isn’t the only document-centric database. Other popular versions of this
type of data store are CouchDB by Apache, SimpleDB by Amazon, RavenDB, and
even the legendary Lotus Notes. There is some Node support of varying degrees for
most modern document data stores, but MongoDB and CouchDB have the most.

MongoDB is not a trivial database system, and you’ll need to spend time learning its
functionality before incorporating it into your Node applications. When you’re ready,
though, you’ll find excellent support for MongoDB in Node via the MongoDB Native
NodeJS Driver and additional, object-oriented support with Mongoose.

Though I’m not going to get into detail on how to use MongoDB with Node, I am
going to provide one example, just so you can get an idea of how it works. Though
the underlying data structure differs from relational databases, the concepts are still
the same: you create a database, you create collections of records, and you add indi‐
vidual records. You can then update, query, or delete the records. In the MongoDB
example shown in Example 10-1, I’m connecting to an example database, accessing a

MongoDB and Redis Database Systems | 199

http://shop.oreilly.com/product/9780596806149.do
http://shop.oreilly.com/product/9780596806149.do
https://github.com/felixge/node-mysql
https://github.com/pekim/tedious
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
http://mongoosejs.com/

Widgets collection, removing any existing records, inserting two, and then querying
for the two and printing them out.

Example 10-1. Working with a MongoDB database

var MongoClient = require('mongodb').MongoClient;

// Connect to the db
MongoClient.connect("mongodb://localhost:27017/exampleDb",
 function(err, db) {
 if(err) { return console.error(err); }

 // access or create widgets collection
 db.collection('widgets', function(err, collection) {
 if (err) return console.error(err);

 // remove all widgets documents
 collection.remove(null,{safe : true}, function(err, result) {
 if (err) return console.error(err);
 console.log('result of remove ' + result.result);

 // create two records
 var widget1 = {title : 'First Great widget',
 desc : 'greatest widget of all',
 price : 14.99};
 var widget2 = {title : 'Second Great widget',
 desc : 'second greatest widget of all',
 price : 29.99};

 collection.insertOne(widget1, {w:1}, function (err, result) {
 if (err) return console.error(err);
 console.log(result.insertedId);

 collection.insertOne(widget2, {w:1}, function(err, result) {
 if (err) return console.error(err);
 console.log(result.insertedId);

 collection.find({}).toArray(function(err,docs) {
 console.log('found documents');
 console.dir(docs);

 //close database
 db.close();
 });
 });
 });
 });
 });
});

Yes, Node callback hell, but you can incorporate the use of promises.

200 | Chapter 10: Full-Stack Node Development

The MongoClient object is the object you’ll use the most for connecting to the data‐
base. Note the port number given (27017). This is the default port for the MongoDB
system. The database is exampleDB, given as part of the connection URL, and the col‐
lection is widgets, in honor of the class Widget factory known far and wide among
developers.

The MongoDB functions are asynchronous, as you’d expect. Before the records are
inserted, the application first deletes all existing records in the collection using the
collection.remove() function with no specific query. If we didn’t, we’d have dupli‐
cate records, as the MongoDB assigns system-generated unique identifiers for each
new record and we’re not explicitly making the title or other field a unique identifier.

We add each new record using collection.insertOne(), passing in the JSON that
defines the object. The option, {w:1} specifies write concern, describing the level of
acknowledgment from MongoDB for the write operation.

Once the records are inserted, the application uses collection.find(), again
without a specific query, to find all records. The function actually creates a cursor,
and the toArray() function returns the cursor results as an array, which we can then
print out to the console using console.dir(). The result of the application looks
similar to the following:

result of remove 1
56c5f535c51f1b8d712b6552
56c5f535c51f1b8d712b6553
found documents
[{ _id: ObjectID { _bsontype: 'ObjectID', id: 'VÅõ5Å\u001f\u001bq+eR' },
 title: 'First Great widget',
 desc: 'greatest widget of all',
 price: 14.99 },
 { _id: ObjectID { _bsontype: 'ObjectID', id: 'VÅõ5Å\u001f\u001bq+eS' },
 title: 'Second Great widget',
 desc: 'second greatest widget of all',
 price: 29.99 }]

The object identifier is actually an object, and the identifier is in BSON, which is why
it doesn’t cleanly print. If you want to provide a cleaner output, you can access each
individual field and covert the BSON identifier into a hexadecimal string with toHex
String():

 docs.forEach(function(doc) {
 console.log('ID : ' + doc._id.toHexString());
 console.log('desc : ' + doc.desc);
 console.log('title : ' + doc.title);
 console.log('price : ' + doc.price);
 });

MongoDB and Redis Database Systems | 201

Now the result is:

result of remove 1
56c5fa40d36a4e7b72bfbef2
56c5fa40d36a4e7b72bfbef3
found documents
ID : 56c5fa40d36a4e7b72bfbef2
desc : greatest widget of all
title : First Great widget
price : 14.99
ID : 56c5fa40d36a4e7b72bfbef3
desc : second greatest widget of all
title : Second Great widget
price : 29.99

You can see the records in the MongoDB using the command-line tool. Use the fol‐
lowing sequence of commands to start it and look at the records:

1. Type mongo to start the command-line tool.
2. Type use exampleDb to change to the exampleDb database.
3. Type show collections to see all collections.
4. Type db.widgets.find() to see the Widget records.

If you’d prefer a more object-based approach to incorporating MongoDB into your
application, you’ll want to use Mongoose. It may also be a better fit for integrating
into Express.

When you’re not playing around with MongoDB, remember to shut it down.

MongoDB in Node Documentation

The MongoDB driver for Node is documented online, and you can
access the documentation from its GitHub repository. But you can
also access documentation for the driver at the MongoDB site. I
prefer the MongoDB site’s documentation, especially for those just
starting out.

Redis Key/Value Store
When it comes to data, there’s relational databases and Everything Else, otherwise
known as NoSQL. In the NoSQL category, a type of structured data is based on key/
value pairs, typically stored in memory for extremely fast access. The three most pop‐
ular in-memory key/value stores are Memcached, Cassandra, and Redis. Happily for
Node developers, there is Node support for all three stores.

Memcached is primarily used as a way of caching data queries for quick access in
memory. It’s also quite good with distributed computing, but has limited support for
more complex data. It’s useful for applications that do a lot of queries but less so for

202 | Chapter 10: Full-Stack Node Development

http://mongoosejs.com/
https://github.com/mongodb/node-mongodb-native
http://bit.ly/1W74pQC

applications doing a lot of data writing and reading. Redis is the superior data store
for the latter type of application. In addition, Redis can be persisted, and it provides
more flexibility than Memcached—especially in its support for different types of
data. However, unlike Memcached, Redis works only on a single machine.

The same factors also come into play when we compare Redis and Cassandra. Like
Memcached, Cassandra has support for clusters. However, also like Memcached, it
has limited data structure support. It’s good for ad hoc queries—a use that does not
favor Redis. However, Redis is simple to use, uncomplicated, and typically faster than
Cassandra. For these reasons and others, Redis has gained a greater following among
Node developers.

EARN

I was delighted to read the acronym EARN, or Express, AngularJS,
Redis, and Node. An example of EARN is covered in “The EARN
Stack”.

My preferred Node Redis module is installed through npm:

npm install redis

If you plan on using big operations on Redis, I also recommend installing the Node
module support hiredis, as it’s non-blocking and can improve performance:

npm install hiredis redis

The Redis module is a relatively thin wrapper around Redis itself. Thus, you’ll need to
spend time learning the Redis commands and how the Redis data store works.

To use Redis in your Node applications, you first include the module:

var redis = require('redis');

Then you’ll need to create a Redis client. The method used is createClient:

var client = redis.createClient();

The createClient method can take three optional parameters: port, host, and
options (outlined shortly). By default, the host is set to 127.0.0.1, and the port is set
to 6379. The port is the one used by default for a Redis server, so these default settings
should be fine if the Redis server is hosted on the same machine as the Node applica‐
tion.

The third parameter is an object that supports several options, outlined in detail in
the modules documentation. Use the default settings until you’re more comfortable
with Node and Redis.

Once you have a client connection to the Redis data store, you can send commands to
the server until you call the client.quit() method call, which closes the connection

MongoDB and Redis Database Systems | 203

https://www.airpair.com/express/posts/earn-stack
https://www.airpair.com/express/posts/earn-stack

to the Redis server. If you want to force a closure, you can use the cli
ent.end() method instead. However, the latter method doesn’t wait for all replies to
be parsed. The client.end() method is a good one to call if your application is stuck
or you want to start over.

Issuing Redis commands through the client connection is a fairly intuitive process.
All commands are exposed as methods on the client object, and command arguments
are passed as parameters. Since this is Node, the last parameter is a callback function,
which returns an error and whatever data or reply is given in response to the Redis
command.

In the following code, the client.hset() method is used to set a hash property. In
Redis, a hash is a mapping between string fields and values, such as “lastname” repre‐
senting your last name, “firstname” for your first name, and so on:

client.hset("hashid", "propname", "propvalue", function(err, reply) {
 // do something with error or reply
});

The hset command sets a value, so there’s no return data—only the Redis acknowl‐
edgment. If you call a method that gets multiple values, such as client.hvals, the
second parameter in the callback function will be an array—either an array of single
strings or an array of objects:

 client.hvals(obj.member, function (err, replies) {
 if (err) {
 return console.error("error response - " + err);
 }

 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(" " + i + ": " + reply);
 });
 });

Because the Node callback is so ubiquitous, and because so many of the Redis com‐
mands are operations that just reply with a confirmation of success, the Redis module
provides a redis.print method you can pass as the last parameter:

client.set("somekey", "somevalue", redis.print);

The redis.print method prints either the error or the reply to the console and
returns.

To demonstrate Redis in Node, I’m creating a message queue. A message queue is an
application that takes as input some form of communication, which is then stored
into a queue. The messages are stored until they’re retrieved by the message receiver,
when they are popped off the queue and sent to the receiver (either one at a time or in
bulk). The communication is asynchronous because the application that stores the

204 | Chapter 10: Full-Stack Node Development

messages doesn’t require that the receiver be connected, and the receiver doesn’t
require that the message-storing application be connected.

Redis is an ideal storage medium for this type of application. As the messages are
received by the application that stores them, they’re pushed on to the end of the mes‐
sage queue. When the messages are retrieved by the application that receives them,
they’re popped off the front of the message queue.

Getting in a Little TCP, HTTP, and Child Process Work

The Redis example also incorporates a TCP server (hence working
with Node’s Net module), an HTTP server, as well as a child pro‐
cess. Chapter 5 covers HTTP, Chapter 7 covers Net, and Chapter 8
covers child processes.

For the message queue demonstration, I created a Node application to access the web
logfiles for several different subdomains. The application uses a Node child process
and the Unix tail -f command to access recent entries for the different logfiles.
From these log entries, the application uses two regular expression objects: one to
extract the resource accessed, and the second to test whether the resource is an image
file. If the accessed resource is an image file, the application sends the resource URL
in a TCP message to the message queue application.

All the message queue application does is listen for incoming messages on port 3000
and store whatever is sent into a Redis data store.

The third part of the demonstration application is a web server that listens for
requests on port 8124. With each request, it accesses the Redis database and pops off
the front entry in the image data store, returning it via the response object. If the
Redis database returns a null for the image resource, it prints out a message that the
application has reached the end of the message queue.

The first part of the application, which processes the web log entries, is shown
in Example 10-2. The Unix tail command is a way of displaying the last few lines of
a text file (or piped data). When used with the -f flag, the utility displays a few lines
of the file and then sits, listening for new file entries. When one occurs, it returns the
new line. The tail -f command can be used on several different files at the same
time and manages the content by labeling where the data comes from each time it
comes from a different source. The application isn’t concerned about which access log
is generating the latest tail response—it just wants the log entry.

Once the application has the log entry, it performs a couple of regular expression
matches on the data to look for image resource access (files with a .jpg, .gif, .svg,
or .png extension). If a pattern match is found, the application sends the resource
URL to the message queue application (a TCP server). The application is simple, so

MongoDB and Redis Database Systems | 205

it’s not checking to ensure that the occurrence of the string matches is actually a file
extension rather than a string embedded in the filename, such as this.jpg.html. You
can get false positives. However, it demonstrates Redis, which is all that matters.

206 | Chapter 10: Full-Stack Node Development

Example 10-2. Node application that processes web log entries and sends image resource
requests to the message queue

var spawn = require('child_process').spawn;
var net = require('net');

var client = new net.Socket();
client.setEncoding('utf8');

// connect to TCP server
client.connect ('3000','examples.burningbird.net', function() {
 console.log('connected to server');
});

// start child process
var logs = spawn('tail', ['-f',
 '/home/main/logs/access.log',
 '/home/tech/logs/access.log',
 '/home/shelleypowers/logs/access.log',
 '/home/green/logs/access.log',
 '/home/puppies/logs/access.log']);

// process child process data
logs.stdout.setEncoding('utf8');
logs.stdout.on('data', function(data) {

 // resource URL
 var re = /GET\s(\S+)\sHTTP/g;

 // graphics test
 var re2 = /\.gif|\.png|\.jpg|\.svg/;

 // extract URL
 var parts = re.exec(data);
 console.log(parts[1]);

 // look for image and if found, store
 var tst = re2.test(parts[1]);
 if (tst) {
 client.write(parts[1]);
 }
});
logs.stderr.on('data', function(data) {
 console.log('stderr: ' + data);
});

logs.on('exit', function(code) {
 console.log('child process exited with code ' + code);
 client.end();
});

MongoDB and Redis Database Systems | 207

Typical console log entries for this application are given in the following block of
code, with the entries of interest (the image file accesses) in bold:

/robots.txt
/weblog
/writings/fiction?page=10
/images/kite.jpg
/node/145
/culture/book-reviews/silkworm
/feed/atom/
/images/visitmologo.jpg
/images/canvas.png
/sites/default/files/paws.png
/feeds/atom.xml

Example 10-3 contains the code for the message queue. It’s a simple application that
starts a TCP server and listens for incoming messages. When it receives a message, it
extracts the data from the message and stores it in the Redis database. The application
uses the Redis rpush command to push the data on the end of the images list (bolded
in the code).

Example 10-3. Message queue that takes incoming messages and pushes them onto a
Redis list

var net = require('net');
var redis = require('redis');

var server = net.createServer(function(conn) {
 console.log('connected');

 // create Redis client
 var client = redis.createClient();

 client.on('error', function(err) {
 console.log('Error ' + err);
 });

 // sixth database is image queue
 client.select(6);
 // listen for incoming data
 conn.on('data', function(data) {
 console.log(data + ' from ' + conn.remoteAddress + ' ' +
 conn.remotePort);

 // store data
 client.rpush('images',data);
 });

}).listen(3000);
server.on('close', function(err) {
 client.quit();

208 | Chapter 10: Full-Stack Node Development

});

console.log('listening on port 3000');

The message queue application console log entries would typically look like the
following:

listening on port 3000
connected
/images/venus.png from 173.255.206.103 39519
/images/kite.jpg from 173.255.206.103 39519
/images/visitmologo.jpg from 173.255.206.103 39519
/images/canvas.png from 173.255.206.103 39519
/sites/default/files/paws.png from 173.255.206.103 39519

The last piece of the message queue demonstration application is the HTTP server
that listens on port 8124 for requests, shown in Example 10-4. As the HTTP server
receives each request, it accesses the Redis database, pops off the next entry in the
images list, and prints out the entry in the response. If there are no more entries in
the list (i.e., if Redis returns null as a reply), it prints out a message that the message
queue is empty.

Example 10-4. HTTP server that pops off messages from the Redis list and returns to the
user

var redis = require("redis"),
 http = require('http');

var messageServer = http.createServer();

// listen for incoming request
messageServer.on('request', function (req, res) {

 // first filter out icon request
 if (req.url === '/favicon.ico') {
 res.writeHead(200, {'Content-Type': 'image/x-icon'});
 res.end();
 return;
 }

 // create Redis client
 var client = redis.createClient();

 client.on('error', function (err) {
 console.log('Error ' + err);
 });

 // set database to 6, the image queue
 client.select(6);

MongoDB and Redis Database Systems | 209

 client.lpop('images', function(err, reply) {
 if(err) {
 return console.error('error response ' + err);
 }

 // if data
 if (reply) {
 res.write(reply + '\n');
 } else {
 res.write('End of queue\n');
 }
 res.end();
 });
 client.quit();

});

messageServer.listen(8124);

console.log('listening on 8124');

Accessing the HTTP server application with a web browser returns a URL for the
image resource on each request (browser refresh) until the message queue is empty.

The data involved is very simple, and possibly prolific, which is why Redis is so ide‐
ally suited for this type of application. It’s a fast, uncomplicated data store that doesn’t
take a great deal of effort in order to incorporate its use into a Node application.

When to Create the Redis Client
In my work with Redis, sometimes I create a Redis client and persist it for the life of
the application, whereas other times I create a Redis client and release it as soon as the
Redis command is finished. So when is it better to create a persistent Redis connec‐
tion versus create a connection and release it immediately?

Good question.

To test the impact of the two different approaches, I created a TCP server that listened
for requests and stored a simple hash in the Redis database. I then created another
application as a TCP client that did nothing more than send an object in a TCP mes‐
sage to the server.

I used the ApacheBench application to run several concurrent iterations of the client
and tested how long it took for each run. I ran the first batch with the Redis client
connection persisted for the life of the server, and ran the second batch where the cli‐
ent connection was created for each request and immediately released.

What I expected to find was that the application that persisted the client connection
was faster, and I was right…to a point. About halfway through the test with the per‐

210 | Chapter 10: Full-Stack Node Development

sistent connection, the application slowed down dramatically for a brief period of
time and then resumed its relatively fast pace.

Of course, what most likely happened is that the queued requests for the Redis data‐
base eventually blocked the Node application, at least temporarily, until the queue was
freed up. I didn’t run into this same situation when opening and closing the connec‐
tions with each request because the extra overhead required for this process slowed
the application just enough so that it didn’t hit the upper end of concurrent users.

AngularJS and Other Full-Stack Frameworks
First of all, framework is a grossly overused term. We see it used for frontend libraries
such as jQuery, graphics libraries such as D3, Express, and a host of more modern
full-stack applications. In this chapter, when I use “framework,” I mean full-stack
frameworks such as AngularJS, Ember, and Backbone.

To become familiar with full-stack frameworks, you need to become familiar with the
website TodoMVC. This site defines the requirements for a basic type of application,
a to-do list, and then invites any and all framework developers to submit implemen‐
tations of this application. The site also provides a plain-vanilla implementation of
the application without using any framework, as well as one implemented in jQuery.
The site gives developers a way to contrast and compare how the same functionality
is implemented in each framework. This includes all the popular frameworks, not just
AngularJS: Backbone.js, Dojo, Ember, React, and so on. It also features applications
that incorporate multiple technologies, such as one that utilizes AngularJS, Express,
and the Google Cloud Platform.

The To-Do requirements provide a recommended directory and file structure:

index.html
package.json
node_modules/
css
└── app.css
js/
├── app.js
├── controllers/
└── models/
readme.md

There’s nothing esoteric about the structure, and it resembles what we found for the
ExpressJS application. But how each framework meets the requirements can be very
different, which is why the ToDo application is a great way of learning how each
framework works.

To demonstrate, let’s look at some of the code for a couple of the frameworks: Angu‐
larJS and Backbone.js. I’m not going to replicate much of the code because it’s a sure

AngularJS and Other Full-Stack Frameworks | 211

http://todomvc.com/

bet that the code will change by the time you read this. I’ll start with AngularJS and
focus on the optimized application—the site features several different implementa‐
tions featuring AngularJS. Figure 10-1 shows the application after three to-do items
have been added.

Figure 10-1. The To-Do application after three to-do items have been added

To start, the application root, app.js, is very simple, as we’d expect with all the func‐
tionality being split to the various model-view-controller subgroups.

/* jshint undef: true, unused: true */
/*global angular */
(function () {
'use strict';

/**
 * The main TodoMVC app module that pulls all dependency modules
declared in same named files
 *
 * @type {angular.Module}
 */

212 | Chapter 10: Full-Stack Node Development

angular.module('todomvc', ['todoCtrl', 'todoFocus', 'todoStorage']);
})();

The name of the application is todomvc, and it incorporates three services: todoCtrl,
todoFocus, and todoStorage. The user interface is encompassed in the index.html file
located at the root directory. It’s quite large, so I’ll just grab a piece. The main page
body is enclosed in a section element, with the following definition:

<section id="todoapp" ng-controller="TodoCtrl as TC">
...
</section>

AngularJS adds annotations to HTML called derivatives. You’ll recognize them easily,
as the standard derivatives each start with “ng-”, as in ng-submit, ng-blur, and ng-
model. In the code snippet, the ng-controller derivative defines the controller for
the view, TodoCtrl, and the reference used for it that will appear elsewhere in the tem‐
plate, TC.

<form ng-submit="TC.doneEditing(todo, $index)">
 <input class="edit"
 ng-trim="false"
 ng-model="todo.title"
 ng-blur="TC.doneEditing(todo, $index)"
 ng-keydown="($event.keyCode === TC.ESCAPE_KEY)
 && TC.revertEditing($index)"
 todo-focus="todo === TC.editedTodo">
</form>

You can see several derivatives at work, and their purpose is intuitive for the most
part. The ng-model derivative is where the view meets the model (data), in this case
todo.title. The TC.doneEditing and TC.revertEditing are the controller func‐
tions. I pulled their code out of the controller file and replicated it below. The
TC.doneEditing function resets the TC.editedTodo object, trims the edited to-do’s
title, and if there is no title, removes the to-do. The TC.revertEditing function also
resets the to-do object and reassigns the original to-do to the index of the original to-
do in the array of to-dos.

TC.doneEditing = function (todo, index) {
 TC.editedTodo = {};
 todo.title = todo.title.trim();

 if (!todo.title) {
 TC.removeTodo(index);
 }
};

TC.revertEditing = function (index) {
 TC.editedTodo = {};
 todos[index] = TC.originalTodo;
};

AngularJS and Other Full-Stack Frameworks | 213

There’s nothing overly complex about the code. Check out a copy of the code (Git‐
Hub location) and try it yourself.

The Backbone.js application looks and behaves the same as the AngularJS one, but
the source code is very different. Though the AngularJS app.js file wasn’t very large,
the Backbone.js one is even smaller:

/*global $ */
/*jshint unused:false */
var app = app || {};
var ENTER_KEY = 13;
var ESC_KEY = 27;

$(function () {
'use strict';

// kick things off by creating the `App`
new app.AppView();
});

Basically, the app.AppView() starts the application. The app.js is simple, but the
implementation of app.AppView() is not. Rather than annotating the HTML with
derivatives, like AngularJS, Backbone.js makes heavy use of Userscore templates. In
the index.html file, you’ll see their use in in-page script elements such as the following
representing the template for each individual to-do. Interspersed in the HTML are
the template tags, such as title, and whether the checkbox is checked or not.

<script type="text/template" id="item-template">
 <div class="view">
 <input class="toggle" type="checkbox" <%= completed ? 'checked'
 : '' %>>
 <label><%- title %></label>
 <button class="destroy"></button>
 </div>
 <input class="edit" value="<%- title %>">
 </script>

Rendering of the items occurs in the todo-view.js file, but the driving force behind the
rendering occurs in the app-view.js file. I’ve included a portion of the file:

// Add a single todo item to the list by creating a view for it, and
 // appending its element to the ``.
 addOne: function (todo) {
 var view = new app.TodoView({ model: todo });
 this.$list.append(view.render().el);
 },

The rendering occurs in the todo-view.js file, a portion of which follows. You can see
the reference to the list item’s identifier item-template, given previously in the script
embedded into the index.html file. The HTML in the script element in the index.html
provides the template for the items rendered by the view. In the template is a place‐

214 | Chapter 10: Full-Stack Node Development

https://github.com/tastejs/todomvc/tree/gh-pages/examples/angularjs-perf
https://github.com/tastejs/todomvc/tree/gh-pages/examples/angularjs-perf

holder for the data provided by the model for the application. In the to-do applica‐
tion, the data is the title of the item and whether it’s completed or not.

// The DOM element for a todo item...
app.TodoView = Backbone.View.extend({
 //... is a list tag.
 tagName: 'li',

 // Cache the template function for a single item.
 template: _.template($('#item-template').html()),

 ...

 // Re-render the titles of the todo item.
 render: function () {
 // Backbone LocalStorage is adding `id` attribute instantly after
 // creating a model. This causes our TodoView to render twice. Once
 // after creating a model and once on `id` change. We want to
 // filter out the second redundant render, which is caused by this
 // `id` change. It's known Backbone LocalStorage bug, therefore
 // we've to create a workaround.
 // https://github.com/tastejs/todomvc/issues/469
 if (this.model.changed.id !== undefined) {
 return;
 }

 this.$el.html(this.template(this.model.toJSON()));
 this.$el.toggleClass('completed', this.model.get('completed'));
 this.toggleVisible();
 this.$input = this.$('.edit');
 return this;
 },

It’s a little harder to follow what’s happening with Backbone.js than with AngularJS,
but like the former, working through the ToDo application provides a great deal of
clarity. I also suggest you check out this variation and give it a try.

View rendering is only one of the differences between the frameworks. AngularJS
rebuilds the DOM when changes occur, while Backbone.js makes changes in
place. AngularJS provides two-way data binding, which means changes in the UI and
model are automatically synchronized. Backbone.js’s architecture is MVP (model-
view-presenter), whereas AngularJS’s is MVC (model-view-controller), meaning that
Backbone.js doesn’t provide the same data binding and you have to roll your own. On
the other hand, Backbone.js is more lightweight and can be faster than AngularJS,
though AngularJS is usually simpler for new framework developers to comprehend.

Both of these frameworks and the other full-stack frameworks are used to dynami‐
cally create web pages. And by that, I don’t mean the same kind of dynamic page gen‐
eration explored earlier in the chapter in “The Express Application Framework” on
page 192. These frameworks enable a specific type of application known as a single-

AngularJS and Other Full-Stack Frameworks | 215

https://github.com/tastejs/todomvc/tree/gh-pages/examples/backbone

page application, or SPA. Instead of generating HTML on the server and sending it to
the browser, they package the data, send it to the browser, and then format the web
page using JavaScript.

The advantage to this type of functionality is that the web page doesn’t always have to
be updated when you change the view of the data or drill down into more detail in
the page.

Consider the Gmail application. It’s an example of an SPA. When you open the inbox
for the application and then access one of the emails, the entire page is not reloaded.
Instead, any data necessary for the email is retrieved from the server and incorpora‐
ted into the page display. The result is fast and less disconcerting to the user. But you
never want to look at the page source. If you want to remain sane, never use the page
source feature on your browser to look at Google pages.

What does a good framework need to provide? In my opinion, one of the features
that frameworks should support is data binding between display and data. This
means if the data changes, the user interface updates. It should also support a tem‐
plate engine, such as the Jade template engine used with Express earlier. It also needs
a way of reducing redundant code, so the framework needs to provide support for
reusable components and/or modularization.

In the Express application, we saw a connection between URL routing and functions.
The URL becomes the unique way of accessing either groups of data or single items.
To find a unique student, you might have a URL like /students/A1234, and the request
routes to the page with details for the student identified by A1234. Frameworks must
provide support for this type of routing.

The framework also needs to support a MV* schema, which means, at a minimum,
business logic is separate from visualization logic. It could support a variation of
model-view-controller (MVC), model-view-presenter (MVP), model-view-view-
model (MVVM), and so on, but at a minimum it needs to support a separation of the
data and the UI.

And, of course, considering the context of this book, the framework should integrate
with Node.

216 | Chapter 10: Full-Stack Node Development

CHAPTER 11

Node in Development and Production

The birth of Node coincided with, and even inspired, a host of new tools and techni‐
ques for code development, management, and maintenance. Debugging, testing, task
management, production rollout, and support are key elements of any Node project,
and it’s a good thing that most are automated.

This chapter introduces some of the tools and the concepts. It is not an exhaustive
list, but should provide a good start in your explorations.

Debugging Node Applications
I confess to using console logging more than I should for debugging. It is an easy
approach to checking variable values and results. However, the issue with using the
console is that we’re impacting on the dynamics and behavior of the application, and
could actually be masking—or creating—a problem just by its use. It really is better to
use debugging tools, especially when the application grows beyond simple blocks of
code.

Node provides a built-in debugger we can use to set breakpoints in the code and add
watchers in order to view intermediate code results. It’s not the most sophisticated
tool in the world, but it is sufficient for discovering bugs and potential gotchas. In the
next section, we’ll look at a more sophisticated tool, the Node Inspector.

The Node Debugger
Given the choice, I’ll always prefer native implementations rather than using third-
party functionality. Luckily for our debugging needs, Node does provide built-in
debugger support. It’s not sophisticated but can be useful.

217

You can insert breakpoints into your code by inserting the debugger command
directly in the code:

for (var i = 0; i <= test; i++) {
 debugger;
 second+=i;
}

To start debugging the application, you can specify the debug option when you run
the application:

node debug application

To demonstrate the debugger, I created an application that has two debugger break‐
points embedded:

var fs = require('fs');
var concat = require('./external.js').concatArray;

var test = 10;
var second = 'test';

for (var i = 0; i <= test; i++) {
 debugger;
 second+=i;
}

setTimeout(function() {
 debugger;
 test = 1000;
 console.log(second);
}, 1000);

fs.readFile('./log.txt', 'utf8', function (err,data) {
 if (err) {
 return console.log(err);
 }
 var arry = ['apple','orange','strawberry'];
 var arry2 = concat(data,arry);
 console.log(arry2);
});

The application is started with the following:

node debug debugtest

If you start a Node application with the --debug command-line flag, you can also
start the debugger by connecting to a process with the pid:

node debug -p 3383

Or you can start it by connecting to the running process via URI:

node debug http://localhost:3000

218 | Chapter 11: Node in Development and Production

When the debugger opens, the application breaks at line 1 and lists out the top part of
the code:

< Debugger listening on port 5858
debug> . ok
break in debugtest.js:1
> 1 var fs = require('fs');
 2 var concat = require('./external.js').concatArray;
 3

You can use the list command to list out the source code lines in context. A com‐
mand like list(10) will list the previous 10 lines of code and the next 10 lines of
code. Typing list(25) with the debug test application displays all the lines in the
application, numbered by line. You can add additional breakpoints at this point using
either the setBreakpoint command or its shortcut, sb. We’ll set a breakpoint for line
19 in the test application, which inserts a breakpoint in the fs.readFile() callback
function. We’ll also set a breakpoint directly in the custom module, at line 3:

debug> sb(19)
debug> sb('external.js',3)

You’ll get a warning about the script external.js not being loaded yet. It doesn’t impact
the functionality.

You can also set a watch on variables or expressions, using the watch('expression')
command directly in the debugger. We’ll watch the test and second variables, the
data parameter, and the arry2 array:

debug> watch('test');
debug> watch('second');
debug> watch('data');
debug> watch('arry2');

Finally, we’re ready to start debugging. Typing cont or c will run the application up to
the first breakpoint. In the output, we see we’re at the first breakpoint and we also see
the value of the four watched items. Two—test and second—have an actual value,
the other two have a value of <error>. That’s because the application is currently out‐
side the scope of the functions where the parameter (data) and variable (arry2) are
defined. Go ahead and ignore the errors for now.

debug> c
break in debugtest.js:8
Watchers:
 0: test = 10
 1: second = "test"
 2: data = "<error>"
 3: arry2 = "<error>"

 6
 7 for (var i = 0; i <= test; i++) {

Debugging Node Applications | 219

> 8 debugger;
 9 second+=i;
 10 }

There are some miscellaneous commands you can try out before we move on to the
next breakpoint. The scripts command lists out which scripts are currently loaded:

debug> scripts
* 57: debugtest.js
 58: external.js
debug>

The version command displays the V8 version. Type c again to go to the next break‐
point:

debug> c
break in debugtest.js:8
Watchers:
 0: test = 10
 1: second = "test0"
 2: data = "<error>"
 3: arry2 = "<error>"

 6
 7 for (var i = 0; i <= test; i++) {
> 8 debugger;
 9 second+=i;
 10 }

Notice the changed value for the second variable. That’s because it’s being modified in
the for loop in which the debugger is contained. Typing in c several more times exe‐
cutes the loop and we can see the variable continuously being modified. Unfortu‐
nately, we can’t clear the breakpoint created using the debugger statement, but we can
clear a breakpoint set using setBreakpoint or sb. To use clearBreakpoint or cb,
specify the name of the script and the line number of the breakpoint:

cb('debugtest.js',19)

You can also turn off a watcher with unwatch:

debug> unwatch('second')

Using sb with no value sets breakpoint to the current line:

debug> sb();

In the application, the debugger runs the application until the next breakpoint, in the
fs.readFile() callback. Now we’ll see that the data parameter has changed:

debug> c
break in debugtest.js:19
Watchers:
 0: test = 10
 1: second = "test012345678910"

220 | Chapter 11: Node in Development and Production

 2: data = "test"
 3: arry2 = undefined

 17
 18 fs.readFile('./log.txt', 'utf8', function (err,data) {
>19 if (err) {
 20 return console.log(err);
 21 }

We can also see that arry2 value is no longer an error but instead is undefined.

Instead of typing c to continue, we’ll now step through each line of the application
using the next or n command. When we get to line 23, the debugger opens up the
external module and breaks at line 3 because of the previously set breakpoint:

debug> n
break in external.js:3
Watchers:
 0: test = "<error>"
 1: second = "<error>"
 2: data = "<error>"
 3: arry2 = "<error>"

 1
 2 var concatArray = function(str, arry) {
> 3 return arry.map(function(element) {
 4 return str + ' ' + element;
 5 });

We could have also stepped through to line 23 in the application and used the step or
s command to step into the module function:

debug> s
break in external.js:3
Watchers:
 0: test = "<error>"
 1: second = "<error>"
 2: arry2 = "<error>"
 3: data = "<error>"

 1
 2 var concatArray = function(str, arry) {
> 3 return arry.map(function(element) {
 4 return str + ' ' + element;
 5 });

Notice how all the watched values now display an error. At this point, we’re com‐
pletely out of the context of the parent application. We can add watchers when we’re
in functions or external modules to prevent these kinds of errors or to watch variables
in the context in which they’re defined if the same variable is used in the application
and in the module or other functions.

Debugging Node Applications | 221

The Continue Bug

If you type c or cont and the application is at the end, the debugger
will hang. Nothing will break you out of it either. This is a known
bug.

The backtrace or bt command provides a backtrace of the current execution context.
The value returned at this point in the debugging is displayed in the next code block:

debug> bt
#0 concatArray external.js:3:3
#1 debugtest.js:23:15

We see two entries, one for the line we’re currently at in the application and one rep‐
resenting the current line in the imported module function.

We can step through the external function or we can return to the application using
the out or o command. This command returns you to the application when you’re in
a function (whether that function is in local script or a module).

The Node debugger is based in REPL, and we can actually pull up the debugger’s
REPL by typing the repl command. If we want to kill the script, we can use the kill
command, and if we want to restart the script, we can type restart. Be aware,
though, that not only will the script restart but all the breakpoints and watchers will
be cleared.

Since the debugger runs in REPL, Ctrl-C will terminate the application or you can
type .exit.

Node Inspector
If you’re ready to step up your debugging game, then you’ll want to check out Node
Inspector. Node Inspector incorporates debugging features you’re probably familiar
with by using the Blink DevTools debugger that works with either Chrome or Opera.
The upside to the tool is the increased level of sophistication and its having a visual
environment for debugging. The downside to the tool is system requirements. For
instance, to run it in one of my Windows 10 machines, the application told me I had
to install either the .NET Framework 2.0 SDK or Microsoft Visual Studio 2005.

Installing Node Inspector

If you run into the Visual Studio error, you can try the following to
change the version of the Visual Studio used by the application:

npm install -g node-inspector --msvs_version=2013

Or use whatever version you have installed.

222 | Chapter 11: Node in Development and Production

If you have the environment that can support Node Inspector, install it with:

npm install -g node-inspector

To use it, run your Node application using the following command. You’ll need to
add the .js extension with the application when you run it with Node Inspector:

node-debug application.js

One of two things will happen. If Chrome or Opera is your default browser, the appli‐
cation will open up in the developer tools. If your default browser isn’t one of these
two, you’ll need to manually open up one or the other browsers and provide the URL
http://127.0.0.1:8080/?port=5858.

Node Inspector Documentation

There is some documentation on Node Inspector at its GitHub
repository. Strongloop, the company that supports the tool, also
provides some documentation on using the Node Inspector. As the
documentation notes, you can also get what you need from the
Chrome Developer Tools documentation. Be aware, though, that
Google frequently changes location of documentation and it may
not be working or complete at any point in time.

I opened my debugtest.js file created in the last section in Node Inspector. Figure 11-1
shows the debugger with the file first loaded and after clicking the run button, which
is located in the upper-righthand corner of the tool. Node Inspector honors the debug
ger command, which becomes the first breakpoint for the application. The watch
variables are shown just below the buttons to control program execution.

Debugging Node Applications | 223

https://github.com/node-inspector/node-inspector
https://github.com/node-inspector/node-inspector
http://bit.ly/1OQEMkB
http://bit.ly/25e082Z

Figure 11-1. Running debugtest.js in the Node Inspector debugger

Setting new breakpoints is just a matter of clicking in the left margin of the line where
you want the breakpoint. To add a new watcher, click the plus sign (+) in the Watch
Expressions header. The program commands above allow you to (in order) run the
application to the next breakpoint, step over the next function call, step into the func‐
tion, step out of the current function, clear all breakpoints, and pause the application.

What’s new with this wonderful visual interface is the listing of applications/modules
in the left window, a call stack, a listing of scope variables (both local and global), and
the set breakpoints, in windows on the right. If we want to add a breakpoint in the
imported module, external.js, it’s just a simple matter of opening the file from the list
in the left and inserting a breakpoint. Figure 11-2 shows the debugger with the mod‐
ule loaded and breakpoint reached.

224 | Chapter 11: Node in Development and Production

Figure 11-2. Node Inspector with external.js module loaded and breakpoint reached

What’s interesting when you look at the application loaded into Node Inspector is
that you can see how the application is wrapped in an anonymous function, as I
described in Chapter 3 in the section titled “How Node Finds and Loads a Module”
on page 56.

When you’re finished with the Node Inspector, you can close the browser and termi‐
nate the batch operation by pressing Ctrl-C.

More Sophisticated Tools

Both the built-in Debugger and Node Inspector provide solid func‐
tionality to help you debug your Node applications. In addition, if
you want to invest the time in setting up the environment and
becoming familiar with a more sophisticated integrated develop‐
ment environment (IDE), you can also use a tool like Nodeclipse in
the venerable Eclipse IDE.

Debugging Node Applications | 225

http://www.nodeclipse.org/usage

Unit Testing
Unit testing is a way of isolating specific components of an application for testing.
Many of the tests that are provided in the tests subdirectory of Node modules are unit
tests. The tests in the test subdirectory of the Node installation are all unit tests. Many
of these unit tests are built using the Assert module, which we’ll go over next.

Unit Testing with Assert
Assertion tests evaluate expressions, the end result of which is a value of either true or
false. If you’re testing the return from a function call, you might first test that the
return is an array (first assertion). If the array contents should be a certain length, you
perform a conditional test on the length (second assertion), and so on. There’s one
Node built-in module that facilitates this form of assertion testing: Assert. Its purpose
is for internal use with Node, but we can use it. We just need to be aware that it’s not a
true testing framework.

You include the Assert module in an application with the following:

var assert = require('assert');

To see how to use Assert, let’s look at how existing modules use it. The Node applica‐
tion makes use of the Assert module in its module unit tests. For instance, there’s a
test application called test-util.js that tests the Utilities module. The following code is
the section that tests the isArray method:

// isArray
assert.equal(true, util.isArray([]));
assert.equal(true, util.isArray(Array()));
assert.equal(true, util.isArray(new Array()));
assert.equal(true, util.isArray(new Array(5)));
assert.equal(true, util.isArray(new Array('with', 'some', 'entries')));
assert.equal(true, util.isArray(context('Array')()));
assert.equal(false, util.isArray({}));
assert.equal(false, util.isArray({ push: function() {} }));
assert.equal(false, util.isArray(/regexp/));
assert.equal(false, util.isArray(new Error));
assert.equal(false, util.isArray(Object.create(Array.prototype)));

Both the assert.equal() and the assert.strictEqual() methods have two manda‐
tory parameters: an expected response and an expression that evaluates to a
response. In the assert.equal isArray, if the expression evaluates to true and the
expected response is true, the assert.equal method succeeds and produces no out‐
put—the result is silent.

If, however, the expression evaluates to a response other than what’s expected, the
assert.equal method responds with an exception. If I take the first statement in the
isArray test in the Node source and modify it to:

226 | Chapter 11: Node in Development and Production

assert.equal(false, util.isArray([]));

then the result is:

assert.js:89
 throw new assert.AssertionError({
 ^
AssertionError: false == true
 at Object.<anonymous> (/home/examples/public_html/
 learnnode2/asserttest.js:4:8)
 at Module._compile (module.js:409:26)
 at Object.Module._extensions..js (module.js:416:10)
 at Module.load (module.js:343:32)
 at Function.Module._load (module.js:300:12)
 at Function.Module.runMain (module.js:441:10)
 at startup (node.js:134:18)
 at node.js:962:3

The assert.equal() and assert.strictEqual() methods also have a third optional
parameter, a message that’s displayed rather than the default in case of a failure:

assert.equal(false, util.isArray([]), 'Test 1Ab failed');

This can be a useful way of identifying exactly which test failed if you’re running sev‐
eral in a test script. You can see the use of a message (a label) in the node-redis test
code:

assert.equal(str, results, label + " " + str +
 " does not match " + results);

The message is displayed when you catch the exception and print out the message.

The following Assert module methods all take the same three parameters, though
how the test value and expression relate to each other varies, as the name of the test
implies:

assert.equal

Fails if the expression results and given value are not equal

assert.strictEqual

Fails if the expression results and given value are not strictly equal

assert.notEqual

Fails if the expression results and given value are equal

assert.notStrictEqual

Fails if the expression results and given value are strictly equal

assert.deepEqual

Fails if the expression results and given value are not equal

Unit Testing | 227

assert.notDeepEqual

Fails if the expression results and given value are equal

assert.deepStrictEqual

Similar to assert.deepEqual() except primitives are compared with strict equal
(===)

assert.notDeepStrictEqual

Tests for deep strict inequality

The deep methods work with complex objects, such as arrays or objects. The follow‐
ing succeeds with assert.deepEqual:

assert.deepEqual([1,2,3],[1,2,3]);

but would not succeed with assert.equal.

The remaining assert methods take differing parameters. Calling assert as a
method and passing in a value and a message is equivalent to calling assert.isEqual
and passing in true as the first parameter, an expression, and a message. The follow‐
ing:

var val = 3;
assert(val == 3, 'Test 1 Not Equal');

is equivalent to:

assert.equal(true, val == 3, 'Test 1 Not Equal');

Or use the alias of assert.ok:

assert.ok(val == 3, 'Test 1 Not Equal');

The assert.fail method throws an exception. It takes four parameters: a value, an
expression, a message, and an operator, which is used to separate the value and
expression in the message when an exception is thrown. In the following code snip‐
pet:

try {
 var val = 3;
 assert.fail(val, 4, 'Fails Not Equal', '==');
} catch(e) {
 console.log(e);
}

the console message is:

{ [AssertionError: Fails Not Equal]
 name: 'AssertionError',
 actual: 3,
 expected: 4,
 operator: '==',

228 | Chapter 11: Node in Development and Production

 message: 'Fails Not Equal',
 generatedMessage: false }

The assert.ifError function takes a value and throws an exception only if the value
resolves to anything but false. As the Node documentation states, it’s a good test for
the error object as the first argument in a callback function:

assert.ifError(err); //throws only if true value

The last assert methods are assert.throws and assert.doesNotThrow. The first
expects an exception to get thrown; the second doesn’t. Both methods take a code
block as the first required parameter, and an optional error and message as the sec‐
ond and third parameters. The error object can be a constructor, regular expression,
or validation function. In the following code snippet, the error message is printed out
because the error regular expression as the second parameter doesn’t match the error
message:

assert.throws(
 function() {
 throw new Error("Wrong value");
 },
 /something/
);

You can create sturdy unit tests using the Assert module. The one major limitation
with the module, though, is the fact that you have to do a lot of wrapping of the tests
so that the entire testing script doesn’t fail if one test fails. That’s where using a higher-
level unit testing framework, such as Nodeunit (discussed next), comes in handy.

Unit Testing with Nodeunit
Nodeunit provides a way to script several tests. Once scripted, each test is run serially,
and the results are reported in a coordinated fashion. To use Nodeunit, you’re going
to want to install it globally with npm:

[sudo] npm install nodeunit -g

Nodeunit provides a way to easily run a series of tests without having to wrap every‐
thing in try/catch blocks. It supports all of the Assert module tests and provides a
couple of methods of its own in order to control the tests. Tests are organized as test
cases, each of which is exported as an object method in the test script. Each test case
gets a control object, typically named test. The first method call in the test case is to
the test element’s expect method to tell Nodeunit how many tests to expect in the
test case. The last method call in the test case is to the test element’s done method to
tell Nodeunit the test case is finished. Everything in between comprises the actual test
unit:

Unit Testing | 229

module.exports = {
 'Test 1' : function(test) {
 test.expect(3); // three tests
 ... // the tests
 test.done();
 },
 'Test 2' : function (test) {
 test.expect(1); // only one test
 ... // the test
 test.done();
 }
};

To run the tests, type nodeunit, followed by the name of the test script:

nodeunit thetest.js

Example 11-1 has a small but complete testing script with six assertions. It consists of
two test units, labeled Test 1 and Test 2. The first test unit runs four separate tests,
while the second test unit runs two. The expect method call reflects the number of
tests being run in the unit.

Example 11-1. Nodeunit test script, with two test units, running a total of six tests

var util = require('util');

module.exports = {
 'Test 1' : function(test) {
 test.expect(4);
 test.equal(true, util.isArray([]));
 test.equal(true, util.isArray(new Array(3)));
 test.equal(true, util.isArray([1,2,3]));
 test.notEqual(true, 1 > 2);
 test.done();
 },
 'Test 2' : function(test) {
 test.expect(2);
 test.deepEqual([1,2,3], [1,2,3]);
 test.ok('str' === 'str', 'equal');
 test.done();
 }
};

The result of running the Example 11-1 test script with Nodeunit is:

thetest.js
✔ Test 1
✔ Test 2

OK: 6 assertions (12ms)

230 | Chapter 11: Node in Development and Production

Symbols in front of the tests indicate success or failure: a check for success and an x
for failure. None of the tests in this script fails, so there’s no error script or stack trace
output.

For CoffeeScript fans, Nodeunit supports CoffeeScript applications.

Other Testing Frameworks
In addition to Nodeunit, covered in the preceding section, there are several other
testing frameworks available for Node developers. Some of the tools are simpler to
use than others and each has its own advantages and disadvantages. Next, I’ll briefly
cover three frameworks: Mocha, Jasmine, and Vows.

Mocha
Install Mocha with npm:

npm install mocha -g

Mocha is considered the successor to another popular testing framework, Espresso.

Mocha works in both browsers and Node applications. It allows for asynchronous
testing via the done function, though the function can be omitted for synchronous
testing. Mocha can be used with any assertion library.

The following is an example of a Mocha test using Assert:

assert = require('assert')
describe('MyTest', function() {
 describe('First', function() {
 it('sample test', function() {
 assert.equal('hello','hello');
 });
 });
});

Run the test with the following command line:

mocha testcase.js

The test should succeed:

Unit Testing | 231

 MyTest
 First
 ✓ sample test

 1 passing (15ms)

Vows
Vows is a behavior-driven development (BDD) testing framework and has one
advantage over others: more comprehensive documentation. Testing is composed of
testing suites, themselves made up of batches of sequentially executed tests. A batch
consists of one or more contexts executed in parallel and each consisting of a topic.
The test within the code is known as a vow. Where Vows prides itself on being differ‐
ent from the other testing frameworks is by providing a clear separation between that
which is being tested (topic) and the test (vow).

I know those are some strange uses of familiar words, so let’s look at a simple example
to get a better idea of how a Vows test works. First, though, we have to install Vows:

npm install vows

To try out Vows, I’m using a simple circle module that returns area and circumfer‐
ence. Since the values are floating point and I’m testing equality, I’m limiting the
returned values to four decimal points:

const PI = Math.PI;

exports.area = function (r) {
 return (PI * r * r).toFixed(4);
};

exports.circumference = function (r) {
 return (2 * PI * r).toFixed(4);
};

In the Vows test application, the circle object is the topic, and the area and circumfer‐
ence methods are the vows. Both are encapsulated as a Vows context. The suite is the
overall test application, and the batch is the test instance (circle and two methods).
Example 11-2 shows the entire test.

Example 11-2. Vows test application with one batch, one context, one topic, and two
vows

var vows = require('vows'),
 assert = require('assert');

var circle = require('./circle');

232 | Chapter 11: Node in Development and Production

var suite = vows.describe('Test Circle');

suite.addBatch({
 'An instance of Circle': {
 topic: circle,
 'should be able to calculate circumference': function (topic) {
 assert.equal (topic.circumference(3.0), 18.8496);
 },
 'should be able to calculate area': function(topic) {
 assert.equal (topic.area(3.0), 28.2743);
 }
 }
}).run();

Running the application with Node runs the test because of the addition of the run
method at the end of the addBatch method:

node vowstest.js

The results should be two successful tests:

·· ✓ OK » 2 honored (0.012s)

The topic is always an asynchronous function or a value. Instead of using circle as
the topic, I could have directly referenced the object methods as topics—with a little
help from function closures:

var vows = require('vows'),
 assert = require('assert');

var circle = require('./circle');

var suite = vows.describe('Test Circle');

suite.addBatch({
 'Testing Circle Circumference': {
 topic: function() { return circle.circumference;},
 'should be able to calculate circumference': function (topic) {
 assert.equal (topic(3.0), 18.8496);
 },
 },
 'Testing Circle Area': {
 topic: function() { return circle.area;},
 'should be able to calculate area': function(topic) {
 assert.equal (topic(3.0), 28.2743);
 }
 }
}).run();

In this version of the example, each context is the object given a title: Testing Cir
cle Circumference and Testing Circle Area. Within each context, there’s one
topic and one vow.

Unit Testing | 233

You can incorporate multiple batches, each with multiple contexts which can in turn
have multiple topics and multiple vows.

Keeping Node Up and Running
You do the best you can with your application. You test it thoroughly and you add
error handling so that errors are managed gracefully. Still, there can be gotchas that
come along—things you didn’t plan for that can take your application down. If this
happens, you need to have a way to ensure that your application can start again, even
if you’re not around to restart it.

Forever is just such a tool—it ensures that your application restarts if it crashes. It’s
also a way of starting your application as a daemon that persists beyond the current
terminal session. Forever can be used from the command line or incorporated as part
of the application. If you use it from the command line, you’ll want to install it
globally:

npm install forever -g

Rather than start an application with Node directly, start it with Forever:

 forever start -a -l forever.log -o out.log -e err.log finalserver.js

Default values are accepted for two options: minUpTime (set to 1000ms) and spin
SleepTime (set to 1000ms).

The preceding command starts a script, finalserver.js, and specifies the names for the
Forever log, the output log, and the error log. It also instructs the application to
append the log entries if the logfiles already exist.

If something happens to the script to cause it to crash, Forever restarts it. Forever also
ensures that a Node application continues running, even if you terminate the termi‐
nal window used to start the application.

Forever has both options and actions. The start value in the command line just
shown is an example of an action. All available actions are:

start

Starts a script

stop

Stops a script

stopall

Stops all scripts

restart

Restarts the script

234 | Chapter 11: Node in Development and Production

restartall

Restarts all running Forever scripts

cleanlogs

Deletes all log entries

logs

Lists all logfiles for all Forever processes

list

Lists all running scripts

config

Lists user configurations

set <key> <val>

Sets configuration key value

clear <key>

Clears configuration key value

logs <script|index>
Tails the logs for <script|index>

columns add <col>

Adds a column to the Forever list output

columns rm <col>

Removes a column from the Forever list output

columns set <cols>

Sets all columns for the Forever list output

An example of the list output is the following, after httpserver.js is started as a For‐
ever daemon:

info: Forever processes running
data: uid command script forever pid id
logfile uptime
data: [0] _gEN /usr/bin/nodejs serverfinal.js 10216 10225
/home/name/.forever/forever.log STOPPED

List the logfiles out with the logs action:

info: Logs for running Forever processes
data: script logfile
data: [0] serverfinal.js /home/name/.forever/forever.log

There are also a significant number of options, including the logfile settings just
demonstrated, as well as running the script (-s or --silent), turning on Forever’s

Keeping Node Up and Running | 235

verbosity (-v or --verbose), setting the script’s source directory (--sourceDir), and
others, all of which you can find just by typing:

forever --help

You can incorporate the use of Forever directly in your code using the companion
module, forever-monitor, as demonstrated in the documentation for the module:

var forever = require('forever-monitor');

 var child = new (forever.Monitor)('serverfinal.js', {
 max: 3,
 silent: true,
 args: []
 });

 child.on('exit', function () {
 console.log('serverfinal.js has exited after 3 restarts');
 });

 child.start();

Additionally, you can use Forever with Nodemon, not only to restart the application
if it unexpectedly fails but also to ensure that the application is refreshed if the source
is updated.

Install Nodemon globally:

npm install -g nodemon

Nodemon wraps your application. Instead of using Node to start the application, use
Nodemon:

nodemon app.js

Nodemon sits quietly monitoring the directory (and any contained directories) where
you ran the application, checking for file changes. If it finds a change, it restarts the
application so that it picks up the recent changes.

You can pass parameters to the application:

nodemon app.js param1 param2

You can also use the module with CoffeeScript:

nodemon someapp.coffee

If you want Nodemon to monitor some directory other than the current one, use the
--watch flag:

nodemon --watch dir1 --watch libs app.js

There are other flags, documented with the module.

236 | Chapter 11: Node in Development and Production

https://github.com/remy/nodemon/

To use Nodemon with Forever, wrap Nodemon within Forever and specify the
--exitcrash option to ensure that if the application crashes, Nodemon exits cleanly
and passes control to Forever:

forever start nodemon --exitcrash serverfinal.js

If you get an error about Forever not finding Nodemon, use the full path:

forever start /usr/bin/nodemon --exitcrash serverfinal.js

If the application does crash, Forever starts Nodemon, which in turn starts the Node
script, ensuring that not only is the running script refreshed if the source is changed,
but also that an unexpected failure doesn’t take your application permanently offline.

Benchmark and Load Testing with Apache Bench
A robust application that meets all the user’s needs is going to have a short life if its
performance is atrocious. We need the ability to performance test our Node applica‐
tions, especially when we make tweaks as part of the process to improve performance.
We can’t just tweak the application, put it out for production use, and let our users
drive out performance issues.

Performance testing consists of benchmark testing and load testing. Benchmark test‐
ing, also known as comparison testing, is running multiple versions or variations of an
application and then determining which is better. It’s an effective tool to use when
you’re tweaking an application to improve its efficiency and scalability. You create a
standardized test, run it against the variations, and then analyze the results.

Load testing, on the other hand, is basically stress testing your application. You’re try‐
ing to see at what point your application begins to fail or bog down because of too
many demands on resources or too many concurrent users. You basically want to
drive the application until it fails. Failure is a success with load testing.

There are existing tools that handle both kinds of performance testing, and a popular
one is ApacheBench. It’s popular because it’s available by default on any server where
Apache is installed—and few servers don’t have Apache installed. It’s also an easy-to-
use, powerful little testing tool. When I was trying to determine whether it’s better to
create a static database connection for reuse or to create a connection and discard it
with each use, I used ApacheBench to run tests.

ApacheBench is commonly called ab, and I’ll use that name from this point forward.
ab is a command-line tool that allows us to specify the number of times an applica‐
tion is run and by how many concurrent users. If we want to emulate 20 concurrent
users accessing a web application a total of 100 times, we’d use a command like the
following:

ab -n 100 -c 20 http://burningbird.net/

Benchmark and Load Testing with Apache Bench | 237

It’s important to provide the final slash, as ab expects a full URL, including path.

ab provides a rather rich output of information. An example is the following output
(excluding the tool identification) from one test:

Benchmarking burningbird.net (be patient).....done

Server Software: Apache/2.4.7
Server Hostname: burningbird.net
Server Port: 80

Document Path: /
Document Length: 36683 bytes

Concurrency Level: 20
Time taken for tests: 5.489 seconds
Complete requests: 100
Failed requests: 0
Total transferred: 3695600 bytes
HTML transferred: 3668300 bytes
Requests per second: 18.22 [#/sec] (mean)
Time per request: 1097.787 [ms] (mean)
Time per request: 54.889 [ms] (mean, across all concurrent requests)
Transfer rate: 657.50 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 1 2.3 0 7
Processing: 555 1049 196.9 1078 1455
Waiting: 53 421 170.8 404 870
Total: 559 1050 197.0 1080 1462

Percentage of the requests served within a certain time (ms)
 50% 1080
 66% 1142
 75% 1198
 80% 1214
 90% 1341
 95% 1392
 98% 1415
 99% 1462
 100% 1462 (longest request)

The lines we’re most interested in are those having to do with how long each test
took, and the cumulative distribution at the end of the test (based on percentages).
According to this output, the average time per request (the first value with this label)
is 1097.787 milliseconds. This is how long the average user could expect to wait for a
response. The second line has to do with throughput, and is probably not as useful as
the first.

238 | Chapter 11: Node in Development and Production

The cumulative distribution provides a good look into the percentage of requests
handled within a certain time frame. Again, this indicates what we can expect for an
average user: response times between 1,080 and 1,462 milliseconds, with the vast
majority of responses handled in 1,392 milliseconds or less.

The last value we’re looking at is the requests per second—in this case, 18.22. This
value can somewhat predict how well the application will scale because it gives us an
idea of the maximum requests per second—that is, the upper boundaries of applica‐
tion access. However, you’ll need to run the test at different times, and under different
ancillary loads, especially if you’re running the test on a system that serves other uses.

The Loadtest Application

You can also use the Loadtest application to do load testing:
npm install -g loadtest

The advantage over Apache Bench is you can set requests as well as
users:

loadtest [-n requests] [-c concurrency] [-k] URL

Benchmark and Load Testing with Apache Bench | 239

CHAPTER 12

Node in New Environments

Node has expanded to many different environments beyond the basic server in Linux,
OS X, and Windows.

Node has provided a way of using JavaScript with microcomputers and microcontrol‐
lers such as Raspberry Pi and Arduino. Samsung is planning on integrating Node into
its vision of the Internet of Things (IoT), even though the IoT technology it bought,
SmartThings, is based on a variation of Java (Groovy). And Microsoft has embraced
Node, and is now working to extend it by providing a variation of Node with its own
engine, Chakra, running it.

The many faces of Node are what makes it both exciting and fun.

Node and Mobile Environments

Node has also made its way into the mobile world, but attempting
to squish a section on it into this book was beyond my ability to
compress the subject down to a minimum. Instead, I’ll point the
reader to a book on the topic, Learning Node.js for Mobile Applica‐
tion Development (Packt, 2015), by Stefan Buttigieg and Milorad
Jevdjenic.

Samsung IoT and GPIO
Samsung has created a variation of Node called IoT.js, as well as a JavaScript version
for IoT technologies called JerryScript. From the documentation, the primary reason
for new variations is to develop tools and technologies that work in devices with
lower memory than the traditional JavaScript/Node environments.

In one graph accompanying a Samsung employee’s presentation, they show a full
implementation of JerryScript with a binary size of 200 KB and a memory footprint

241

https://www.packtpub.com/web-development/learning-nodejs-mobile-application-development
https://www.packtpub.com/web-development/learning-nodejs-mobile-application-development
http://bit.ly/1YklQea

of 16 KB to 64 KB. This, compared to V8 requiring a binary size of 10 MB, and a
memory footprint of 8 MB. When you’re working with IoT devices, every scrap of
space and memory matters.

Focusing on IoT.js, in the documentation you’ll find that it supports a subset of the
core Node modules such as Buffer, HTTP, Net, and File System. Considering its tar‐
geted use, no support for modules such as Crypto is understandable. You know you’re
in the world of IoT when you see that it also features a new core module: GPIO. It
represents the application interface to the physical hardware, which forms the bridge
between application and device.

GPIO is an acronym for general-purpose input/output. It represents a pin on an inte‐
grated circuit that can be either an input or output, and whose behavior is controlled
by applications we create. The GPIO pins provide an interface to the device. As
inputs, they can receive information from devices such as temperature or motion sen‐
sors; as outputs, they can control lights, touch screens, motors, rotary devices, and so
on.

On a device such as a Raspberry Pi (covered in “Node for Microcontrollers and
Microcomputers” on page 245), there is a panel of pins along one side, most of which
are GPIO pins, interspersed with ground and power pins. Figure 12-1 shows an
actual photo of the pins, and underneath, a pinout diagram showing the GPIO, power,
and ground pins for a Raspberry Pi 2 Model B.

Figure 12-1. Raspberry Pi 2 pins and associated pinout diagram courtesy of the Rasp‐
berry Pi Foundation, used via CC license CC-BY-SA

As you might note, the pin number in the pinout diagram doesn’t reflect its actual
physical location in the board. The number appearing in the pin label is the GPIO

242 | Chapter 12: Node in New Environments

https://github.com/Samsung/iotjs/wiki/IoT.js-API-Reference
http://bit.ly/1Omurrd
http://bit.ly/1Omurrd

number. Some APIs, including Samsung’s IoT.js, expect the GPIO number when it
asks for a pin number.

To use the Samsung IoT.js, you initialize the GPIO object and then call one of the
functions, such as gpio.setPen(), which takes a pin number as first parameter,
direction (i.e., 'in' for input, 'out' for output, and 'none' to release), an optional
mode, and a callback. To send data to the pin, use the gpio.writePin() function, giv‐
ing it the pin number, a boolean value, and a callback.

The Samsung IoT.js is definitely a work in progress. And it seems to conflict with
other Samsung work known as SAMIO, which defines a data exchange platform that
can, among other things, allow communication between an Arduino and a Raspberry
Pi when monitoring a flame sensor (see the associated tutorial)—and which does
incorporate the use of Node. However, it’s all in active development, so I guess we’ll
stay tuned.

Raspberry Pi and Arduino

We’ll look at Raspberry Pi and Arduino in more detail in “Node for
Microcontrollers and Microcomputers” on page 245.

Windows with Chakra Node
On January 19, 2016, Microsoft issued a pull request (PR) to enable Node to run with
Microsoft’s ChakraCore (JavaScript) engine. The company created a V8 shim that
implements most of the V8 essential APIs, allowing Node to run on ChakraCore
transparently.

The idea of Node running on something other than V8 is both interesting and, in my
opinion, compelling. Though it seems that the V8 is driving the development of
Node, at least Node Current releases, technically there is no absolute requirement
that Node be built on V8. After all, the Current updates are geared more toward
enhancements of the Node API and incorporating new ECMAScript innovations.

Microsoft has open-sourced ChakraCore, which is a necessary first step. It provides
the JavaScript engine support for the company’s new browser, Edge. And the com‐
pany claims the engine is superior to V8.

While the debate and testing is ongoing about the PR, you can actually test Node on
ChakraCore as long as you have a Windows machine, Python (2.6 or 2.7), and Visual
Studio (such as Visual Studio 2015 Community, available for free download). You can
also download a prebuilt binary. Microsoft makes available binaries for ARM (for
Raspberry Pi), as well as the more traditional x86 and x64 architectures. When I
installed it in my Windows machine, it created the same type of Command window I

Windows with Chakra Node | 243

https://samsung.github.io/iotjs/
https://developer.samsungsami.io/
https://developer.samsungsami.io/sami/tutorials/your-first-iot-device.html
https://blogs.windows.com/msedgedev/2016/01/19/nodejs-chakracore-mainline/
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

used for the non-ChakraCore Node. Best of all, it can be installed on the same
machine as a Node installation, and the two can be used side by side.

I tried out several examples from the book and ran into no problems. I also tried out
an example reflecting a recent change for Node that allows the child_pro
cess.spawn() function to specify a shell option (covered in Chapter 8). The example
didn’t work with the 4.x LTS release, but it does work with the most recent Current
release (6.0.0 at the time this was written). And it worked with the binary build of the
Node based on ChakraCore. This, even though the new Current release happened a
few days prior. So Microsoft is grabbing the most recent Current release of the Node
API in its Node/ChakraCore binary build.

Even of more interest, when I tried the following ES6 reflect/proxy example:

'use strict'

// example, courtesy of Dr. Axel Rauschmayer
// http://www.2ality.com/2014/12/es6-proxies.html

let target = {};
 let handler = {
 get(target, propKey, receiver) {
 console.log('get ' + propKey);
 return 123;
 }
 };

let proxy = new Proxy(target, handler);

console.log(proxy.foo);

proxy.bar = 'abc';
console.log(target.bar);

It did work with the ChakraCore Node, but it did not work with the V8 Node, not
even the most recent edition. Another advantage the ChakraCore developers claim is
a superior implementation of new ECMAScript enhancements.

It didn’t work with V5 Stable, but it did work with the newer V6
Current Node.

Currently, ChakraCore only works in Windows, and they’ve provided a Raspberry Pi
binary. They also promise a Linux version soon.

244 | Chapter 12: Node in New Environments

Node for Microcontrollers and Microcomputers
Node has found a very comfortable home with microcontrollers like Arduino and
microcomputers like Raspberry Pi.

I use microcomputer when discussing Raspberry Pi, but in actuality, it’s a fully func‐
tioning—albeit small—computer. You can install an operating system on it, such as
Windows 10 or Linux; attach a keyboard, mouse, and monitor; and run many appli‐
cations including a web browser, games, or office applications. The Arduino, on the
other hand, is used for repetitive tasks. Rather than connecting a keyboard or moni‐
tor directly to the device, you connect the device to your computer and use an associ‐
ated application to build and upload a program to the device. It’s an embedded
computer, as compared to a computer (like Raspberry Pi).

Using Raspberry Pi and Arduino Together

You don’t have to choose between Raspberry Pi and Arduino; you
can use them together. The Pi becomes the brain and the Arduino,
the brawn.

Arduino and Raspberry Pi are popular in their respective categories, but they’re only
a subset of available devices, many of which are Arduino-compatible. There’s even a
wearable device (LilyPad).

If you’re new to IoT and connected-device development, I recommend starting with
the Arduino Uno and then trying out the Raspberry Pi 2. There are kits available at
online sites such as AdaFruit, SparkFun, Cana Kit, Amazon, Maker Shed, and others,
as well as the board makers themselves. The kits include all you need to start working
with the boards and are inexpensive (under $100.00). They come with project books
and the components needed for several projects.

In this section, I’m going to demonstrate how to create a Hello World application for
these types of devices. It consists of an application that accesses an LED light on a
GPIO pen and flashes the light. I’m going to demonstrate the application on an Ardu‐
ino Uno and a Raspberry Pi 2.

New Raspberry Pi 3

Just as I was finishing, Raspberry Pi 3 was released. It should be
simple to convert the Raspberry Pi example later in the book to the
newer device. Best of all: Raspberry Pi 3 comes with integrated
WiFi.

First, though, you can’t get far in the connected-device world without knowing a little
bit about electronics and about that wonderful tool known as Fritzing.

Node for Microcontrollers and Microcomputers | 245

https://www.arduino.cc/en/Main/ArduinoBoardLilyPad
https://www.arduino.cc/
https://www.raspberrypi.org/

Fritzing
Fritzing is open source software that gives people the tools to prototype a design and
then actually have the design physically created through the Fritzing Fab. The soft‐
ware is available free of charge (though I recommend a donation if you find the tool
helpful). When you see graphical diagrams with Arduino and Raspberry Pi projects,
they’re invariably made with the Fritzing app.

Download the App

The Fritzing application can be downloaded from the Fritzing web‐
site. It is not a small application, which isn’t surprising considering
the number of graphical components necessary for the application.
You can download a Windows, OS X, or Linux version.

When the tool opens and you create a new sketch, as the design diagram is called, a
breadboard is automatically added to the sketch. A breadboard is an easy way of pro‐
totyping an electrical project. You don’t have to solder any of the components; all you
have to do is plug one end of the wire to the board pin and plug the other end into
the breadboard. Under the plastic exterior of the breadboard are strips of conductive
metal: long vertical ones under the power rails if the board has them (delimited by red
and blue lines, and highlighted in Figure 12-2), and shorter, horizontal ones under
each column terminal strip (shown in Figure 12-3). You then add all the project com‐
ponents to the breadboard.

Figure 12-2. Breadboard diagram with power rail connection highlighted

246 | Chapter 12: Node in New Environments

http://fritzing.org/home/
http://fritzing.org/home/

Figure 12-3. Breadboard diagram with terminal strip highlighted

Anatomy of the Breadboard

For a more detailed look at the breadboard, its history, and how it
works, I recommend the SparkFun “How to Use a Breadboard”
tutorial.

The components you use are dragged and dropped from the parts families in the tool
to the right. In Figure 12-4, you can see the sketch I made for the Arduino pulsing
LED example in the next section. It consists of an Arduino Uno dragged from the
right, a half-sized breadboard, two connecting wires, a resistor, and an LED from the
same parts list with the color of the LED changed from red to blue. The parts descrip‐
tion is what shows at the bottom right. You can manually edit the information for all
components in this section, including the breadboard (modified from full to half).

Node for Microcontrollers and Microcomputers | 247

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard

Figure 12-4. Fritzing sketch of Arduino pulsing project

To create the wires, click and drag from the Arduino pin to the place where you want
the wire to end on the breadboard. The tool automatically adds the wire. Add each
component by dragging from the parts menu to the sketch. To ensure the circuit is
accurate and complete, you can also check out the schematic view of the project, as
shown in Figure 12-5.

Figure 12-5. The schematic diagram for the Arduino pulsing project

248 | Chapter 12: Node in New Environments

The LED has two legs, called leads, one longer than the other. In the diagram, the
longer lead is shown bent. The longer lead is the positive (anode) lead, whereas the
shorter lead is the negative (cathode) lead. In the sketch, the negative lead is plugged
into the Arduino’s ground, whereas the positive lead is plugged into the 11 pin.

One wire is attached from the ground pin (GND) pin to the board. The LED is placed
in the board with the short lead (cathode) placed into the same column as the wire
from the ground. A resistor is placed in the board with one lead in the same column
as the LED’s anode lead. Lastly a wire connecting the other resistor lead to the 11 pin
on the Arduino is added, completing the circuit.

The resistor is the new component in this sketch. Resistors do what they sound like:
resist the electrical current. If a resistor wasn’t added to the circuit (the complete
sequence is a circuit), the LED could attempt to draw too much electricity, potentially
damaging the GPIO pin and board.

The resistance is measured in ohms (Ω), and the resistor in the sketch is 220 ohms.
You can tell how many ohms a resistor is by reading the bands on the resistor. Differ‐
ent colors in different bands (and a different number of bands) define what type of
resister is included in the circuit.

The Electrical Bits

How do you know which resistor to use? It’s a thing called Ohm’s
Law. Yes, all that stuff you learned in school can finally now be
used. For more on Ohm’s Law and selecting resistors, see “Calculat‐
ing correct resistor value to protect Arduino pin” and “Do I really
need resistors when controlling LEDs with Arduino?”

The LED is polarized, which means it has direction. How it’s placed in the board (and
circuit) is important, with the cathode attached to the ground. However, the resistor
is not polarized, so it can be placed in either direction on the board. In addition, the
resistor does not have to be placed after the LED; as shown in Figure 12-2, it can be
placed before the LED. Since this is a simple circuit, all that matters is that the circuit
has a resistor. The Fritzing sketch for the Raspberry Pi project covered in “Node and
Raspberry Pi 2” on page 258, with the resistor placed before the LED, is shown in
Figure 12-6.

Node for Microcontrollers and Microcomputers | 249

http://bit.ly/1svAIvP
http://bit.ly/1svAIvP
http://bit.ly/1Veh8Qk
http://bit.ly/1Veh8Qk

Figure 12-6. The Fritzing sketch for the Raspberry Pi LED project

This is a super quick introduction to just some of the components of a circuit, but it’s
all you need to work with the examples in the next two sections.

250 | Chapter 12: Node in New Environments

Node and Adruino
To program an Arduino Uno, you need to install Arduino software on your com‐
puter. The version I used for the example was 1.7.8, on a Windows 10 machine. There
are versions for OS X and Linux. The Arduino sites provides excellent, detailed
installation instructions. Once installed, connect the Arduino to the PC via a USB
cable, and note the serial port to connect to the board (COM3 for me).

Next you need to upload firmata to the Arduino in order to use Node. The firmata
implements the protocol for communicating with the microcontroller using software
on the computer. In the Arduino application, select File→Examples→Fir‐
mata→StandardFirmata. Figure 12-7 show the firmata loaded into the application.
There’s a right-pointing arrow at the top of the window. Click it to upload the firmata
to the Arduino.

Figure 12-7. Firmata that must be uploaded to the Arduino for Node to work

Node and JavaScript is not the default or even the most common way to control
either the Arduino or the Raspberry Pi (Python is a popular choice). However, there

Node for Microcontrollers and Microcomputers | 251

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Guide/HomePage

is a Node framework called Johnny-Five that provides a way of programming these
devices. Install it in Node using the following:

npm install johnny-five

The Johnny-Five website provides not only a description of the extensive API you can
use to control the board, but also several examples, including the “Hello World” blink
application. Unlike the example the Johnny-Five site provides, which actually con‐
nects an LED directly to the Arduino Uno board pins, we’re going to blink the LED
that’s embedded in the board. We can access this LED by using pin number 13.

The code to blink the embedded LED (or an external LED connected to pin 13) is:

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {
 var led = new five.Led(13);
 led.blink(500);
});

The app loads the Johnny-Five module and creates a new board, representing the
Arduino. When the board is ready, the app creates a new LED, using the pin number
of 13. Note that this is not the same as the GPIO number; Johnny-Five uses a physical
numbering system reflecting pin locations marked on the card. Once the LED object
is created, its blink() function is called. The result is shown in Figure 12-8 with an
arrow pointing out the LED.

252 | Chapter 12: Node in New Environments

http://johnny-five.io/

Figure 12-8. Blinking the built-in LED on pin 13 in Arduino Uno

The application opens a REPL. To terminate the application, type .exit. The LED
will continue to blink until you terminate the application; if the LED is lit when you
quit, it will stay lit until you power off the device.

Safety, Safety, Safety
IoT is all fun and games until you fry your board. Or your computer.

Seriously, you can safely and easily work with most IoT, small-device applications as
long as you follow instructions. That’s why it’s important to always double-check dia‐
grams when you’re placing components and to use the right components.

It’s also important to keep your workspace clean and uncluttered, use a good strong
light, make sure you don’t walk across a nylon rug with socks on before you touch
anything electronic (ground yourself), unplug boards before changing the compo‐
nents, and keep the curious cat and the hyperactive dog (or small child) out of the
room when you work. I also really don’t recommend putting your coffee cup right
next to your board.

You’ll also want to put the electronics away when you’re done if you have small chil‐
dren—there are very few things outside of the boards that can’t be swallowed by a

Node for Microcontrollers and Microcomputers | 253

child, and the LEDs look particularly edible. The projects are an excellent learning
experience for older children, but use common sense about how old the child needs
to be to work on the projects independently.

I wear glasses, but if you don’t, you really want to look into getting work glasses for
protection.

There are some electronic safeguards in place. The Arduino Uno board has on-board
regulators that should prevent that cute little device from frying your computer. How‐
ever, the board itself is vulnerable to damage. They are inexpensive but not to the
point where frying them or damaging the pins on a regular basis won’t cause you
some pain.

Find more at Electronics at StackExchange.

The blinky LED is fun, but now that we have this shiny, new toy, let’s take it for a real
spin. The LED object supports several interesting sounding functions like pulse()
and fadeIn(). However, these functions require a pulse width modulation (PWM)
pin, also known as an analog output. The 13 pin is not PWM. However, the 11 pin is,
which you can determine by the tilde (~) character that precedes it on the board
(~11).

First, unplug the board. Then grab a breadboard, LED light, 220-ohm resister, and
two connecting wires. Most kits should have all these components.

Turn the board so the “Arduino” label is right side up. Along the top is a row of pins.
Plug a connecting wire into the ground pin, which is marked GND. Plug a second
wire into the pin labeled ~11. In a breadboard next to the Arduino, follow the Fritz‐
ing sketch shown in Figure 12-9 to place the rest of the components into the bread‐
board. When you’re finished, plug the Arduino back in.

254 | Chapter 12: Node in New Environments

http://bit.ly/1qzshP2

Figure 12-9. Fritzing sketch of Arduino Uno pulse project

Node for Microcontrollers and Microcomputers | 255

The Example 12-1 application exposes several functions to the REPL via the
REPL.inject() function. This means you can control the board when you’re in the
REPL environment. All you have to do is type in the name of the function, such as
on() to turn the light on, and fadeOut() to turn the light out by fading.

Some of the functions, such as pulse(), fadeIn(), and fadeOut(), require that PWM
pin. The application also uses an animation for the pulse() function. To stop the ani‐
mation, type in stop() at the REPL console. You’ll see the “Animation stopped” mes‐
sage. You’ll still need to turn the LED off after you stop it. And you need to stop
animations before you turn off the LED, or they won’t stop animating.

Example 12-1. Interactive application using REPL to control LED

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {
 console.log("Ready event. Repl instance auto-initialized!");

 var led = new five.Led(11);

 this.repl.inject({
 // Allow limited on/off control access to the
 // Led instance from the REPL.
 on: function() {
 led.on();
 },
 off: function() {
 led.off();
 },
strobe: function() {
 led.strobe(1000);
},
pulse: function() {
 led.pulse({
 easing: "linear",
 duration: 3000,
 cuePoints: [0, 0.2, 0.4, 0.6, 0.8, 1],
 keyFrames: [0, 10, 0, 50, 0, 255],
 onstop: function() {
 console.log("Animation stopped");
 }
 });
},
stop: function() {
 led.stop();
},
fade: function() {
 led.fadeIn();

256 | Chapter 12: Node in New Environments

},
fadeOut: function() {
 led.fadeOut();
}
 });
});

Run the application using Node:

node fancyblinking

Once you’ve received the “Ready event ...” message, you can now enter commands.
An example is the following, which strobes the light:

>> strobe()

Typing stop() stops the strobe effect, and off() turns the light off altogether. Try the
fancier pulse(), fade(), and fadeOut() next. Figure 12-10 shows the project while
the light is pulsing (a little hard to demonstrate in a static picture—trust me, it
works).

Figure 12-10. The Arduino Uno pulsing project

Once you’ve mastered the blinking and pulsing LED, check out some of the other
Node/Arduino applications you can try:

Node for Microcontrollers and Microcomputers | 257

• Real-Time Temperature Logging with Arduino, Node, and Plotly
• The Arduino Experimenter’s Guide to NodeJs has a whole host of projects to try,

and provides the finished code
• Controlling a MotorBoat using Arduino and Node
• As an alternative to Johnny-Five, try out the Cylon Arduino module
• Arduino Node.js RC Car Driven with the HTML5 Gamepad API
• How to Control Philips Hue Lights from an Arduino (and Add a Motion Sensor)

You could stick with Arduino and be busy for months. However, Raspberry Pi adds a
whole new dimension to IoT development, as you’ll see in the next section.

Node and Raspberry Pi 2
The Raspberry Pi 2 is a much more sophisticated card than the Arduino. You can
connect a monitor, keyboard, and mouse to it and use it as an actual computer.
Microsoft provides a Windows 10 installation for the device, but most people use
Rasbpian, a Linux implementation based on Debian Jesse.

Connect to the Raspberry Pi with SSH

You can connect to your Raspberry Pi with SSH if you add a WiFi
dongle. They’re very inexpensive, and the ones I’ve used have
worked right out of the box. Once you have access to the Internet
on your Pi, SSH should be enabled by default. Just grab the IP
address for the Pi and use it in your SSH program. WiFi is builtin
by default with the new Raspberry Pi 3.

The Raspberry Pi 2 runs off a MicroSD card. It should be at least 8 GB in size and be
Class 10. The Raspberry Pi site provides installation instructions, but I recommend
formatting the card; copying over the New Out Of Box (NOOBs) software, which
allows you to pick which operating system to install; and then installing Raspbian.
You can also install a Rasbian image directly, downloaded from the site.

The newest Rasbian at the time of writing was released in February 2016. It comes
with Node installed, since it also features Node-RED, a Node-based application that
allows you to literally drag and drop a circuit design and power a Raspberry Pi
directly from the tool. However, the version of Node is older, v0.10.x. You’ll be using
Johnny-Five to use Node to control the device and it should work with this version,
but you’ll probably want to upgrade Node. I recommend using the LTS version of
Node (4.4.x at the time of writing), and following Node-REDs instructions for
upgrading Node and Node-RED manually.

258 | Chapter 12: Node in New Environments

http://bit.ly/1rZBQI8
http://node-ardx.org/
http://bit.ly/1WH9Iqs
https://cylonjs.com/
http://bit.ly/1U4rwYE
http://bit.ly/1Veh5E5
https://www.raspberrypi.org/documentation/installation/
http://nodered.org/docs/getting-started/installation.html

Check for Node

Node may be installed but under a different name for Node-RED.
If so, you should be able to install a newer version of Node directly
without having to uninstall any software.

Once Node is upgraded, go ahead and install Johnny-Five. You’ll need to also install
another module, raspi-io, which is a plug-in that allows Johnny-Five to work with
Raspberry Pi.

npm install johnny-five raspi-io

Do feel free to explore your new computer, including the desktop applications. Once
you’re finished, though, the next part is setting up the physical circuit. To start, power
off the Raspberry Pi.

You’ll need to use a breadboard for the blinking light “Hello World” application. In
addition, you’ll need a resistor, preferably 220 ohms, which is the size of resistor fre‐
quently included in most Raspberry Pi kits. It should be a four-band resistor: red, red,
brown, and gold.

Reading the Resistor Bands

Digi-Key Electronics provides a really handy calculator and color
graphic for determining the value of ohms for your resistors. If you
have trouble distinguishing color, you’ll need help from a friend or
family member, or the use of a multimeter for measuring the value.

The Fritzing sketch was shown in Figure 12-6. Add the resistor and LED to the
breadboard, with the cathode lead (short lead) of the LED parallel with the last leg of
the resistor. Carefully take two of the wires that came with your Raspberry Pi 2 kit
and connect one to the GRND pin (third pin from the left, top row) and one to pin
13 (seventh pin from the left, second row) on the Raspberry Pi board. Attach the
other ends to the breadboard: the GRND wire goes parallel to the first lead of the
resistor, and the GPIO pin wire is inserted parallel to the anode lead (longer lead) of
the LED.

The Fragile Raspberry Pi Pins

The pins are fragile on the Raspberry Pi, which is why most folks
use a breakout. A breakout is a wide cable that plugs into the Rasp‐
berry Pi pins and then attaches to the breadboard. The components
then connect to the breakout rather than directly to the Raspberry
Pi.

Node for Microcontrollers and Microcomputers | 259

http://bit.ly/1YJxYpa
http://bit.ly/1YJxYpa

Power up the Raspberry Pi again. Type in the Node application. It’s almost the same
as the one for Arduino, but you’ll be using the raspi-io plug-in. In addition, how you
specify the pin number changes. In the Arduino, you used a number for the pin. In
Raspberry Pi, you’ll use a string. The differences are shown in bold in the code:

var five = require("johnny-five");
var Raspi = require("raspi-io");
var board = new five.Board({
 io: new Raspi()
});

board.on("ready", function() {
 var led = new five.Led("P1-13");
 led.blink();
});

Run the program and the LED should blink, just as it did with the Arduino, and as
shown in Figure 12-11.

Figure 12-11. Blinking an LED using Raspberry Pi and Node

You can also run the interactive application with the Raspberry Pi 2. In this board, a
PWM pin is GPIO 18, which is pin 12 for the Johnny-Five application. This is the
sixth pin from the top-left row. Make sure you power down the Raspberry Pi before
you move the wire from pin 13 to pin 12. I won’t repeat all the code, but the changed
code for the application is included in the following code block:

var five = require("johnny-five");
var Raspi = require("raspi-io");
var board = new five.Board({

260 | Chapter 12: Node in New Environments

 io: new Raspi()
});

board.on("ready", function() {
 var led = new five.Led("P1-12");

 // add in animations and commands
 this.repl.inject({
 ...

 });
});

Since the LED is larger, you can really see the animation better when you type in the
pulse() function.

Other fun Raspberry Pi and Node projects:

• Easy Node.js and WebSockets LED Controller for Raspberry Pi
• Home Monitoring with Raspberry Pi and Node
• Heimcontrol.js: Home Automation with Raspberry Pi and Node
• Build Your Own Smart TV Using RaspberryPi, NodeJS, and Socket.io
• Building a Garage Door Opener with Node and MQTT—Using an Intel Edison
• Amazon’s Guide to Make Your Own Raspberry Pi Powered Alexa Device

There’s something immensely gratifying about seeing an actual and immediate, physi‐
cal reaction to your Node applications.

Node for Microcontrollers and Microcomputers | 261

http://bit.ly/1YJxYpa
http://bit.ly/1YJyaVA
http://bit.ly/1rZC4PI
http://bit.ly/1WHapQw
http://bit.ly/240gbeR
http://bit.ly/1TsoZHH

Index

Symbols
#! (shebang characters), 144
/ (forward slash), 142
=> (fat arrow), 183
\ (backslash), 142
{ (curly brace), 90

A
acknowledgments, xiii
add-ons, creating, 17
AngularJS, 211-216
anonymous functions, 183
Apache proxy, 124-125
ApacheBench, 237-239
app.AppView(), 214
app.get() function, 192
applications

creating command-line utilities, 142
cross-platform, 129, 133
terminating, 23
using Apache to proxy, 124

Arduino
breadboard sketch for, 247
communication with Raspberry Pi, 243
programming, 251-258
vs. Raspberry PI, 245

arrow functions, 183
Assert module, 226-229
assertion tests, 226
Async module

async.parallel, 81
async.serial, 81
async.waterfall method, 78
asynchronous patterns supported, 77

installing, 78
autoClose option, 138
Azure, 131, 199

B
Backbone.js, 214-215
backslash (\), 142
behavior-driven development (BDD), 232
benchmarking, 237
big-endian (BE) systems, 30, 130
Blink DevTools debugger, 222
block-level scoping, 181
blocking, preventing, 33
Bluebird, 187
breadboards, 246
breakouts, 259
BSON documents, 199
buffer object

buffer.compare(), 32
buffer.concat(), 146
buffer.copy(), 32
buffer.equals(), 32
buffer.readFloatLE(), 30
buffer.readUInt8(), 30
buffer.readUIntLE(), 30
buffer.slice(), 31
Buffer.toString() method, 28
buffer.write(), 29
buffer.writeDoubleBE(), 30
buffer.writeUInt16BE(), 30

buffers
comparing, 32
converting into typed arrays, 25
converting to JSON and strings, 28-29

263

copying, 32
creating, 26
creating outside of pre-allocated pool, 32
filling, 26
in-place modification, 31
in Node, 26
reading/writing contents, 30-32
slicing, 31
testing for equivalency, 32

byte order, 30

C
-c (command-line option), 10
C++ add-ons, 17
callback functions

creating asynchronous, 36-38
error handling, 37
in event-driven architecture, 34
managing with Async module, 77-82
nested callbacks, 46-53
vs. promises, 187

callback spaghetti, 53
Camel-case, 83
Cassandra, 202
certificate-signing request (CSR), 160
ChakraCore (JavaScript) engine, 243
checksum, 164
child processes

benefits of, 169
child_process.exec(), 173
child_process.execFile(), 173
child_process.fork, 175
child_process.spawn, 169
child_process.spawnSync(), 173
creating with spawn method, 169
running commands with exec method, 173
spawning Node processes, 175
Windows applications, 176

Chrome Developer Tools, 223
chunks (of data), 111
classes, support for in ES6, 185
clearImmediate(), 45
clearInterval(), 44
click handlers, 33
cloud hosting, 11
code examples, using, xii
coercion (type casting), 83
command-line options

chaining options, 83

checking Node syntax, 10
coercion (type casting), 83
concatenation of, 83
creating command-line utilities, 142-144
discovering available, 10
discovering V8 options, 10
downloading Commander module, 84
finding Node version, 10
installing Commander module, 82
printing evaluation results, 10
script execution, 21
using Commander module, 142

CommonJS module system, 55, 71
comparison testing, 237
compression functionality, 144
connected-device development, 245
connection events, 35
console

console messages, 100-102
formatting messages, 103-106
uses for, 100
using timers with, 107

console object
console.error() function, 101
console.info() function, 101
console.log() function, 28, 100
console.warn() function, 101
creating, 101

const statements, 182
constant (static) assignment, 182
Content-Encoding, 147
contextified sandboxes, 60
contextualized sandboxes, 62
"continue" bug, 222
core modules, 55

(see also modules)
CouchDB, 199
CPUs, gathering information about, 130
crashes, restarting following, 234
createHash method, 164
createWriteStream, 40
credit card information, 161
cross-platform applications, 129, 133
Crypto module, 163-167
curly brace ({), 90

D
data binding, 216
data chunks, 111

264 | Index

databases, 199-202
datagram sockets, 157-159
debugging

built-in Node debugger, 217
known bugs, 222
Node Inspector, 222-225
Nodeclipse, 225

decodeURIComponent, 125
decompression functionality, 144
deflate function, 145
derivatives, 213
Developer Guide, 74
development and production (see also full-

stack development; web development)
assuring restarts after crashes, 234-237
benchmarking and load testing, 237-239
debugging with Node debugger, 217
debugging with Node Inspector, 222-225
Mocha testing framework, 231
unit testing with Assert, 226-229
unit testing with Nodeunit, 229-231
Vows testing framework, 232

dgram identifier, 158
__dirname, 123
DNS module, 126-128
Dojo, 211
double quotes, 22
duplex streams, 131

E
EARN (Express, AngularJS, Redis, and Node),

203
echo command, 177
ECMA-262 (ECMAScript 2015), 16
Edge browser, 119
efficiency, 237
embedded computers, 245
Ember, 211
encodeURIComponent, 126
endianness, 30
environmental information, 22
EOL (end-of-line) characters, 130
ES6 features

accessing, 16
arrow functions, 183
let and const, 181
promises, 187
strict mode, 179
support for, 16, 179

support for classes, 185
eval(), 59
event handling

asynchronous, 33
creating callback functions, 36-38
event queue (loop), 33-36
EventEmitter, 39-43
nested callbacks, 46-53
timers, 43-45

event-driven architecture, 33
EventEmitter

class, 35
core functionality, 39
EventEmitter.addListener, 42
inheritance and, 109
working example of, 40

exception handling, 46-53
Express application framework, 192-199

GET web requests, 192
Hello, World application, 192
incorporating data, 199
installing, 193
middleware mounting, 196
modules in, 195
running, 193
starting, 192

F
fat arrow (=>), 183
File System (fs), 38, 133-140

classes supported, 133
file descriptor (fd), 137
fs.createReadStream(), 117, 138
fs.createWriteStream(), 138
fs.FSWatcher object, 135
fs.open(), 117, 137
fs.read(), 137
fs.readFile(), 117
fs.readFile() and fs.writeFile(), 136
fs.stat() function, 116
fs.Stats object, 134
fs.write(), 137
functionality of, 133
synchronized vs. asynchronous functions,

133
files/directories

access and maintenance of, 138
accessing stats data, 134
adding timestamps, 146

Index | 265

closing, 138
collecting base names, 141
compressing/decompressing, 144-148
deleting, 138
extracting file extension, 141
linking/unlinking, 138
listening for changes in, 135
modifying filenames, 146
reading/writing, 136

finish packet (FIN), 151
firmata, 251
forEach method, 50
Forever, 234-237
forward slash (/), 142
Fritzing software, 246-250
full-duplex communication, 152
full-stack development

AngularJS, 211-216
Backbone.js, 214-215
Express application framework, 192-199
framework selection, 216
MEAN approach, 191
MongoDB, 199-202
Redis key/value store, 202-210

function keyword, 183

G
-g (command line option), 65
Git/GitHub, 12
--global (command line option), 65
global object, 20-21, 92
GNU readline library, 95
Google Cloud Platform, 211
GPIO module, 241
gzipped tarballs, 74

H
half-duplex communication, 152
handshakes, 159
Harmony JavaScript features, enabling, 10
hash values, 164
"Hello, World" application

basic application, 3-6
enhanced application, 6-9
express application, 192
microcontroller version, 245
timer addition, 107

help option (command-line), 10
HMAC, 163

hoisting, 181
hosting environments, 11-12
hostnames, 160
HTTP module, 109-114

vs. Apache and Nginx, 109
classes in, 113
objects and functions supported, 109
request and response parameters, 110

http.createServer function, 35, 115
HTTPS, 161-163
https.createServer method, 162

I
I/O functions

Buffer class (see buffers)
command-line utility creation, 142-144
compression/decompression, 144-148
event-driven architecture, 33
file handling, 133-140
line-buffered, 171
operating system and, 129-131
processing incoming data, 23
ReadLine module, 148-150
resource access with Path module, 141-142
streams and pipes, 131-133

IFTTT (If This Then That), 1
ImageMagick, 142
immutability, 182
in-place modification, 31
IncomingMessage class, 110
init command, 71
Internet of Things (IoT), 241, 253
io.js (Node group), 13
IPv4/IPv6 addresses, 155

J
JavaScript libraries, converting, 69

(see also modules)
JerryScript, 241
Johnny-Five website, 252
Joyent, 13

K
key/value stores, 202

L
let statements, 181
libuv library, 38

266 | Index

LilyPad, 245
line-buffering, 171
Linux Foundation, 13
Linux, path delimiter in, 141
little-endian (LE) systems, 30, 130
load testing, 237
lodash module, 85
logging modules, 101
Lotus Notes, 199
LTS (Long-Term Support), 13

M
Maker Channels, 1
MEAN (MongoDB, Express, Angular JS, and

Node), 191
Memcached, 202
memoization, 78
message events, 158
microcontrollers and microcomputers

differences between, 245
fritzing software, 246-250
programming a Raspberry Pi, 258-261
programming an Arduino, 251-258
safety guidelines, 253
using together, 245

middleware, 195
Mime module, 120
mobile environments, 241
Mocha testing framework, 231
modularization, 216
Module object

Module.require(), 58
Module._load(), 58

modules
absolute and relative paths, 57
Async module, 77-82
cached, 56, 58
Commander module, 82
core, 55
creating, 69
creating native, 17
determining currently loaded, 58
discovering, 75-77
finding and loading, 56-59
installing dependencies, 65
installing locally vs. globally, 64
installing manually, 63
installing with npm, 64-69
lodash module, 85

logging modules, 101
most popular, 77
naming, 57
native, 56
packaging directories for publication, 70
publishing, 71-74
sandboxing and the VM module, 59-63
Underscore module, 84
uninstalling, 66
variety available, 63

MongoDB, 199-202
Mozilla Developer Network, 187
multiline expressions, 90
multithreaded environments, 38
MV* schemas, 216
MySQL, 164

N
namespaces, eliminating shared, 21
NAN (Native Abstractions for Node.js), 18
native modules, 56
nested callbacks, 46-53
network sockets, 151
networking

cryptography, 163-167
sockets and streams, 151
TCP sockets and servers, 152-157
TLS/SSL set up, 159-161
UDP/datagram sockets, 157-159
working with HTTPs, 161-163

new keyword, 26
Node Cluster module, 176
Node debugger, 217
Node Foundation, 13, 192
Node Inspector, 222-225
Node package manager (npm)

checking for outdated modules, 66
commands overview, 64
creating package.json files, 68, 71
documentation, 63
global vs. local module installation, 64
installing dependencies, 64
installing specific module versions, 65
listing globally installed modules, 67
listing installed modules, 66
listing/changing configuration settings, 67
registry of modules, 68
updating modules, 66
upgrading, 15, 64, 66

Index | 267

using npm mirrors, 68
Node Version Manager (nvm), 15
node-gyp tool, 17
node-serialport native module, 18
node-webkit, 144
Node.js

approach to learning, viii, ix
benefits and drawbacks of, vii
checking syntax of, 10
command-line options, 10
dealing with version differences, 18
documentation for, viii
extending functionality with C/C++, 17
finding version of, 10
governance of, 13
hosting environments, 11-12
installing, 2
new environments for, 241-261
prerequisites to learning, vii
semantic versioning, 13
source code, 59
upgrading, 14
uses for, 1
V8 engine, 16
version selection, 14
versions covered, 14

Nodeclipse, 225
Nodemon, 236
Nodeunit, 229-231
node_modules subdirectory, 57
NoSQL databases, 202
NW.js, 144

O
OAuth protocol, 76
object.freeze(), 182
octal literals, 42, 180
octet streams, 25
Ohm's Law, 249
on function, 35, 39
OpenSSL, 160, 163
OS module, 129-131

accessing, 130
cross-platform capabilities and, 129
functionality of, 130
os.cpus() function, 130
os.freemen()function, 130
os.loadavg() function, 130
os.totalmem() function, 130

P
-p (command-line option), 10, 21
package.json file, 68, 71
packets, 151

(see also networking)
parse(), 56
passphrases, 160
passwords, 164

(see also security)
Path module, 121, 138, 141-142

base name collection, 141
extraction capability, 141
functionality of, 141, 142
path.basename() function, 141
path.delimeter property, 141
path.normalize(), 142
path.normalize() function, 121
path.parse() function, 142

paths, absolute and relative, 57
performance testing, 237
pipe() function, 132
pipes, 148-150
ports

accessing sites via, 125
default, 124
HTTPS default, 161
list of well-known, 115

POSIX functions, 133
--print (command-line option), 10
privacy-enhanced mail (PEM), 160
process object, 21-25

I/O functions, 23
process.env property, 22
process.exit(), 23
process.release property, 22
process.stderr, 24
process.stderr:, 23
process.stdin, 158
process.stdin.setEncoding(), 24
process.stdin:, 23
process.stdout:, 23
process.versions property, 21

process.nextTick(), 37
promises, 187, 200
promisifyAll() function, 188
proxies, 124
PuTTY application, 67
pyramid of doom, 53, 77

268 | Index

Q
Query String module, 111, 125
quotes, single vs. double, 22

R
rainbow table, 164
Raspberry Pi

ChakraCore availability for, 243
functionality of, 245
Node.js installation, 2
programming, 258-261
projects for, 261
Samsung's IoT.js and, 242

RavenDB, 199
React, 211
readable streams, 110, 131, 138
ReadLine module, 95, 148-150
Redis key/value store, 202-210
"registry error parsing json" error, 68
remoteAddress property, 155
remotePort property, 155
REPL (read-eval-print loop)

accessing via TCP, 98
benefits of, 87, 89, 100
commands and purposes, 94
creating custom, 96-100
ending, 89
examining objects with, 92
keyboard control commands, 93
pipes demonstration, 148
rlwrap utility, 95
saving your work, 100
starting, 87
testing regular expressions with, 93
undefined expressions, 88
using, 88
using with complex JavaScript, 90-94

replace method, 48
request events, 35
request parameter, 110
requestListener function, 35
require statement, 55
require.resolve(), 58
resources, discovering, 130
rlwrap utility, 95
runInContext(), 62
runInNewContext(), 60
runInThisContext(), 60

S
Safari Books Online, xii
SAMIO data exchange platform, 243
Samsung IoT, 241
sandboxing, 59-63
--save flag, 69
scalability, 237
script.runInNewContext(), 60
Secure Sockets Layer (SSL), 159-161
security

credit card information, 161
cryptography, 163-167
importance of addressing, 151, 159
sandboxing, 59-63
TLS/SSL setup, 159-161
upgrading Node.js, 14
working with HTTPs, 161-163

self-signed certificates, 159
semantic versioning (Semver), 13
semver-major bumps, 14
server.listen(), 35
setEncoding() function, 139
setImmediate(), 45
setInterval(), 44
setTimeout(), 43-45
sha1 algorithm, 164
sha512 algorithm, 166
shared namespaces, eliminating, 21
shebang (#!) characters, 144
shell option, 172
SimpleDB, 199
Single Page Application (SPA), 215
single quotes, 22
single-threaded synchronous behavior, 33
SlowBuffer class, 32
SmartThings, 241
sockets, 151

(see also networking)
spawn method, 169
standard streams, 23
stat command, 51
stat-mode module, 134
static web servers, creating, 114-124

final version, 122
functionality, 115
Mime module, 120
modules required, 115
for multiple platforms, 121
ports used, 115

Index | 269

read stream handling, 123
reading from files, 117
steps for, 114
testing for file presence, 116
testing the application, 116, 118
video elements, 119

stdio buffering, 172
streaming technology

functionality provided by, 131
readable, writable and duplex streams, 131
stream.read(), 131
stream.resume(), 131
transform streams, 132
working with the Stream object, 131

streams, 151
(see also networking)

strict mode, 42, 179
StringDecoder object, 29
Strongloop, 223
superconstructors, 40
synchronous behavior, 33

T
tar command, 74
Tedious package, 199
template engines, 216
temporary folder, accessing, 130
text editors, 3
timers, 43-45, 107
TodoMVC, 211
toString() function, 28
transform streams, 132, 148
_transform(), 132
Transmission Control Protocol (TCP) , 152-157
Transport Layer Security (TLS), 159-161
Triple-DES, 160
truncate(), 138
trusted authorities, 159
try...catch blocks, 47
typed arrays (see also buffers)

converting into buffers, 25
support for, 25
Unit8Array, 25

typographical conventions, xi

U
Uint32Array, 25
Uint8Array, 25
undefined expressions, 88

Underscore module, 84
unit testing

Assert module, 226-229
Mocha, 231
Nodeunit, 229-231
Vows, 232

unlink() function, 136
unlinkDir() function, 136
upgrades

backward compatibility of, 14
for Node package manager (npm), 15
Node.js process for, 14

User Datagram Protocol (UDP), 157-159
UTF-8 strings, 29
Util module

util.format(), 103
util.inherits(), 40
util.inspect(), 103

V
-v (command-line option), 10
V8 engine

ChakraCore and, 243
discovering via command line, 10
history of, 16

var keyword, 88
variables

availability of, 20
restricting scope of, 181

variadic arguments, 83
--version (command-line option), 10
video elements, 119
virtual private server (VPS), 11
VM module, 59-63

vm.runInNewContext(), 60
Vows testing framework, 232

W
web development

with Apache proxy, 124-125
creating static web servers, 114-124
DNS resolution, 126-128
HTTP module, 109-114
with Query String, 125-126
working with compressed files, 145

Windows
Charka Node, 243
creating command-line utilities, 142
Node.js installation in, 2

270 | Index

parsing filesystem paths in, 142
path delimiter in, 141
running child process applications in, 176
Windows Firewall alerts, 4

worker threads, 38
writable streams, 110, 132, 139

write concern, 201

Z
ZLib module, 144-148

zlib.unzip, 146

Index | 271

About the Author
Shelley Powers has been working with and writing about web technologies—from
the first release of JavaScript to the latest graphics and design tools—for more than 12
years. Her recent O’Reilly books have covered the semantic web, Ajax, JavaScript, and
web graphics. She’s an avid amateur photographer and web development aficionado
who enjoys applying her latest experiments on her many websites.

Colophon
The animal on the cover of Learning Node is a hamster rat (Beamys). There are two
species of hamster rats: the greater hamster rat (Beamys major) and the lesser hamster
rat (Beamys hindei).

The hamster rat inhabits the African forests from Kenya to Tanzania. This large
rodent prefers to make its home in moist environments: along riverbanks and in
thickly forested areas. It thrives in coastal or mountainous regions, although defores‐
tation threatens its natural habitat. Hamster rats live in multichambered burrows and
are excellent climbers.

This rodent has a very distinct appearance: it can be 7 to 12 inches long and weigh up
to a third of a pound. It has a short head and gray fur overall, with a white belly and a
mottled black and white tail. The hamster rat, like other rodents, has a variable diet; it
possesses cheek pouches for food storage.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Shaw’s Zoology. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Book Structure
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. The Node Environment
	Installing Node
	Saying Hello to the World with Node
	A Basic Hello World Application
	Hello World, Tweaked
	Node Command-Line Options

	Node Hosting Environments
	Hosting Node on Your Server, VPS, or Managed Host
	Cloud Hosting

	The Node LTS and Upgrading Node
	Node’s New Semantic Versioning
	Upgrading Node

	Node, V8, and ES6
	Advanced: Node C/C++ Add-ons

	Chapter 2. Node Building Blocks: Global Objects, Events, and Node’s Asynchronous Nature
	The global and process Objects
	The global Object
	The process Object

	Buffers, Typed Arrays, and Strings
	Buffer, JSON, StringDecoder, and UTF-8 Strings
	Buffer Manipulation

	Node’s Callback and Asynchronous Event Handling
	The Event Queue (Loop)
	Creating an Asynchronous Callback Function
	EventEmitter
	The Node Event Loop and Timers

	Nested Callbacks and Exception Handling

	Chapter 3. Basics of Node Modules and Node Package Manager (npm)
	An Overview of the Node Module System
	How Node Finds and Loads a Module
	Sandboxing and the VM Module

	An In-Depth Exploration of NPM
	Creating and Publishing Your Own Node Module
	Creating a Module
	Packaging an Entire Directory
	Preparing Your Module for Publication
	Publishing the Module

	Discovering Node Modules and Three Must-Have Modules
	Better Callback Management with Async
	Command-Line Magic with Commander
	The Ubiquitous Underscore

	Chapter 4. Interactive Node with REPL and More on the Console
	REPL: First Looks and Undefined Expressions
	Benefits of REPL: Getting a Closer Understanding of JavaScript Under the Hood
	Multiline and More Complex JavaScript
	REPL Commands
	REPL and rlwrap
	Custom REPL

	Stuff Happens—Save Often
	The Necessity of the Console
	Console Message Types, Console Class, and Blocking
	Formatting the Message, with Help from util.format() and util.inspect()
	Providing Richer Feedback with console and a Timer

	Chapter 5. Node and the Web
	The HTTP Module: Server and Client
	What’s Involved in Creating a Static Web Server
	Using Apache to Proxy a Node Application
	Parsing the Query with Query String
	DNS Resolution

	Chapter 6. Node and the Local System
	Exploring the Operating System
	Streams and Pipes
	A Formal Introduction to the File System
	The fs.Stats Class
	The File System Watcher
	File Read and Write
	Directory Access and Maintenance
	File Streams

	Resource Access with Path
	Creating a Command-Line Utility
	Compression/Decompression with ZLib
	Pipes and ReadLine

	Chapter 7. Networking, Sockets, and Security
	Servers, Streams, and Sockets
	Sockets and Streams
	TCP Sockets and Servers
	UDP/Datagram Socket

	Guards at the Gate
	Setting Up TLS/SSL
	Working with HTTPS
	The Crypto Module

	Chapter 8. Child Processes
	child_process.spawn
	child_process.exec and child_process.execFile
	child_process.fork

	Running a Child Process Application in Windows

	Chapter 9. Node and ES6
	Strict Mode
	let and const
	Arrow Functions
	Classes
	Promises with Bluebird

	Chapter 10. Full-Stack Node Development
	The Express Application Framework
	MongoDB and Redis Database Systems
	MongoDB
	Redis Key/Value Store

	AngularJS and Other Full-Stack Frameworks

	Chapter 11. Node in Development and Production
	Debugging Node Applications
	The Node Debugger
	Node Inspector

	Unit Testing
	Unit Testing with Assert
	Unit Testing with Nodeunit
	Other Testing Frameworks

	Keeping Node Up and Running
	Benchmark and Load Testing with Apache Bench

	Chapter 12. Node in New Environments
	Samsung IoT and GPIO
	Windows with Chakra Node
	Node for Microcontrollers and Microcomputers
	Fritzing
	Node and Adruino
	Node and Raspberry Pi 2

	Index
	About the Author
	Colophon

